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Resumen

Este trabajo aborda varios aspectos algebraicos y geométricos del método global de
promedios para sistemas dindmicos en S'-variedades. Por S'-variedades, entendemos
una variedad diferencial en la que actiia el grupo S'. Se estudian una amplia variedad
de sistemas dindmicos perturbados, en el contexto del método de la transformada
de Lie y en la teoria de formas normales, cuya caractistica principal es que la parte
no perturbada es invariante con respecto a una accién de S! y siguiendo un enfoque
libre de coordenadas.

Las investigaciones que se desarrollan en esta tesis se centran alrededor de las
siguientes lineas: (i) enfoque algebraico de la ecuacién homoldgica generalizada,; (ii)
formas normales globales y el teorema geométrico de promedios; (iii) el método de
promedios en espacios fase con variables lentas y rapidas.

Una de la aportaciones de este trabajo esta relacionada con la construccién de
soluciones globales de la ecuacién homoldgica tensorial asociada con flujos peridédicos
para el caso de campos tensoriales antisimétricos, covariantes y contravariantes, y
que generalizan las formulas que Cushman derivé para el caso de funciones. Estos
resultados son aplicados al problema de normalizacién de campos vectoriales con
flujo periédico. Mas atin, se formula y se demuestra una versién Riemanniana del
teorema de promedios la cual se usa para aproximar la dindmica real de un sistema
dado, por medio de trayectorias de su sistema promediado en una escala de tiempo
grande. Para este propdsito, ademas de los argumentos de normalizacién, se uti-
lizan estimaciones de tipo Gronwall para flujos en una variedad Riemanniana y las
propiedades de la operacién de levantamiento horizontal en un S'-haz principal.

Otra contribucién de esta tesis consiste en presentar un enfoque de normalizacion
geométrico de una dindmica Hamiltoniana perturbada en espacios con variables
lentas y rédpidas. Tales espacios aparecen en la teoria de aproximaciones adiabaticas
y en sus generalizaciones. La principal caracteristica de estos espacios es que se
descomponen como el producto de un factor con variables lentas y otro factor con
variables rapidas; lo cual se encuentra en correspondencia con la dependencia sin-
gular que tiene la forma simpléctica (6 corchete de Poisson) del pardmetro de per-
turbaciéon. Como consecuencia de esto, el sistema no-perturbado no hereda una
estructura Hamiltoniana natural y por tanto no es posible aplicar directamente la
teoria regular de perturbaciones para sistemas Hamiltonianos. Sin embargo, asu-
miendo ciertas hipétesis de simetria para la dindmica no perturbada, se derivan
varios resultados de normalizacion basados en una versiéon paramétrica del método
de homotopia de Moser y la técnica de promedios para formas (pre)simplécticas y
conexiones no lineales en espacios fibrados, la cual se debe a Marsden, Montgomery
y Ratiu.

Finalmente, en esta disertacién se presentan algunos ejemplos, que tienen relacion
con problemas de Fisica-Matematica, en los cuales se ilustran las principales técnicas
y resultados que son el fundamento de esta tesis.
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Abstract

This dissertation is devoted to some algebraic and geometric aspects of the global
averaging method for dynamical systems of S'-manifolds. In the context of Lie
transform perturbation method and normal form theory, we present a free coordi-
nate approach to the study of a wide class of perturbed dynamical systems whose
unperturbed part is invariant with respect to a given S'-action. The thesis research
centers around the following lines: (i) an algebraic approach to generalized homolog-
ical equations; (ii) global normal forms and the geometric averaging theorem; (iii)
the periodic averaging on slow-fast phase space.

The first contribution is related to the construction of global solutions to the
tensor homological equations associated with periodic flows and generalizes the result
by Cushman to the case of covariant and contravariant antisymmetric tensor fields
of arbitrary order. These results are applied to the normalization problem to vector
fields (not necessarily Hamiltonian ) with periodic flow. Moreover, we formulate and
prove a Riemannian version of the S'averaging theorem on the approximation of the
true dynamics by the trajectories of an averaged system on a long time scale.

Another contribution of the thesis is a geometric approach to the normalization
of perturbed Hamiltonian dynamics on the so-called slow-fast phase spaces which
appear in the theory of adiabatic approximation and its generalizations. Such phase
spaces separates into the product of the slow and fast factors according to the singu-
lar dependence of the symplectic form (the Poisson bracket) on a small perturbation
parameter. As a consequence, the unperturbed system does not inherit any natural
Hamiltonian structure and hence the regular perturbation theory for Hamiltonian
systems can not be directly applies to this situation. Under an appropriate S'-
symmetry hypothesis for the unperturbed dynamics, we derive various normaliza-
tion results based on a parameter dependent version of the Moser homotopy method
and the averaging technique for (pre)symplectic forms and nonlinear connections on
fibered spaces due to Marsden, Montgomery and Ratiu. The dissertation concludes
with illustrations of the main results on some examples.
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Introduction

This work is devoted to some algebraic and geometric aspects of the “global” av-
eraging method for dynamical systems due to Moser [58] and Cushman [15] which
refers to the flow on a phase space manifold rather than to a local coordinate de-
scription. A basic tool in the theory of normal forms for dynamical systems is the
Lie transform method which was originally developed in the works by Deprit [21],
Kamel [37], (see also [33, 35, 51]) . According to this method, formal normaliza-
tion transformations of a perturbed system are constructed by means of formal Lie
series. The existence of such transformations is provided by the solvability of lin-
ear nonhomogeneous equations (involving the Lie derivative along the unperturbed
vector field) which are called the homological equations [5]. The “local” traditional
approach (see for example [5, 7, 66, 67]) is based on the construction of solutions
to homological equations and the corresponding normal forms within domains of
local coordinate systems (such as action-angle variables in the Hamiltonian case).
We are interested in a “global” normalization procedure which can be performed
on an arbitrary relatively compact domain in a phase space. In this case, a nor-
malization transformation can be defined as a flow of a time-dependent vector field
where a small perturbation parameter plays the role of time. This setting leads to
the study of the solvability of homological equations globally, on the whole phase
space. We address this question to a class of perturbed dynamical systems on phase
spaces with S'-symmetry, which includes, in particular, systems whose unperturbed
parts have periodic flows. In the Hamiltonian case, a free coordinate formula for
global solutions to a homological equation associated to a periodic flow was derived
by Cushman [15]. Our point is to generalize this result to the case of homological
equations for tensor fields of arbitrary type. The key observation here is that the
averaging procedure with respect to an action of a compact Lie group (in particular,
a circle action) on a manifold is well defined for a wide class of geometric objects
including tensor fields.

A global averaging technique on phase spaces with symmetry was developed by
S. Golin, A. Knauf, S. Marmi [28] and R. Montgomery [55] for the study of slowly
varying integrable systems and extended to Poisson bundles by J. E. Marsden, R.
Montgomery and T. Ratiu [47] in the context of the Hannay-Berry phases and the
reduction method. One of the goals of the present work is to apply the averaging
technique to a class of perturbed Hamiltonian systems [17, 19, 74, 76] which repre-
sents a generalization of the slow-fast Hamiltonian systems known in the theory of
adiabatic approximation [7, 38, 43, 62]. The main feature of such perturbed Hamil-
tonian models is that the unperturbed system is no longer Hamiltonian and hence
one can not apply the standard methods of the regular Hamiltonian perturbation
theory. One of the main points here is to understand a geometric nature of norma-
lization transformations of adiabatic type which is closely related to the averaging
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2 Introduction

procedure of (pre)symplectic forms [28, 58], and Poisson brackets [75].

Remark also that a global perturbative setting is also important in the quantum
averaging method under construction of the normalization transformation in the
semiclassical approximation [31, 39, 71].

Therefore, the research lines of this thesis are:

1. Algebraic approach to generalized homological equations.
2. Global normal forms and geometric averaging theorem.

3. The periodic averaging on slow-fast phase spaces.

In more details the main results of the thesis are formulated as follows.
1. Algebraic approach to generalized homological equations. Let A, =
Ag + €A1 + O(e?) be a perturbed vector on a manifold M. The existence of a
(global) normalization of first order of A. relative to the unperturbed vector field
Ag is reduced to the existence of two vector fields Z and A; on M satisfying the
homological equation
[Ap, Z) = A1 — A4 (1)

and the condition
[Ag, A1] = 0. (2)

If (Z, Ay) is a solution to this problem, then Z gives an infinitesimal generator of a
normalization transformation and the vector field A; represents the second term in
the normal form. In general, the solvability of this problem is a nontrivial question.
For different approaches see for example, [67]. We assume that the flow of the
unperturbed vector field Ay is periodic with frequency function w : M — R. In this
case, we have an S'-action (not necessarily free) on M with an infinitesimal generator
T = %Ao. To get feeling for an algebraic nature of the homological equation, we

study the problem (1), (2) in a more general setting on the exterior algebras of
k

k-tensor fields x*(M) = Sec /\TM) For a given f € x*(M), we are looking for

k-vector fields IT and F on M satisfying the generalized homological equation
LaJl=F —F (3)

and the condition
[ is S'-invariant. (4)

Here, L4, : X*(M) — x¥(M) is the Lie derivative along the vector field Ay defined
as the unique differential operator on the tensor algebra of the manifold M which
coincides with the standard Lie derivative on the spaces of functions and vector fields
on M. Moreover, the S'-action on M allows us to define the averaging operator

A x¥(M) — x*(M) and the resolvent operator S : x*(M) — x*(M) by

1
o

27
A(F) /0 (FIL) T dt, (5)
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S(F) = o

/ Tl ) EL ) (6)
0

where F14 is the flow of Y.
The operators Ly, A and S are related by

LyoS=id—A (7)

Then, we observe that one can find explicit formulas for solutions to the generalized
homological equation operating only with some algebraic properties of the triple

(Ly, A,S).

Theorem 1 Problem (3),(4) is globally solvable on M and every solution (II, )
is represented in the form

_ 1
F = .A(F) + ;Ag Aig,C, (8)
= L18() + = Ao A Sk ) + C )
- w w3 0 dw bl

where C is an arbitrary S'-invariant k-vector field on M.

In the particular case when k = 0 and x"(M) = C*°(M) is the space of smooth
functions, formulas (8), (9) lead to the Cushman result [15]. Moreover, as a con-
sequence of Theorem 1 for K = 1 and f = A;, we derive the following fact: if
the frequency function w is a first integral of the S'-average (A;) = A(A1) of the
perturbation vector field, that is,

Liayw =0, (10)

then the formulas (8), (9) give a global solution A; = F, Z = II of the problem
(5), (6). Compatibility condition (10) always holds in the Hamiltonian case, when
the perturbed vector field Ac = Xy 1.7, +0(c2) is Hamiltonian on a (pre) symplectic
manifold. This is a consequence of the so-called period-energy relation due to Gordon
[29] (see also [2, 10]) for the unperturbed Hamiltonian vector field Ay = Xp, with
periodic flow, which says that dw A dHy = 0.

Moreover, we obtain similar formulas to (8), (9) for global solutions to the ho-
mological equation on the space QF(M) of differential k -forms. As a consequence
of the general results, we derive the following representation for the S'-average of
an arbitrary closed k-form n € QF(M):

(n) =n—d(ixrS(n)), (11)

which plays a key role in the averaging procedure for symplectic forms.

Finally, we observe that Theorem 1 remains true in an abstract setting, when
we start with some linear operators Ly, S on the spaces of vector valued exterior
forms on a Lie algebra which satisfy appropriate properties. In this case, formula
(7) gives us the algebraic definition of the averaging operator A.

2. Global normal forms and geometric averaging theorem. First of all,
Theorem 1 allows us to show that a perturbed vector field A, whose unperturbed
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part Ap has the period flow with frequency function w can be reduced to an S'-
invariant normal form of first order on any relatively compact domain for £ small
enough. The corresponding normalization transformation is defined as the time-¢
flow ®. = F1, |, of the vector field

1 1
Z = ~8(A) + E52(,CAIW)AO (12)

If compatibility condition (10) is satisfied, then @, is a normalization transformation
of first order for A, relative to Ag. If M is compact, then the normalization transfor-
mation &, is defined on the whole space M. In the Hamiltonian case, compatibility
condition (10) holds and hence a global normalization always exists [15].

The S'-invariant normalization of A, is a first step in the coordinate proof of the
classical averaging theorem (see, [7, 62]) which asserts that the true dynamics of A,
is approximated by the trajectories of the averaged vector field Ag+e(A;) on the long
time scale. We are interested in a geometric (free coordinate) version of this theorem.
Assuming that the action of the circle with infinitesimal generator T = %AO is free,
we consider the principal S'-bundle p : M — O over the orbit space O = M /S!.
Then, there is an S'-invariant splitting TM = H®V, where V = Span{Y} and H are
the vertical and horizontal distributions, respectively. According to this splitting the
St-average (A1) of the perturbation vector field admits the decomposition (A1) =
hor(w) +¢Y, where hor(w) is a horizontal lift of a vector field w € X(O) determining
the (reduced) averaged system on the orbit space. Then, fixing a metric <, >° on O
and the corresponding distance function dist® : O x O — R, we show that

dist?(p o Fll, ("), FIEL(p(m"))) = O(c)
for small enough € and ¢ ~ % One can try to prove this statement applying the
local averaging theorem 1 to coordinate charts on M. But instead, we apply a
global approach which allows us to get the estimations in the intrinsic terms of the
Riemannian manifold (M, <, >) (where <, > is an induced metric on M such that the
projection p is a Riemannian submersion). Geometrically, the proof of the classical
averaging theorem for one-frequency systems on M = S' x R", besides of standard
Gronwall estimates and the near identity transformation argument, is essentially
based on the properties of minimal geodesic in the Euclidean space R™. This is just
a main difficulty for the generalization to arbitrary Riemannian manifolds. Our idea
is to associate to the normalized perturbed vector field (®.)*A. and the averaged
vector field Ag 4+ £(A41) a smooth s-parameter family of vector fields whose flows
induce a (s,t)-parametric surface for each e € [0, g¢],

o : [o, T;} % [0,1] 3 (t,8) — oe(t, )

with properties

0
aas(tv 5) € Hag(t,s)a

oe(t,0) = Fl?imhor (mo),

pooc(t,1)=po FIE%)*AE (mo)
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Then, using the properties of the horizontal lift on the principal S'-bundle p : M —
O and the properties of the covariant derivative on the Riemannian manifold (M, <
,>), we get the desired Gronwall type estimates for the arc length of the s-curves on
this surface o.. An important consequence of the averaging theorem is the following
criterion: if Jo : O — R is a first integral of the averaged vector field w, then the
function J = Jpop is an adiabatic invariant of A that is, | JoFly _(m?) —J(m") |=
O(e) for small enough € and ¢ ~ %

3. The periodic averaging on slow-fast phase spaces. In the context of the
normal form theory, we study a wide class of perturbed Hamiltonian systems on
the so-called slow-fast phase spaces which appear in the the theory of adiabatic ap-
proximation [62] and its generalizations [16, 19, 74]. In applications, such perturbed
models come from e-dependent Hamiltonians which are slow or rapidly varying in
some degrees of freedom. Geometrically, the perturbation theory for slow-fast sys-
tems deals with phase spaces equipped with symplectic forms (or Poisson brackets)
depending on the perturbation parameter € in a singular way at ¢ = 0. As a conse-
quence, the main feature of our perturbed model is that, in the limit when € — 0, the
unperturbed system does not inherits any natural Hamiltonian structure. There-
fore, we deal with a slightly nonstandard setting in the Hamiltonian perturbation
theory where the unperturbed dynamics is not Hamiltonian. This means that one
can not apply to this situation some results of the regular perturbation theory for
Hamiltonian systems.

By a slow-fast phase space we mean the product M = 57 x S of two symplectic
manifolds (51, 01) and (S2, 02) equipped with rescaled product symplectic form o =
01 @ eoo. We think of M as the total space of the trivial fiber bundle 7 : M — S
over the “slow” base with “fast” fiber S3. On such a phase space we consider a
perturbed Hamiltonian system with Hamiltonian H. = Hy + ¢H;, whose leading
term Hy depends on the slow variables m; € S; and the fast variables mo € S
appear only in the perturbation H;. The corresponding Hamiltonian vector field
Vr. is of the form Vg = V + W, where the unperturbed vector field V is no
longer Hamiltonian but projects to the Hamiltonian vector field vy on (S1,01). In
particular, when Hy = 0, we arrive at the adiabatic situation [7], [62].

We are interested in two types of normalization related to S'-actions. First,
we show that in the resonant case, when the flow FI{, of the unperturbed system is
periodic, the perturbed vector field V+eW admits a first order normalization relative
to V. Our main observation is that, although the unperturbed and perturbation
vector fields V and W are not Hamiltonian, because of a special relationship between
V and W and by the period-energy relation argument for the Hamiltonian vector
field v, one can show that condition (10) holds . The term “resonance” is motivated
by the following interpretation of the periodicity condition for the flow FI{,. Since
the flow Fl%, is a fiber preserving mapping on the trivial symplectic bundle S; x .Sy —
S1, under the periodicity of the flow of v, one can introduce the monodromy map g :
S1 — Sym(Se, 02). Then, the flow Fl%, is periodic if g*(m;) = id for all m; € Sjand
an integer k& > 1. In the particular case, when Sy = R?™ and H; is a quadratic
function in the fast variables, this condition is precisely the resonance condition
between the “tangential” and “normal” frequencies of the linearized Hamiltonian
dynamics over Si. Such perturbed models appear in the study of Hamiltonian
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dynamics near an invariant symplectic submanifold (S, 01) [39, 74].

The second normalization setting for V. = V+eW is motivated by the question
on a geometric nature of normalization transformations in the proof of the classical
adiabatic theorem [7, 38, 62]. In this case, the flow of V is not necessarily periodic
and we only assume that V admits a circle first integral J. This means, the vertical
Hamiltonian vector field V; is an infinitesimal generator of an S'-action. Therefore
we deal with the situation when the unperturbed vector field V is invariant with
respect to the S'-action but not the symplectic form o nor the Hamiltonian H.. To
correct this “deffect”, we are looking for a near identity transformation 7. which
brings the original perturbed model to a system which is €2 close to a S'-symmetric
Hamiltonian system. We show that such a normalization transformation can be
defined as a symplectomorphism between the symplectic structure o and its S'-
average (o). The existence of such symplectomorphism follows from the following
representation

(o) =0 —edb°, 0° = S(d1J),

which is a consequence of the general formula (11). Here, the 1-form #° induces an
Sl-invariant splitting of TM which is related with the notion of the Hannay-Berry
connection on symplectic fiber bundles [55]. To construct a symplectomorphism 7z,
for ¢ < 1, we use the Moser homotopy argument [30, 58], for a path of symplectic
forms joining ¢ and (o).

In the case of a Hamiltonian system with two degrees of freedom

H. = f(p1,q1) +€F(p1,q1,p2,q2) (13)

on the standard slow fast space
(M =R?*xR? o =dp; Adgy + edps A dgs), (14)
our main result is formulated as follows.

Theorem 2 If the unperturbed vector field V admits a circle first integral J : M —
RY, then for any open domain N C R* and small enough ¢ # 0, there exists a
symplectomorphism T. : N — R* between o™ and (o) such that the pull-back of the
original Hamiltonian model (13), (14) is e2-close to the Hamiltonian system with
St-symmetry

(N, (o), (He) = fom +e(F)) (15)

in the sense that H. o T. = (H.) +O(g%). Moreover, the S*-action with infinitesimal
generator Y is Hamiltonian relative to (o) with momentum map €J°, where

JV = iv(padga).

Therefore, JO is a first integral of the system (13), (14) related with J by J—J° =
g o m, for a certain function g € C*°(R?). According to the reduction theory
[2, 49, 70], restricting the S'-action and the system to a regular level set of J°, we
get a reduced Hamiltonian system with one degree of freedom.

A generalization of Theorem 2 to an arbitrary slow-fast space (M = Sy x Sy, 0 =
o +50(2)) with S'-symmetry associated to a circle first integral J of a Hamiltonian
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system H. = f om + eF which is related to so called adiabatic condition [47,
55]. The main observation here is that the S'-average (d;J) is a pull-back of a
1-form ¢ on S; whose cohomolgy class is independent of the choice of J. Thus,
if [¢] = 0, then the S'-action is Hamiltonian relative to (¢) and the approximate
model (N, (o), (H.)) is a Hamiltonian system with S'-symmetry. The corresponding
moment map J° is just defined by the adiabatic condition {d;.J") = 0. Moreover,
in the adiabatic case f = 0, for the slow-fast Hamiltonian system (M = S; X
So,0 = 01 @ €09,eF), we get the following normalization result which give us a
free action angle proof of the adibatic theorem. The second term of first order
normal form for the corresponding Hamiltonian vector field is represented as follows

igrphor(Il;) 4+ %V(zo) , where hor(IIy) is the horizontal lift of the Poisson tensor field

(Vo)
I1; on Sy with respect to the Hannay-Berry connection and V<(50)> is the vertical
Hamiltonian vector field on M of an S'-invariant function. This together with the
averaging theorem proves the Montgomery conjecture [55]: a momentum map Jy
covariantly constant with respect to the Hannay-Berry connection is an adiabatic
invariant of the slow-fast Hamiltonian system.

The thesis is organized as follows. In Chapter 1, we give an overview of the
Lie transform method for perturbed dynamical system on manifolds including the
Deprit and Hori schemes. Chapter 2 is devoted to generalized homological equations
associated to periodic flows. The main results are presented in Theorem 2.4.1, Theo-
rem 2.4.7 , and Proposition 2.4.13. At the end of the chapter we also discuss the
energy-period relation for periodic Hamiltonian flows in the context of the solvabi-
lity of the homological equation for vector fields. In Chapter 3, first, we formulate
results (Theorem 3.1.1 and Theorem 3.1.3) on the global normalization of perturbed
vector fields on a manifold which are based on the results of the previous chapter.
Then, the rest of this chapter, section 3.2 deals with Gronwall types estimates for
flows on a Riemannian manifold, the generalization of the S'-averaging theorem and
its applications (Theorem 3.2.15 and Proposition 3.2.22). In Chapter 4, we present
several normalization results for perturbed Hamiltonian systems on slow-fast phase
spaces which also exploit the results of Chapter 2 and Chapter 3. Some motivations
for possible perturbative settings are given in Section 4.1. In the resonance case, the
results on the Deprit normalization and the structure of normal forms are presented
in Section 4.2 (Theorem 4.2.1 and Theorem 4.2.2). In Section 4.3, we describe appro-
ximate Hamiltonian models with S'-symmetry for a class of Hamiltonian systems
on R* with slow or fast varying perturbations (Theorem 4.3.1 ). Subsection 4.3.3
details the averaging technique for (pre)symplectic forms and projectable dynamics.
The main results of the chapter are collected in Subsection 4.3.4 and presented in
Theorem 4.3.18 and Theorem 4.3.20. Finally, in Section 4.4 and Section 4.5, we
illustrate the main results by some examples including the Hamiltonian systems of
Yang-Mills type and the particle dynamics with spin in a magnetic field.
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Chapter 1

Overview of the Lie Transform Method

A basic tool in the theory of normal form for dynamical systems is the Lie transform
method which was originally developed in the works of Deprit [21], and extended
by Kamel [37], (see also [33, 35, 51]). According to this method, formal normal-
ization transformations of a perturbed system are constructed by means of formal
Lie series. The existence of such transformations is provided by the solvability of li-
near nonhomogeneous equations (involving the Lie derivative along the unperturbed
vector field) which are called the homological equations [5]. The “local” traditional
approach (see for example [6, 7, 66, 67]) is based on the construction of solutions
to homological equations and the corresponding normal forms on domains of local
coordinate systems (such as action-angle variables in the Hamiltonian case).

1.1 Setting of the Normalization Problem.

Let M be a smooth manifold and X(M) the space of vector fields on M. Let A(e, x)
be an e-dependent vector field on M, that is, a smooth map A : R x M — TM such
that A(e,z) € T,M. In other words, the e-dependent vector field A is a smooth
family {A; }.cr of vector fields given by

A (z) = Ale, z).

We consider the Taylor expansion of A (z) at e =0

k

Al(z) = Ag(z) + ey () + -+ + %Ak(a:) + O, (1.1.1)

where Ay, ..., Ay are vector fields on M which are defined by the relations

dS

L f=
At = .

(La.f), (s=1,..k), (1.1.2)

for every f € C°°(M). Moreover, O(e**+1) denotes an e-dependent vector field which
has zero at € = 0 of order k + 1.

In the context of perturbation theory, for ¢ <« 1, we consider the dynamical
system of A,

p k
d%&: :Ao(at)+5A1(33)+"‘+%Ak($)+O(€k+1)a (1.1.3)
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which is called the perturbed system. The limiting system as € — 0

dx
i Ap(x) (1.1.4)

is called the unperturbed system. In practice, the unperturbed system usually has
some “good” properties in the sense of the integrability theory and symmetries.

Definition 1.1.1 An e-dependent vector field A. on M is said to be in normal
form of order k relative to the unperturbed vector field Ag if the perturbation
vector fields Ay, ..., A commute with the unperturbed vector field Ay,

LagAs = [Ag, A =0 (s=1,...k), (1.1.5)

or, equivalently,
As € ker(L4,) (s=1,...k). (1.1.6)

This normalization approach provides a general setting due to Deprit [22].

Remark 1 A more general definition of normal form of order k of an e-dependent
vector field A, is obtained under replacing condition (1.1.6) by the following

A eker(Ly,)  (s=1,..,k),
for a certain integer | > 1 [66].

Definition 1.1.2 Let N C M be an (nonempty) open domain and § > 0 a positive
number. A smooth mapping ® : (—=06,0) x N — M is said to be a nmear identity
transformation if for every e € (—0,0) the map ®. : N — M given by

O, (x) = P(e, ) (1.1.7)
s a diffeomorphism onto its image such and
dy =id. (1.1.8)

The open subset N is called the domain of definition of the near identity trans-
formation, usually denoted by ®.. We have the following important property: the
pull-back (®.)" A, of the e-dependent vector field A, by a near identity transfor-
mation ®, is again an e-dependent vector field on IV such that

(®e)” As|5:0 = Ao. (1.1.9)

This means that the near identity transformation ®. preserves the unperturbed part
of A..

In the case when N is a coordinate chart of M with coordinate functions z* :
N — R (i =1,...,dim M), condition (1.1.8) can be expressed in the form

o ®7t =z’ 4 O(e).

Here, the functions y* = 2 o ®! define a parameter dependent coordinate system
on the image ®.(N) for every € € (=4, 0).



1.1 Setting of the Normalization Problem. 11

Example 1.1.1 Let M be a compact manifold and Z. a smooth e-dependent (time-
dependent) vector field on M. Then, the flow ®. = Flg_ of Z. is a near identity
transformation on N = M for all e € R. Conwversely, every near identity transfor-
mation ®. : M — M can be represented as the flow of the time-dependent vector

field

_dFl,

Z<(x) de

(Fl°(z)) € M.

Example 1.1.2 Let M = R"™ be the Euclidean space and Z = Y1, Z'(z) 8(21' be a

vector field on R™. Then, for any open subset N C R™ with compact closure, there
exists & > 0 such that the mapping

o' 2t +eZi(x)

is a near identity transformation with domain of definition N, for e € (=6,0). The
inverse of this mapping is of the form

' ' —eZ(z) + O(e%).

A more general class of near-identity transformation is described in Proposition
1.1.1

Proposition 1.1.1 Let ¥ : R x M — M be a smooth mapping, (¢,z) — ¥(e,x)
such that Wy = id. Then, for any open domain N C M with compact closure there
exists § > 0, such that for each € € (9,0) the restriction

() W,y (1.1.10)

s a diffeomorphism onto its image.

Proof. We fix x € N. Since ¥(0,-) = id, D,¥(0,z) is an isomorphism. So, the Im-
plicit Function Theorem implies that there exit a number 6, > 0, an open neighbor-
hood W, of ¥(0,z) = z in N, and a unique smooth mapping g : (=04, ;) x W, — M
such that for all (¢,y) € (—6z,0z) x Wy

‘11(679(6, y)) =Y.

In other words, for each € € (—d,,d,) the mapping ®. is a diffeomorphism onto
P (Wa).

Since N is compact, it can be covered by a finite number k of neighborhoods
WaysWay, ... Wy, . Each one of these neighborhoods has associated a number 4, .
Let ¢ be the minimum of d;,,04,,...,0z,. Then, for each € € (=4,6), ®.(x) is a
diffeomorphism onto its image. ]

Suppose that for a given e-dependent vector field A., there exits a near identity
transformation ®. such that the pull-back (®.)" A is in normal form of order N,

~ N ~
()" A, :A0+5A1+---+%AN+O(5N+1), (1.1.11)
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[4g,A] =0 (s=1,..,N). (1.1.12)

In this case, (®.)" A, is called a normalization transformation of order N. Consider
the truncated vector field

Ag+eAlV) (1.1.13)

where

EN_l

N!

- of ~ 1 = -
AW df Ayt el t Ay (1.1.14)

Because of (1.1.12) the flow of the truncated vector field can be represented as the
composition of the “slow” and “fast” components

F1t

_ oy = FIEt o oF1Y, .
Ap+AN) AN 7T Ao

Long time scale. To complete this section we recall the following property of the
flow of a perturbed vector field

Proposition 1.1.2 Let A, = Ay + R be an smooth e-dependent vector field. As-
sume that the unperturbed vector field Ay is complete on M. Then, for any open
domain N C M with compact closure and any constant 6 > 0 there is a constant
L > 0 such that the flow Fli&E of A¢ is well-defined on N for all t € |0, %] and each
e € (0,9].

Proof. We will use the following fact which follows from standard properties of flows.
The flows of two vector fields X and Y on M are related by

Fl oFlj, =FIi . (1.1.15)
where P, is a time dependent vector field given by

P Y X 4 (Fly)*Y (1.1.16)

Let
(FI4, )" A — Ag = eRy(e). (1.1.17)
where Ry(e) = (F1%,)*Re depends on ¢t and € smoothly. Fix § > 0. The by the
Flow Box Theorem and compactness of N there exists L such that the flow of Ry

is well-defined on N for ¢ € [0, L]. Applying formula (1.1.15) for X = Ao, ¥ = A,
and P; = Ry ., we get

Fljy, = Fl oFlg, ,

and since FltA0 is well-defined for all t € R, we obtain the desired result. |
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1.2 Lie Transforms on Manifolds

The idea of the Lie transform method is searching for a normalization transformation
for a perturbed vector field as the flow of a time-dependent vector field where the
small parameter € plays the role of time. This method allows us to reduce the
normalization problem to the study of the solvability of linear nonhomogeneous
equations, involving the Lie derivative along the unperturbed vector field Ay, which
are called the homological equations due to Arnold [5]. Usually, in the context of
the formal normalization problem, the derivation of homological equations is given
by using the formal Lie series and formal near identity transformations (see, for
example [13, 15, 21, 33, 50, 59]). In this Section, we apply the Lie method to
construct normal forms (in the sense of Definition 1.1.1) for perturbed systems of
general type (which are not necessarily Hamiltonian), which consists of two steps:
(1) Taylor expansions of flows and (2) the derivation of homological equations. Our
considerations are based on the basic relationship in differential geometry between
flows and Lie derivatives and is closed to the approach of Hernard and Roels [34].

We describe three ways for the construction of a near identity transformation
P,

(I) Deprit’s version: ®. is defined as a flow of a time-dependent vector field Z.,
where the perturbation parameter € plays the role of time variable.

(IT) Hori’s version: @, is defined as the time-¢ flow of an autonomous vector field
Z(e) smoothly depending on the parameter €.

(ITI) Generalized version: @, is defined as the time-¢ flow of a time-dependent vector
field Zy(g) smoothly depending on the parameter \.

1.2.1 Deprit’s method

Let Z.(x) be an smooth e-dependent (time-dependent) vector field on M. For every
integer K > 0, we have the Taylor expansion of Z. at ¢ = 0:

Kk
9
Z.=) :HZk—i—O(sK“). (1.2.1)
n=0

Let ®. = Fl7_ be the flow of Z,

dF1

pE = =17Z.0Fl7_, (1.2.2)

Fly =id. (1.2.3)

Assume that there exist an open domain N C M and ¢ > 0 such that the flow Fl7_
is well-defined on N for all € € (—4,9). In other words, the map &, af Flz_ is

a near identity transformation with domain of definition N. In this case, the time
dependent vector field Z. will be called a generator (or generating vector field) of
..
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Suppose we are given an e-dependent vector field A, on M,
K Ek
Ac=Ag+ > At O(X+). (1.2.4)
k=1

Consider the pull-back of A; by the flow ®. which is an e-dependent vector field on
N with Taylor expansion at € = 0:

K n
def FA € i K+1
A, = (P)'A.=Ap+ §—1 HA" +0(E"T). (1.2.5)

The point here is to compute the vector field coefficients A, € X(N) of this decom-
position in terms of the vector fields Z,, and A, in (1.2.1) and (1.2.4).
By formulas (1.1.2), the coefficients A,, in the Taylor expansion (1.2.5) are given
by
- dF
M dek

We have the following basic formula which describes the relationship between the
Lie derivative and the flows of time-dependent vector fields

((3°)*A.),  on N. (1.2.6)
e=0

d% ((P°)*Ac) = (%) <£ng5 + ;EAE) : (1.2.7)

where Lz_is the Lie derivative along the vector field £z . Denote by X(R x M)
the space of all e-dependent vector fields on M. Introduce the linear differential
operator Jz_ : X(R x M) — X(R x M) given by

e 0
826 dzf ﬁzs + a

Lemma 1.2.1 For every integer k > 1, the following identity holds

Ap = (07, Ac) |=o, (1.2.8)
where 825 =0z, 0...00z. (k-times).
Proof. By formula (1.2.6), we just need to prove that

k
1) A = (@) (9h.A2), (129

for every k > 1. We proceed by induction. If £ = 1, equation (1.2.8) coincides with
basic formula (1.2.7). Then, we assume that (1.2.9) is true for k = n — 1. By direct
computation, we get

ar
de™

n—1
@Al = (@ ad) = (@) (0

da
de
(®°)* O, (8;:1A5) = (@°)* (97.A.).
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[
On the other hand, the vector fields 3§SA5(33) also depend smoothly on . Let us
suppose that (9%5 A (z) has the following Taylor expansion at £ = 0:

K m
FA. =Y %Ag’? + 0K+, (1.2.10)
m=0 ’

Now we prove a result which establishes a recursive relation between the coefficient
of the Taylor expansion of vector fields (1.2.10).

Lemma 1.2.2 The vector fields AP e X(M) in (1.2.10) satisfy the recurrent rela-
tions

AR — Ak +ZC L, A¥D oy k>0 (1.2.11)

nm?

n!
Here C) = ————.
ore ~m m!(n —m)!

Proof. In order to prove this lemma, we will use the following algebraic fact. For
any two linear operators 7 and D on a vector space, we have the identity

=> Clady {(T)- D', (1.2.12)

where adp(7) = [D, T]. Equation (1.2.10) and formula (1.1.2) implies that

0
()
By direct computation, we obtain
am o 0 0 a o
9= © 0% = pen (ﬁzs ae> - (ﬁze y 85) oo [aen’azf] 7

871 an+1 an
=Lz.ogm T ga T [a n"z]

(1.2.13)

e=0

Taking into account that [‘9 ﬁza] =L oz and applying formula (1.2.12) to

Oemn )

operators D = 3 o and 7 = Lz_, we obtaln

o n—1 . 8k
|:8 n?EZ:| —I;)Ckﬁaagl izeagk

an+1 n n 8k
Thus, we have 2 Bz—:” 00z, = ST T Zk:o Ckﬁgnfkk 7. ook Therefore, we get
e —

o am _
(o) = (o)

ol o1 ak b1
= (5o o0 +ch om0 | 500" [1.2.14)

k=0 gen—k
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Ag

Ay —— A AP

Figure 1.1: Deprit’s Triangle

Applying (1.2.14) to vector field A. and evaluating at ¢ = 0 we obtain (1.2.11). =
The recursive formula (1.2.11) can be illustrated in Deprit’s triangle, shown in figure
1.1, ( see also [21, 50]).

Given an e-dependent vector field A., the coefficients of its Taylor expansion
(1.2.4) are located in the first column of the Deprit’s triangle. We suppose that we
have already calculated the terms of the first (k-1) rows and we want to compute the
terms of the k-th row. We start with the computation of Aélll. This computation
involves only the terms on the first column which are above Ay (Ay, itself, see formula
(1.2.11)). Next, we compute Al@z using the term of the second column above A,(Cljl.
We can continue with the computations of the terms of the k-th rows using formula
(1.2.11).

We observe that the coefficients in the Taylor expansion of vector field A, (1.2.5)

are in the diagonal of Deprit’s triangle. That is, Ay = A(()k)

(1.2.11) that

. It follows by formula

Ay =AW = Al gy Al

Finally, we can derive formulas for vector fields Ay in terms of the coefficients of
Taylor expansion of vector fields A, and Z..

Proposition 1.2.3 ([21]) The coefficients Ay, are given by the formulas
A=Ay + Lz, Ao+ RP (1.2.15)

for k = 1,2,..., where the vector fields RkD_l = RkD_l{Zo, ey Zi—23 Aoy ooy A1} are
determined in terms of vector fields Zy, ..., Zp_o and Ag, ..., Ax,_1 by mean of recur-
sive formulas (1.2.11).

Proof. We just need to prove that

AP = Apii+ Lz, Ao+ SP, (1.2.16)

n
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where the vector fields S,?k = Sf?’k{Zo, 21y ey Zpsk—2; Aoy A1y .oy A1} are de-
termined in terms of vector fields 20y «eey Zptk—o and Ag, ..., Apyr—1 by means of
(1.2.11) for every non-negative integers k > 1, n. We proceed by induction over k.
For k = 1, formula (1.2.11) reduces to

n n—1
AV = A0+ CrLy, Anm = Any1+ Lz, Ao+ Y AeClLz, Anm.
m=0 m=0

Hence, we have Sgl{Zo, Ziyee oy Zns Aoy Ary ooy Apa = Zn_l Cr Lz Ap_m. Now,

m=0

we assume that (1.2.16) hold for k = d and all integer n, that is
A%d) = An+d+£Zn+d_1A0 +S£d. (1.2.17)

Formula (1.2.11) gives AT = A(ﬁl +> o CZ}LEZMA(d)

n n—m- Since the vector fields

A are given by (1.2.17) for all n, we have

A"(/Ld-l-l) = An+d+1 + 'CZn+dA0 + S’r?,d
+ Z Cgl‘czm (An+d_m + £Zn+d7m71A0 + ngm,d) :
m=0

Taking

def

SPi €SP+ CnLz, (Anvam + L2y Ao+ S0 0, (1.2.18)

m=0

we have that (1.2.16) also hold for k = d + 1 and for all n. Finally, Aj = Aék) and

equations (1.2.16) reduce to (1.2.15), where RkD_1 = Sé?k_ -

As illustration of the recursive formulas (1.2.15), we compute some vector fields

Ap.

First order: N
Aq :LZ0A0+A1a and ROD =0.

Second order:

Ay =Ao+ L7 Ao+ RP, and RP =13 Ag+2L7 A

Third order:

Avg = Aj —|—£ZQA0 + RQD,
Ré) = 3£ZDA2 + 3£2Z0A1 + ,C%OA() + (2[,20521 + »CZl»CZO)AO + 3£ZlA1.
In summary, if ®. is the flow of the vector field Z. (1.2.1), then the coefficients of

the Taylor expansion at ¢ = 0 of A, = ®FA, = Ag+cA; + %52/12 + %63/13 +0(eY),
are given by
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Ay | Lz,A0+ Ay

AQ £2ZOA0 +2£Z0A1 —|—£Z1A0—|-A2

~ 3»CZOA2 + BLQZoAl + L%OAO + 2»CZ0»CZlA0+
ﬁzlﬁzvo + 3£ZlA1 + ﬁZQAo + Az

We remark that these formulas remain true if we replace the vector field A,
by any e-dependent tensor field on M. In particular, for an e-dependent function
H.=Hy+c¢H + %€2H2 we have

2
g
H. 0 ®c =Ho + (LzoHo + Hi) + 5 (L%, Ho + 2L z,Hy + L7, Ho + Hs) + O(%).

1.2.2 Hori’s method

Let Z(e) be a e-dependent vector field on a manifold M with Taylor expansion at
e=0

Kk
Z(e) = Z%ZkJrO(eK“). (1.2.19)
n=0

We consider Z(e) as an autonomous vector field on M smoothly depending on the
parameter ¢, let Fl%(e) be the time-\ flow of Z(e),

dFI,,
di(g) = Z(e) o Fl.), (1.2.20)
Flyo = id. (1.2.21)
We define the family of diffeomorphisms
def
0. = Fly, e (1.2.22)

It is clear that &y = id. Therefore, the mapping ®. (1.2.22) is a near identity
transformation which is called Hori’s transformation.
Assume that we are given an e-dependent vector field A, on M

Kk
A=Y %Ak L O(EH, (1.2.23)
n=0

and ®. is a Hori’s transformation well-defined on an open subset N C M and
generated by the family of autonomous vector fields Z(e) given by (1.2.19). We
define the e-dependent vector field A, by

K
Al i=PrA. = Ag+ ) A, + O, (1.2.24)

n=1
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Our goal is to get an expression for the vector fields A, of the decomposition above
in terms of the coefficients Z,, and A,,. For every fixed ¢, formulas (1.1.2) and (1.2.7)

imply the following decomposition of vector field (Fl%(€)> Acat A=0

K
. o
(Flg )" Ale) = D Ly Ale). (1.2.25)
m=0

Putting A = € into (1.2.25) and using the Taylor expansion (1.2.23) of A., we get
K on n
0:A = DTS Gl Ar i O
o

In term of the coefficients of Taylor decomposition of Z(e), the Lie derivative ope-
rator [,%1( o) takes the form

82 83
Loy = (Lay el + 5Lz, + 5Ly + )™

The Lie operators E%"”(E) depend smoothly on €. So, we have the following decompo-

sition '
N
Ly => Zpim), (1.2.26)
where the differential operators ]I;Em) are defined by the recurrent relations

LI = Z Ckry oLtm=Y (1.2.27)

with

=

LY = i, LY=o,
(
J

2 Lz, and ]I:(()m) =L7.

Proposition 1.2.4 Vector fields A, in (1.2.24) are given by the recursive formulas

L™ A . (1.2.28)

n n—m
m
0

m=0 i=

Proof. By (1.1.2), we have A,, = d—n‘ezo (PrA.). By direct computation, we obtain

dem
K

dr dr cm K n m—H n dé .
de"((I)A) - Zs”< ) mzzz(; (m+i—n)lde (LZ(E)A€>'

=0

Thus
dnm
A_

(choA:).

e=0
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By (1.2.23) and (1.2.26), we have

K  k
m _ E € E kt (m) )
‘C’Z(E)Aa — E CZ LZ Ak_z.
k=0 =0

Hence,
dqn—m m n—m e (m
am ., (Choe) = 3 O Ay

Therefore, we have

L ™ A,

n n—m
0

m=0 i=
N [
Analogously to Deprit’s method, formulas (1.2.28) of vector fields Ay (1.2.24) can

be written as

A — Ak + kEZk,1A0 + Rk‘H—17

where the vector fields RkH 1 = Rfﬁl{Zo, vy Zi—2; Ao, ..., Ag—1} are determined in
terms of vector fields Zj, ..., Zx_o and Ag, ..., Ax_1 by mean of recurrent formulas
(1.2.27) and (1.2.28). Therefore, if ®. is the near transformation (1.2.22), then the
coefficients of the Taylor expansion at € = 0 of A, = =®IA. =Ap+ A + 2,€2A2 +

3,53A3 + O(e%), are given by

Ay | Lz,A0+ Ay

As ,CQZOA() + Q,CZOA1 + 2LZ1AO + Ay

~ 3£Z0A2 + 3£2Z0A1 + ﬁSZOAo + 3£Z0£Z1A0+
3£21£Z0A0 + 6£Z1A1 + 3£Z2A0 + As

1.2.3 Generalized scheme

Now, we suppose that a vector field Zy () is given, and it is smoothly depending on
the parameters A and . Computing the Taylor expansion at A =0 and ¢ =0

)\km

Z( Z Z T Zem + ONETY) 4 OB+, (1.2.29)
k=0 m=0
k+m
where Zj, ,, = %Akfggff) NP Let Fl’%k(s) be the flow of Z) (),
dFl,
Ale)
N Z)(g)o Flz(s)

Fly, o =id.
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Define the map
def
. = Flz e (1.2.30)
with &g = id. Assuming that ®. is well-defined on an open subset in M for all
sufficiently small e, we arrive at the following generalized version formulas of Deprit’s

method and Hori’s method.

Proposition 1.2.5 For any open domain N C M with compact closure there exists
0 > 0 such that for all e € (=6,0) , the mapping P in (1.2.30) is well-defined on
N and gives a diffeomorphism from N onto its image. Moreover, the coefficients
of Taylor expansion of third order at ¢ = 0 of the pull-back ®IA. = Ay + eA; +
%62112 + %63113 + O(e*) are given by

A1 | Lzy040+ Ay

Ay | L3 Ao+ 2L7,,A1 +2L7,, Ao + L7, Ao + Ao

3£Z0,0A2 + 3[’2Z0’0A1 + 3£Z1,0A1 + £%0,0A0+

Ag 3‘C’ZO,O‘CZO,1A0 =+ 3£ZO,1£ZO,OAO + 6£Z071A1 + 3£ZO,2A0+

LZQ,OAO +2Lz, Lz, A0+ Lz, L7,,A0 + 3Lz, Ao+ A3

Proof. By the flow box theorem for and compactness argument, there exists a 6 > 0
such that the flow FI%A(E) is well defined on N for all A € (—6,0) and ¢ € [—1,1].

Now, we fix ¢ and consider the following decomposition Zy(e) = Zf:o %Zk(e) +
O(ME+1), Using formulas of Deprit, we obtain
A * A2 2
(FIZA(8)> A(e) = Ae) + ALy A(e) + 51 (L) + L)AL

3
+ ﬁ(ﬁZQ(g)) + LY o T 2Lz Lz + Lz Lzo(e) + O,

Putting A = € and using formulas (1.2.23), (1.2.29), we derive the desired formulas. m

Proposition (1.2.5) gives a general approach of Deprit’s method and Hori’s
method, respectively. Indeed,

e in the Deprit case, vector field Zy(¢) = Z) is independent of €. Thus, Zj,, =
0if m > 1 and formulas of Proposition (1.2.5) coincides with formulas of
Deprit’s method;

e in the Hori case, Zy(e) = Z(¢) is independent of X. It follows that Z ,, =
0if £ > 1 and formulas of Proposition (1.2.5) reduce to formulas of Hori’s
method.
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1.2.4 Homological equations

Now, we return to the normalization problem for a given vector field A.. If we
suppose that A. admits a normalization of order K and that normalization trans-
formation @ : N — M given as the flow of a vector field Z, = YK ! £7Z;+0(e5),
we obtain that vector fields A and Zj satisfy certain equations called homological
equations.

Proposition 1.2.6 Assume that an e-dependent vector field A, admits a near iden-
tity transformation ®. : N — M (e € (—6,0)) associated to an infinitesimal genera-
tor Z. which brings A. to normal form (1.1.11). (1.1.12) of order K for a certain
vector fields Ay, ..., Ax. Then, the coefficients Zy, ..., Zx_1 of the Taylor expansion
of Z. must satisfy the following equations on N :

LagZy—1 = Ap — A+ R {Zo, ... Zi—2; Ao, ooy A1}, (1.2.31)

La,Ar =0, (1.2.32)
for k=1,..., K. Here, the vector fields RkD_l are described in Proposition 1.2.3.
Proof. We assume that ®. is well defined on N and is the normalization transfor-
mation of A; with generating vector field
K

€ 1
'ZK,1 + O(EK).

7. =7, Zi4 i —
c=Zo+¢eZ1 + +(K_1).

So, vector field
DA, = Ag+ A +... + ‘;;AK + 05,
is in normal form of order K relative to vector field Ag. That is,
La,As =0, s=1,2,...,N.

Furthermore, Proposition 1.2.3 asserts that coefficients Zj of Taylor expansion of Z.
satisfy the following equations on N

Ay =Ap+ Ly, Ao+ RE |, (1.2.33)
for k =1,2,..., K, where vector fields RY | = RP {Zy, ..., Zy_o; Ao, ..., Ag_1} are
determined in terms of vector fields Zy, ..., Zp_o and Ay, ..., Ax_1 by mean of recur-
rent formulas (1.2.11). Taking into account that Lz, Ao = —La,ZKk—1, formulas
(1.2.33) are equivalent to (1.2.31). [

The converse statement of Proposition above is true.

Proposition 1.2.7 Assume that there exist an open domain N C M and § > 0
such that the following conditions hold

(a) there are vector fields Zy, ..., Zi_1 and Ay, ..., Ax satisfying on N equations
(1.2.31),(1.2.32) on N fork=1,.. K.
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(b) the flow FIEZ(K) of the e-dependent vector field

Kk
z5 =% %Zk (1.2.34)
n=0

is well defined on N for all e € (—6,9).

Then, the near identity transformation

brings the e-dependent vector field A. to normal form of order O(¢%) on N relative
to Ag. In particular, if M is compact, then condition (b) holds on N = M.

Proof. Let AE =®IA. = A +eAi+...+ %K,g[( By Proposition 1.2.3, vector fields
Ay, are given by N
A = A + .Czk_le + RkD_l.

Hence, we have that /Tk = Ay forall k =1,2,..., K. Since, vector fields A}, satisfy
equations (1.2.32), the e-dependent vector field A, is in normal form and ®, is a
normalization transformation. ]
If M is compact then the unperturbed vector field Ag is complete. Proposition 1.1.2
implies that the near identity transformations ®. is well defined in any open domain
N C M with compact closure. Since M is compact, we have M = M. So, ®. in
well defined in N = M.

Proposition 1.2.7 states that the normalization problem for a given e-dependent
vector A depends on the solvability of equations (1.2.31), (1.2.32). It means that if
we want to find an infinitesimal generator (1.2.34) of normalization transformation
(1.2.35) then we have to solve , on several steps, the equations for vector fields Z
and W on N of the form

LaZ=W—-W, (1.2.36)
La,W =0, (1.2.37)
where W is a given vector field.

Indeed, on the first step we have to find vector fields Zy and A, satisfying the
equations

La,Zo= A1 — Ay, (1.2.38)
EAO/L =0.
On the second step, we need to find the vector fields Z; and A; satisfying the
equations }
LayZy = Ay — Az + 5220140 +2L7,A1,
LAOAQ =0,

where the vector fields Zy and A; are given from the previous step. If after (k —1)
steps, we have the vector fields Zy, ..., Zp_o and Aj, ..., Ar_1, then on the k-th step
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we have to find the solutions Z = Z;_; and W = Aj, of equations (1.2.36),(1.2.37),
where

W = A + Rr_1{Zo, ..., Zy—2; Ao, ..., Ap—1}.

In the context of averaging method, equation (1.2.36) is called a homological equa-
tion, [5]. The solvability conditions of equations (1.2.36),(1.2.37) clearly depends on
the properties of the unperturbed vector field Ayg.

By Proposition 1.2.7 and Proposition 1.1.2, we have the following facts.

Corollary 1.2.8 Suppose that homological equations (1.2.31),(1.2.32) are solvable
on an open domain Ngo C M for k = 1,...,N and let Zy,..., Zny_1 and Ay, ... AN
be solutions. Then, for every open domain N C Ny with compact closure, formula
(1.2.35) defines a near identity transformation which is well defined on N and takes
the e-dependent vector field A, into normal form of order O(e™) on N.

Corollary 1.2.9 (Normalization of first order ) Let A.(z) be an e-dependent
vector field with Taylor expansion at e = 0 is A = Ag+ Ay + O(e?). If there exists
a vector field Zy such that

(a) the flow FltZO of Zy is well defined on an open domain N C M,
(b) satisfies on N the equation
La, (EAOZO —Ay)=0. (1.2.39)

Then, the near identity transformation ®. = FltZO sends the vector field A to normal
form of first order on N relative to Ao, that is, P;A. = Ag + Al + O(g?), where
Ay = Ay — La,Zo.

1.2.5 The Hamiltonian case

Here, we shall express the homological equation and recursive formulas (1.2.15) in
terms of the Poisson bracket.

Recall that a Poisson bracket on a smooth manifold M is a R-bilinear antisym-
metric operation {, } : C*°(M) x C*°(M) — C°°(M) compatible with the pointwise
product of smooth functions by the Leibnitz rule and satisfying the Jacobi identity,

{F,GH} = {F,G}H + {F, H}G, (1.2.40)

(FEH){F’ {G,H}}} =0,
where & denotes the cyclic sum.

The pair (M,{,}) is called a Poisson manifold and (C*°(M),{,}) is a Lie al-
gebra. For every H € C°°(M), we define the adjoint operator ady : C*(M) —
C>°(M) given by adg(-) = {H,-}. A smooth vector field X on a Poisson manifold
(M, {,}) is said to be Hamiltonian relative to the Poisson bracket {, } if there exists
a function H € C°°(M) such that the Lie derivative along X coincides with the
adjoint operator of H,

ﬁX = adH . (1.2.41)
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By the Leibnitz identity (1.2.40), every function H € C°°(M) admits a unique
Hamiltonian vector field in (1.2.41) which is denoted by X = Xp. In local coor-
dinates, Hamiltonian dynamical system generated by Xy is written in the bracket
form by

it ={H,z'}, i=1,2,...,2n.

The set Ham(M) of all Hamiltonian vector fields is a Lie subalgebra in X(M) and
the correspondence H +— X is a Lie algebra homomorphism,

(Xu,, X, = X{Hl,Hg}- (1.2.42)

whose kernel is just Casim(M). A vector field P on the Poisson manifold M is said
to be an infinitesimal Poisson automorphism (or, a Poisson vector field) if its Lie
derivative is a derivation of the Poisson algebra (C*°(M),{, }),

Lp{F1, Fy} ={LpF1, F>} + {F1,LpFy},

for any Fy, Fy € C*°(M). It is clear that every Hamiltonian vector field is Poisson.
The space of all Poisson vector fields form a Lie algebra, denoted by Poiss(M). It
follows from (1.2.42) that

[P, Xu|=Xcpn (1.2.43)

for any P € Poiss (M) and H € C*°(M). This property says that Ham(M) is an
ideal of Poiss(M).

The Poisson bracket is called nondegenerate if every Casimir function K €
Casim(M) is a constant function. In this case there exists a unique nondegenerate
closed 2-form ¢ on M, which is compatible with Poisson bracket by the condition

O-(XFI’XFQ) = {Fl,FQ}.

The pair (M, o), where o is a nondegenerate closed 2- form, is called a symplectic
manifold. In terms of the symplectic structure o, condition (1.2.41) tells that a
vector field X is Hamiltonian if there exists H € C°° (M) such that

ixoc=—dH.

Suppose that the e-dependent vector field A, is Hamiltonian relative to H, = Hy +
eHi + ..., that is,
A, = XHE = XHO +5XH1 + ..

It Zo = Xay, Z1 = Xy -y Zi—2 = Xg,_, are Hamiltonian vector fields of func-
tions Go, G1, ..., Gx—1 € C*°(M), Proposition 1.2.6 implies that the vector field

RP {Xcy, s Xy i XHos s Xb Y = XRo 15

described in Proposition 1.2.3 are also Hamiltonian relative to the functions Ry_1 =
RE_I{GO, eoey G—9; Ho, ..., Hy—1}. In particular,

Ro=0, Ri=2{Go, Hi{Go,Ho}},
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and
Ro = {Go,3Ha + {Go,3H1 + {Go, Ho}}} +{G1,2Ho} + {G1,3H1 + {Go, Ho}}.

An advantage of the Hamiltonian case is that the problem (1.2.36),(1.2.37) can
be reduced to the study of homological equations for functions. Assume that vector
fields Ay = Xp,, W = Xp are Hamiltonian on a Poisson manifold (M, {, }). If there
exist smooth functions G' and F satisfying the equations

{Hy,G} = F-F, (1.2.44)
{Ho, F} = 0, (1.2.45)

then the Hamiltonian vector fields Z = X and W = X are solution to the problem
(1.2.36),(1.2.37).

Consider the following generalization of the Hamiltonian case. Suppose we have
a perturbed vector field of the form

2
g
AE = P+€XH1 + §XH2...,

where P is a Poisson vector field on M, which plays the role of the unperturbed
vector field. But the perturbation vector field remains Hamiltonian corresponding to
an e-dependent function e H; + %Hg +... Then, Ay = P, W = Xp,. Putting again
Z = Xg, W = X into (1.2.36),(1.2.37) and using (1.2.43), we get the following
equations for functions G, F':

LpG=H; —F,
LpF =0.

1.3 Normalization Transformations Around Invariant Sub-
manifolds

According to Proposition 1.2.7, the normalization of an e-dependent vector field can
be proceeded in two steps: (a) solving homological type problems (1.2.36), (1.2.37)
and (b) studying the domain of definition of the flow of time-dependent vector field
(1.2.34).

Here, we consider a class of perturbed systems on a manifold M (not necessarily
compact) for which condition (b) of Corollary 1.2.7 holds.

Suppose we are given an e-dependent vector field A, on M which has an invariant
submanifold S C M (dim S < dim M) and the restriction of A to S does not depend
on g,

A (x) e T,S Ve S,e eR, (1.3.1)

v A.|s is independent of e. (1.3.2)

In terms of the coefficients Ay of Taylor expansion (1.2.4) these conditions can be
reformulated as follows: the submanifold S is invariant with respect to the flow of
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the unperturbed vector field Ay and the perturbation vector fields Ay, Ao, ... vanish
at .S, that is,
Ap(z) € TS Vx €S, (1.3.3)

Agls =0 (k= 1,2,...). (1.3.4)

Definition 1.3.1 We say that a near identity transformation ®. : N — M (e €
(—0,0)) is compatible with submanifold S C M (or, shortly S-compatible ) if ®. is
a diffeomorphism from N onto another open neighborhood of S in M

S C ®(N) (1.3.5)

and
O, |s=1id (1.3.6)

for all e € (—0,9).

An important class of S-compatible near identity transformations can be obtained
in the following way.

Lemma 1.3.1 Let Z. be an e-dependent vector field on M wvanishing at the sub-
manifold S C M, Z.|s = 0, Ve € R. Then, for every 6 > 0 there exists an open
neighborhood N = Ns of S in M such that the flow Fl3_ of Z. is well defined on
N for all e € (—6,6). Moreover, Flz_: N — M is a near identity transformation
compatible with S.

Proof. We fix § > 0. By the flow box theorem, for every ¢ € S there exists an
open neighborhood Ug of £ on M such that the flow Flz_ is well defined on U for all
€ € (—4,6). Let N5y = g Ue be an open neighborhood of S. Thus, Flz_: N5 — M
is well defined for all ¢ € (—0,0) and a diffeomorphism onto its image . Since Fl7_
vanishes at S, we have that F13_(¢) = £ for all e. It follows that Flg,_| g = id and
S C Flg_(Ns), for € € (=6, 6). Therefore, Fl7_ is a S-compatible near identity trans-
formation. |

Definition 1.3.2 We say that the perturbed vector field A, satisfying (1.3.1), (1.3.2)
admits a normalization of order K around the invariant submanifold S if there exists
a S-compatible near identity transformation ®. such that the pull-back (®:)" A¢ is
in normal form (1.1.11), (1.1.12).

We denote by C3°(M) and Xg(M) the Lie subalgebra of smooth functions vector
fields on M vanishing at S. It is clear that the Lie derivative L4, along Ay leaves
invariant these subalgebras. Moreover, Xg(M) is a C3°(M )-module.

If Zy, ..., Z;_o are vector fields vanishing at S. Then, the vector field

RkDil{Zo, ceey Zk,Q; AO, ceay Akfl}y

where the vector fields RkD_1 are described in Proposition 1.2.3, also vanishing at S.
Therefore, if there exists S-compatible normalization then the vector field (®.)* A,
automatically vanish at S, that is,

Al‘s =.. :AK|S =0.



28 Overview of the Lie Transform Method

Proposition 1.3.2 Let A, = Ap+.. .+% be an e—dependent vector field vanishing

at S. Assume that there exist vector fields Zo, ..., Zny—_1 € Xs(M) and Ay, ..., A €
Xs(M) satisfying the recurrent equations

LAOZk—l = A — lek + Rk—l{ZO, ey L3 Ao, ..., Ak—l} (137)

La,Ar =0 (1.3.8)

fork=1,....N. Then, A. admits normalization of order K, where the S-compatible

near identity transformation ®. is defined as the flow of the time-dependent vector
K—-1

ﬁeld Z.=7y+¢cZ1- -+ EWZK—I S %S(M),



Chapter 2

Homological Equations for Tensor Fields
associated to Periodic Flows

The so-called homological equations usually appear in the context of normal forms
and the method of averaging for perturbed dynamical systems (see, for example,
[67]). According to the Lie transform method [21, 33|, the infinitesimal generators
of normalization transformations for perturbed dynamics systems are defined as the
solutions to homological equations for vector fields. In the Hamiltonian case, the
normalization problem for vector fields with periodic flow is reduced to the solvability
of homological equations for functions, [15].

Our goal is to study homological equations of tensor type associated to periodic
flows on a manifold. We generalize the Cushman intrinsic formula [15] to the case
of multivector fields and differential forms. Applications of this formula to normal
forms and the averaging method for perturbed Hamiltonian systems on slow-fast
phase spaces can be found in Chapter 4.

2.1 Lie Group Actions. Basic Notions

Here, we recall some necessary definitions and facts about the actions of Lie groups
on manifolds (for more details, see, for example, [2, 49, 52]).

Let G be a Lie group and g its Lie algebra. A left action of G on a manifold M is
a smooth mapping ¥ : Gx M — M such that W(g, ¥(h,m)) = U(gh,m) forall g, h €
G and m € M. This implies that the mapping g — ¥, (where ¥ (m) = ¥(g,m)
is a homomorphism between the groups G and Diff(M). In this case, the triple
(M, G, W) is called a G-space. An infinitesimal generator T, € X(M) of the G-action
associated to a € g is a complete vector field given by Y,(m) = %|t20 Wexp(ta) (M)
The map a — Y, is linear but not necessarily a Lie algebra homomorphism. A
tensor field = on M is said to be G-invariant if ¥7=Z = E Vg € G. In infinitesimal
terms, this condition reads £y, = =0 Va € g. Let D C T'M be a distribution and
Xp(M) the subspace of vector field which is tangent to D. Then, D is G-inviariant
if (dinWy)Dm = Dy, (m) or equivalently [To, Xp(M)] C Xp(M).

Consider the orbit G-m = {¥4(m)|g € G} through m € M. Then, the quotient
M/G is called the orbit space. The isotropy of m € M is the closed subgroup
Gz = {9 € G|Vy4(m) = m} of G. The action V is said to be (i) transitive if there is
only one orbit; (ii) effective (or faithful) if ®; = idys implies g = e; and (iii) free if
there are no fixed points, that is, ®,(m) = m implies g = e, or equivalently, if for
each m € M, the mapping g — ®,(z) is one to one. For example, if G = S! = R/27Z

29
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is the circle , then the S'-action is free if and only if the flow of the infinitesimal
generator T is minimally 2m-periodic.

Now suppose that G is connected compact Lie group. Then, for every tensor
field = on M one can define its G-average as [47]

(=) ;:/ U*Edg
a g

which is again well-defined tensor field on M of the same type as =. Here, dg denotes
the normalized Haar measure on G, fG dg = 1. A tensor field = is G-invariant if and
only if (E) = E. If the action ¥ is free, then the orbit space M/G inherits a C*
manifold structure such that the canonical projection p : M — M/G is a smooth
surjective submersion. In this case, the G-invariance of a tensor field = means that
= is a pull back by p of a certain tensor field on the orbit space M/G.

Let (M, o) be a symplectic manifold. A G-action V¥ is called a symplectic or
canonical on (M,o) if it acts by symplectomorphism, Ly, 0 = 0 Va € g. A sym-
plectic action ¥ admits a momentum map if there exists a smooth vector valued
function J : M — g* such that iy,0 = —dJ,,Va € g, where J,(m) =< J(m),a >.
We say that a Hamiltonian system (M, o, H) is G-symmetric if the Lie group G acts
canonically on (M, o) and the Hamiltonian H is G-invariant. A symplectic action
¥ with momentum map J is said to be Hamiltonian if the mapping a — J, is a
Lie algebra homomorphism from g to the Poisson algebra C'°°(M) associated to the
symplectic form o. Let (M, o0, H) be a Hamiltonian system which is G-symmetric
relative to a Hamiltonian action of G with momentum map J. Then, we say that
we have a Hamiltonian system with G-symmetry. In this case, we can apply to the
Hamiltonian system the reduction procedure due to [2] for example in the situation
when G is compact and the action is free.

2.2 Generalized Homological Equations

Let M be a smooth manifold and X a vector field on M. Recall that we denote by
TF(M) to the space of tensor fields of type (k,m) on M. In particular, 70 (M) =
C>®(M) and 7} (M) = X(M). Moreover, we denote by Ly : TF(M) — TF(M) the
Lie derivative along X, that is, the unique differential operator on the tensor algebra
of the manifold M which coincides with the standard Lie derivative Lx on C*°(M)
and X(M) (see, for example [2]). We assume that X is a complete vector field on
a manifold M with periodic flow. This means that there exists a smooth positive
function T : M — R, called period function, such that

FIi T (2) = Fly (),

forallt € R and x € M.

We are interested in the following problem: given a tensor field = € TX(M),
determine under which conditions there exist tensor fields n, = € T satisfying the
homological equation

(11
[1h

Lxn = : (2.2.1)
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and the condition

[1]1

Lx

This problem is arisen in the context of normalization problem for vector fields
(tensor field of type (0,1)) treated in Chapter 1. We have generalized equations
(2.2.1), (2.2.2) to tensor fields of arbitrary type because the Lie derivative of X is
a differential operator which can be extended to the full tensor algebra 7 (M) and
left invariant each tensor space ’Z;k (M). In order to study this type of problems, we
review the algebraic properties of the S!-averaging.

= 0. (2.2.2)

2.3 Algebraic Properties of the S'-Averaging

Given = € TX(M), we get a curve through Z(m) in the fiber on m by using the flow
of X. The derivative of this curve is the Lie derivative,

d k= * —
pr (F15)*E) = (Fl%)"(LyE). (2.3.1)
Now, suppose that we are given an action of the circle S' = R/27Z on M with
infinitesimal generator Y. Therefore, T is a complete vector field on M whose flow
F14 is 27-periodic. We admit that the S'-action is not necessarily free.

Definition 2.3.1 For every tensor field = € TF(M), its average with respect to the
St-action is a tensor field (Z) € TF(M) of the same type which is defined as

1 2m
E) = — FIy ) Edt. 2.3.2
@ =5 [ (232)
A tensor field Z € 7F(M) is said to be invariant with respect to the S'-action (or
Sl-invariant) if (F1%)*= = = (V¢ € R) or, equivalently, LyZ = 0.

Proposition 2.3.1 For every = € ’Z;k(M), the following properties holds:

(i) Z is invariant under the flow of Y if and only if (Z) = E,

(ii) Ly (Z) = 0.
(i) ((E)) = (E),
Proof. We assume that (Fllfr)* = = Z, then it is clear from the definition of averaging
that (Z) = E. Conversely, if () = Z, it follows from basic properties of flows and
vector fields (see [1]) that LyZE(x) = Z(F137(z)) — Z(z), for all z on M. Since the

flow of T is 27-periodic, we have that £+Z= = 0. Hence, item (i) holds. By the basic
relation of pull-back and flows (2.3.1), it is possible deduce that Ly(=) = 0. Item

(ii) implies that (=) is invariant under the flow of Y. By item (i), we get ((Z)) = (E).
n

From Proposition 2.3.1, S!-invariance condition reads = = (=).

Corollary 2.3.2 The kernel of the linear operator Ly : TF(M) — TF(M) is given

by
ker Ly = {2 € TF(M)|(Z) = =}

[1]
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We shall denote by A : TF(M) — TF(M) the averaging operator, A(Z) = (Z)
which is an R-linear operator. By Proposition 2.3.1, the operator A has the following
properties:

e A% = A (projection map),
e the image of A consists of all S'-invariant tensor fields,

e a tensor field belongs to Ker A if its S'-average is zero.

Therefore, we have the S'-invariant splitting

TF(M) = Im A® Ker A. (2.3.3)
We introduce also the R-linear operator S : 7F(M) — TF(M) given by
1 2w
S(E) = / (t — m)(Fl)*Edt. (2.3.4)
2 0
It is easy to see that if n € 7} (M) is S'-invariant, (Fl4)*n = 7, then
AM®E) = noAE) (2.3.5)
SM®=) = nesE), VEcTr (2.3.6)

It follows directly from definitions that the operators Lv, A and S pairwise commute
and satisfy the relations

AoLy =LyoA=0, (2.3.7)
AoS=80A4=0.
Moreover, we have the following important property.
Proposition 2.3.3 The following identity holds
LyoS=1id—-A, (2.3.9)
Proof. For every tensor field = € 7X(M), by definition (2.3.4), we have

T\* Q= 1 o T\*=
(FIL)*S(E) = 5 /O (t — m)(FI ) Zdt
1 2m+T1
=50 (t — 1 — m)(Fly)*Edt

Differentiating the both sides of this equality in 7 and using the 27-periodicity of
the flow F1%., we get

d 1 . 27+T1 1 2m+T .
—(FIR)*S(E) = —[(t — 7 — m)(Fly)*= - — Fly)*=dt
FERISE) = -7 —mEE) o [
= (FI})"E- ()
Comparing this equality with the identity
d T\*Q(D T \* -
(FIZ)"S(E) = ()" (£xS(3) (2.3.10)

gives Ly (S(2)) == — (5). [
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Corollary 2.3.4 For every tensor field = € TF(M), the following assertions are
equivalent

e S(E)=0;
e S(2) is St-invariant;
e = is St-invariant.

Proof. The equivalence of the first two conditions follows from property (2.3.8) which
says that (S(E)) = 0. Property (2.3.9) implies the equivalence of the last two asser-
tions. -

Proposition 2.3.5 The following relations hold
KerS = Ker Ly =Im A, (2.3.11)
ImS =Im Ly = Ker A. (2.3.12)

Proof. Taking into account that the kernel of the Lie derivative Ly : TF(M) —
TF(M) consists of all S™-invariant tensor fields and by the Corollary 2.3.4, we derive
(2.3.11). By (2.3.7), we have Im Ly C Ker A. On the other hand, it follows from
(2.3.9) that

LyS(2) == VE € Ker A (2.3.13)
and hence Ker A CIm L. Therefore, Im Ly = Ker A. By (2.3.7)-(2.3.9) we have
the identities S = Ly 0 S? and Ly =S o E2T which say that ImS = Im L. [

As a consequence of (2.3.3) and (2.3.11), (2.3.12), we get also the decomposition
TF(M) = Ker Ly @ Im Ly (2.3.14)

which together with (2.3.13) implies that the restriction of £y to Im Ly is an iso-
morphism whose inverse is just S.

Finally, we notice that operators A, S and are natural with respects to operation
of pull-back. This means that for any diffeomorphism ® : M — M, we have $*o A4 =
Ao ®@* &*0S = Sod*. This follows directly from definition and properties of pull-
back.

Remark 2 Actually, the definition of operators A, S (2.3.2), (2.3.4) are not so
important for the results present in the next section. These results can be obtained

in a general setting where the operators the operators A, S and L~ satisfies the
conditions (2.3.5), (2.3.6), (2.3.9), (2.3.11) and (2.3.12).

2.4 The Global Solvability of Generalized Homological

Equations
Let X be a vector field with periodic flow. We shall introduce the frequency function
w: M — R given by w = 2% It is clear that w is a first integral of X.

Here, we present the solvability condition of equations (2.2.1), (2.2.2) and for-
mulas for the solutions for k-vector fields and k-forms on M
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2.4.1 Homological equations for k-vector fields.

Let x*(M) = Sec(\" TM) be the space of all k-multivector fields on M. In partic-
ular, XO(M) = C*°(M) and x'(M) = X(M). Tt is clear that the operators L, S
and A leave invariant the subspaces x*(M) C 7J(M). For every k-vector field
A € x*(M) and an arbitrary 1-form a on M, denote by i, A € 701 (M) a (k — 1)-
vector field defined by

(inA) (a1, oy ag—1) = Ala, ooy 1)

for all 1-forms a, ..., ar_1 on M. By definition, i, A = 0, for every 0-vector field A,
(smooth function on M).
Consider the S'-action on M associated to the periodic flow Fl%. Denote by

Xiknv(M) = Ker Ly

the subspace of all S'-invariant k-vector fields on M. Then, according to (2.3.14),
we have the splitting
XP(M) = X (M) @ x5 (M), (2.4.1)

where xE(M) = Im Ly denotes the subspace of all k-vector fields on M with zero
average.

Theorem 2.4.1 Let X be a vector field on M with periodic flow and frequency
function w. Then, for a given B € x*(M), all k-vector fields A and B on M
satisfying the homological equation

LxA=B-B (2.4.2)
and the condition
B is S'-invariant (2.4.3)
are of the form
_ 1
B=(B)+ ZX A g, C, (2.4.4)
A 15(3)+ IX/\SQ(' B)+C (2.4.5)
=— — ide , 4.
w w3 d

where C' € X (M) is an arbitrary S'-invariant k-vector field. Here, the average (-)
is taken with respect to the S'-action on M associated to the flow of X.

We shall use the following identity. Let f € C®°(M), X € X(M), and A € x*(M);
then
,Cfo =fLxA— XA ide, (2.4.6)

see [52].
Proof of Theorem 2.4.1 By (2.4.6), we get

LxA=L1A=wlyA—-T Nig,A. (2.4.7)
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We rewrite equation (2.4.2) in the form

1 1
LxA— =Y NigoA=~(B - B). (2.4.8)
w w

Applying the averaging operator to the both sides of this equation and taking into
account conditions (2.3.7) and (2.4.3), we get

B = (B)=(B)+ 7Y Alg,(A). (2.4.9)
According to decomposition (2.4.1), we have
A= (A)+ Ay, (Ag) =0, (2.4.10)
B={(B)+B,y, (By)=0.

Putting these representations together with (2.4.9) into (2.4.8), we see that the
original problem (2.4.2), (2.4.3) is reduced to the following equation for Ay € XIS (M):

1 1
LyAy — ;T NigoAg = ;BO

Looking for Ay in the form Ay = %S(BO) + Ay and using property (2.3.9), we
conclude that Ag € X&(M) must satisfy the equation

~ 1 ~ 1
LyAg — ;T AiguAg = ET A idWS(Bo). (2411)

Next, taking into account that ig,Y = 0 and putting Ay = T A D, we reduce (2.4.11)
to the following equation for D € XS_I(M):

1
TALyD = ET A ide(B(]).

By property (2.3.9), the (k — 1)-vector field D = ﬁSQ(ideo) satisfies the relation
LyS(D) = ﬁide(Bo) . Therefore, the solutions to problem (2.4.2), (2.4.3) are
given by (2.4.9) and (2.4.10), where

1 1 .
Ao = =8(Bo) + —X A S%(iqe Bo) (2.4.12)

and (A) is an arbitrary S'-invariant k-vector field on M. Finally, property (2.3.8)
says that S(Bp) = S(B) and hence formulas (2.4.4) and (2.4.5) follow from (2.4.9)
and (2.4.12) with C = (A). [
As a straightforward consequence of Theorem 2.4.1, we get the following results.

Corollary 2.4.2 The kernel of the Lie derivative Lx = x*(M) — x*(M) is

Ker(Lx) = xE,(M)N{C € x*(M) | X Aig,C = 0}. (2.4.13)
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Corollary 2.4.3 For a given B € x*(M) (k > 1), the homological equation
LxA=B (2.4.14)
1s solvable relative to a k-vector field A on M if and only if
(B) = X Aig,P (2.4.15)

for a certain S*-invariant k-vector field P € Xiknv(M)- Under this condition, every
solution of (2.4.14) is given by (2.4.5), where C = P+ C', C' € ker(Lx).

It follows from (2.4.15) that the necessary conditions for the solvability of (2.4.14)
are the following

X(m)=0 — (B)(m)=0, (2.4.16)
X A(B) =0, (2.4.17)
40 (B) = 0. (2.4.18)

Therefore, if one of these conditions does not hold, then equation (2.4.14) is unsolv-
able.

Corollary 2.4.4 There exist k-vector fields A and B on M satisfying the equations

LxA=DB- B, (2.4.19)
LxB=0 (2.4.20)

if and only if
X Nigw(B) = 0. (2.4.21)

Under this condition, all solutions (A, B) to (2.4.19),(2.4.20) are given by formulas
(2.4.4), (2.4.5). Moreover, the k-vector field A in (2.4.5) can be represented in the

1
form A = =—8(B) + (S'-invariant k-vector field ) if and only if T Aig,B = 0.
w

The Case of C>°(M). We apply the results on solvability of homological equation
to the tensor space 70 (M) = C°°(M). For a given function G € C*°(M), we are
looking for smooth functions F' and G satisfying the homological equation

LxF =G -G, (2.4.22)
and the condition
LxG =0. (2.4.23)

By identity (2.4.42), the solvability condition (2.4.21) for C°°(M) is equivalent to
Lx(G) = 0 which always holds for every smooth function G. From this observation
and Corollary 2.4.12 the global solutions of the homological equation (2.4.22) and
the condition (2.4.23) always exist and are given by

G = (G), (2.4.24)
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and
F =S5(G). (2.4.25)

In terms of time averaging, this formula can written as follows

1 T(m) T(m
F(m) = /0 (t— g))G(Fl&(m))dt.
We remark that formulas (2.4.24) and (2.4.25) were obtained in [15] by Cushman.
The Case of Vector Fields. Now, we study the particular case of vector fields.
By Theorem 2.4.1 , Corollary 2.4.2 and Corollary 2.4.4 (where A= 7 and B=W
are vector fields on M) we deduce the following facts.

Proposition 2.4.5 Let X be a vector field with periodic flow and frequency function
w. Then, for a given W € X(M), all vector fields Z € X(M) and W € Xin (M) on
M satisfying the equation

LxZ =W —-W, (2.4.26)
and the condition
W is St-invariant (2.4.27)
are given by the formulas
- 1
W =(W)+ ;ﬁy(w)X, (2.4.28)
1 1 .
7 = ES(W) + ES (Lww)X +Y, (2.4.29)

where Y € Xy (M).

Proof. By Theorem 2.4.1, the solutions of equations (2.4.26), (2.4.27) are given by

1
W=W)+ ;X Nig, Y, (2.4.30)

7Z = lS(W) + %X A S?(ig, W) + Y, (2.4.31)
w w

where Y € x!(M) = X(M) is an arbitrary S'-invariant vector field. Now, for every
vector field Y, we have
Y = dw(Y) = Lyw.

Thus,
X Ng,Y = (Lyw)X,

and
X AS?(ig,W) = S?(Lww)X.

Therefore, formulas (2.4.30) and (2.4.31) reduce to (2.4.28), (2.4.29). [
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Corollary 2.4.6 Given a vector field W, there exist vector fields Z and W on M
satisfying the equations

LxZ=W—-W, (2.4.32)
LxW =0 (2.4.33)

if and only if
£<W>w = 0. (2.4.34)

Under this condition, all solutions (W, Z) to (2.4.32),(2.4.33) are given by formulas
(2.4.28), (2.4.29). Moreover, the vector field Z in (2.4.29) can be represented in

1
the form Z = —S(W) + (S*-invariant vector field ) if and only if Lyyw = 0.
w

Proof. Corollary 2.4.4 asserts that equations (2.4.32), (2.4.33) are solvable and their
solutions are given by (2.4.28), (2.4.29) if and only if condition condition (2.4.21)
holds. For vector fields, we have

X Ao (W) = (Lapyw) X

Since X # 0, we get that condition (2.4.21) is equivalent to (2.4.34). [
One direct consequence of Corollary 2.4.6 is the solvability of the homological equa-
tion

LxZ =W. (2.4.35)

for given W. Equation (2.4.35) is solvable for Z if and only if (W) = Ly (w)X for a
certain S'-invariant vector field Y.

Let Reg(X) = {m € M | X(m) # 0} be the set of points regular of X. If
Reg(X) is everywhere dense in M, Corollary 2.4.2 implies that the kernel of the Lie
derivative Lx : X(M) — X(M) is

Ker(Lx) = Xy (M) N {Y € X(M) | Lyw = 0}. (2.4.36)

2.4.2 Homological equations for k-forms.

Consider the space QF(M) = Sec(\"T*M) of k-forms on M. Then, subspace
QF(M) c T2(M) is invariant with respect to the action of the operators Ly, S
and A. By iya € Q¥ (M) we denote the interior product of a vector field Y and
a k-form o on M which is defined by the usual formula:

(iya)(Y1, ..., Yi_1) = a(Y, Vi, ..., Vi_1).

Let QF (M) = KerLy and Qf(M) = ImLy. Then, we have the Sl-invariant

splitting
QF(M) = QF

mv

(M) @ Q. (M), (2.4.37)
There is the following covariant analog of Theorem 2.4.1.

Theorem 2.4.7 For a given n € QF(M), all k-forms 6 and 7 on M satisfying the
homological equation
Lx0=n—7 (2.4.38)
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and the condition

77 is St-invariant, (2.4.39)
are represented as
n=(n) — %dw Nixp, (2.4.40)
0= L5() — —dwn S(ixn) + (2.4.41)
w w
where b € Qiknv(M ) is an arbitrary S'-invariant k-form.

The proof of this theorem goes in the same line as the proof Theorem 2.4.1, where
instead of identity 2.4.6 we have to use its covariant analog result: Let f € C*°(M),
X € X(M) and a € QF(M); then,

£fXa = fLxa+df Nixa. (2.4.42)

Proof of Theorem 2.4.7 Applying formula (2.4.42) to left hand side of equation
(2.4.38), we get
Lor0 =wly 4+ dw Aivy6.

We rewrite equation (2.4.38) in the form

L0+ ldw Niyfd = l(n —17). (2.4.43)
w w

Applying the averaging operator to the both sides of this equation and taking into
account conditions (2.3.7) and (2.4.39), we get

7= () = () — dw A ke {B). (2.4.44)
According to decomposition (2.4.37), we have
0= (0)+6y, (6h)=0, (2.4.45)

n= () +mn, (n)=0.

Putting these representations together with (2.4.44) into (2.4.43), we see that the
original problem (2.4.38), (2.4.39) is reduced to the following equation for 6y €
Q5 (M):

1 1
Lyby+ —dw Aiyly = —np.
w w

We look for 6 in the form 6y = 1S(no) + 0o and using property (2.3.9), we conclude
that fy € QE(M) must satisfy the equation

~ 1 ~ 1
L0y + ;dw Aiyly = _Edw A i'rS(no). (2.4.46)

Taking into account that iydw = Lyw = 0 and putting 6y = dw A 0, we reduce
(2.4.46) to the following equation for g € Q51 (M):

1.
dw A Lyo=dw A (—EITS(UO))
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By property (2.3.9), the (k-1)-form ¢ = —ﬁSz(iTno) satisfies the relation

1,
LxS(0) = —ﬁlr‘s(ﬁo)-

Therefore, the solutions to problem (2.4.38), (2.4.39) are given by (2.4.44) and

(2.4.45), where
1

w

1 .
0o = —S(m0) = —5dw A S*(ixmo) (2.4.47)

and (f) is an arbitrary S'-invariant k-form on M. Finally, property (2.3.8) says
that S(np) = S(n) and hence formulas (2.4.40) and (2.4.41) follow from (2.4.44) and
(2.4.47) with p = (6). -
From Theorem 2.4.7, we deduce the following consequences

Corollary 2.4.8 The kernel of the Lie derivative Lx : QF(M) — QF(M) is

Ker(Lx) = anv

(M)n{p e QM) | dw Aixpu =0} (2.4.48)
Corollary 2.4.9 For a given n € QF(M) (k > 1), the homological equation
Lx0=n (2.4.49)
1s solvable relative to a k-form 0 on M if and only if
(n) =dw Aixa (2.4.50)
for a certain S'-invariant k-form o € QF (M),

It follows from (2.4.50) that the necessary conditions for the solvability of equa-
tion (2.4.49) are

X(m)=0= (n)(m) =0, (2.4.51)
dw A (n) =0, (2.4.52)
ix () = 0. (2.4.53)

Corollary 2.4.10 There exist k-forms 6 and n on M satisfying the equations
Lx0=n—1, (2.4.54)
Lxi =0, (2.4.55)
if and only if the following condition holds
dw Aix(n) =0. (2.4.56)

Under this conditions, solutions (0,m) of (2.4.54) (2.4.55) are given by (2.4.40) and
(2.4.41).

The Case of 1-forms. Now, we derive the formulas of solution for homological
equation and the compatibility condition for 1-forms.



2.4 The Global Solvability of Generalized Homological Equations 41

Proposition 2.4.11 For a given 1-form 3 € QY (M), all 1-forms a and 3 on M
satisfying the homological equation

Lxa=08-3, (2.4.57)
and the condition
3 is S*-invariant (2.4.58)
are written as follows
_ 1.
G=(5) - — (ixd, (24.59)
= l5( ) — iSQ(i B)dw + (2.4.60)
a = o n e >'¢ W T W, s

with p € QL (M).

mv

Proof. Tt follows from Theorem 2.4.7, solution of equation (2.4.57), (2.4.58) are given
by (2.4.40), (2.4.41). These formulas reduce to (2.4.59), (2.4.60) because of for any
1-forms 3 and any vector field X, ix 3 is a smooth function. ]
From Corollary 2.4.8, we have the following consequences:

e the solvability condition for homological equation

Lxa=p (2.4.61)
reads ,
(B) = —(ixp)dw (2.4.62)

for a certain S'-invariant 1-form p € Q} (M).

o Let Reg(w) = {m € M | djyw # 0} be the set of regular points of the frequency
function w. If Reg(w) is everywhere dense in M, then

Ker(Lx) = QL (M) N {p € QF(M) | ixpu =0} (2.4.63)

Corollary 2.4.12 For any 3 € Q'(M), there exist 1-forms a and (3 satisfying the
equations

Lxa=0-7, (2.4.64)
Lxf3 =0, (2.4.65)

if and only if
ix(8) =0. (2.4.66)

Under this conditions, the formulas (2.4.59) and (2.4.60) give the solution of (2.4.64),
(2.4.65).
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2.4.3 The S'-average of closed forms

Let us consider the case of closed forms. Let d : QF(M) — QFF1(M) be the exterior
derivative. By standard properties of the exterior derivative, we conclude that d
commutes with operators Ly,S and A, in particular, (dn) = d(n) for any n €
QF(M). Moreover, splitting (2.4.37) is invariant with respect to d, in the sense that
if n € QF(M) has the decomposition

n = (n) + o,
where () € QF (M), no € QF(M), then

dn = (dn) + (dn)o = d(n) + dno.

It follows that if 7 is closed then, the components (1) and g are also closed k-forms.
In this case, according to (2.4.37), a solution to the equation Ly6y = ng is given by
0o = S(no). Then, dfy = S(dnp) = 0 and hence 19 = Ly6y = d o iyfy. This proves
the following assertion.

Proposition 2.4.13 For every closed k-form n on M, we have the decomposition

n = (n) + d(irbo), (2.4.67)
1

T or

2
where 6y = S(n) / (t — ) (Fl&)*ndt.
0
As a consequence of this proposition we have the equivariant version of Poincaré
Lemma.

Proposition 2.4.14 Assume that the S'-action with infinitesimal generator Y is
free on M and let p: M — M/S! be the canonical projection. Then for every closed
k-form m on M and m € M there exists a neighborhood U of p(m) in M/S' such
that the restriction of 1 to the S'— invariant domain p~*(U) C M is evact.

Proof. By the S'-invariance and closeness of (n) we have that (n) = p*v for a certain
closed k-form v € Q(M/S'). By the Poincare Lemma, there exists an open neigh-
borhood U of p(m) such that v = d3 for 3 € Q¥~1(U) It follows from Proposition
2.4.13

Np-1 0y = d(p*B +iv 0] ;-1 (1))

2.4.4 The trivial S'-action

We apply the results on global solvability of homological equations to the smooth
manifold

M =S' x R" = {¢(mod)27} x {y = (y1,y2,-..,Yn)}-
Every vector field Y on M = S! x R” is of the form

B, 0
Y(p,y) = YO(SD,Y)% + 12(90,3’)87, (2.4.68)
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where Y; : R x R” — R are smooth functions and 27-periodic in . The vector field

0
X = — 2.4.69
)5 (2.4.69)
where w : R — R is a smooth function such that w(y) > 0. The flow of X is
2
T-periodic with period function T'(y) := % Thus, the vector field T = (p
wly

is the infinitesimal generator of the S'-action induced by the flow of X. Let f €
C>(S' x R™). The averaging of f with respect to Y is given by

2T
N = 5 [ F8) ey
27
- % Flo,y)dy (2.4.70)

If Y is a vector field on M (2.4.68), then averaging Y is

V)(y) = <%>(w,y)£0+<n>(¢,y);y,

7

1 2
= 5 Y(p,y)de. (2.4.71)
T Jo
And, if n = nody + n;dz; is a 1-form on M, then the averaging of 7 is
m(y) = y)de + (n:)(y)di,
27r
_ / (e, y)de. (2.4.72)

Now, we study the homological equations for vector fields and 1-forms on S! x
R™. Corollary 2.4.6, asserts that for a given vector field W =Y = Yo(go,y)% +

Yi(ep, y)a%i on M, there exist vector fields Z, and W satisfying the equations (2.4.32),
(2.4.33) if and onmly if w and Y are compatible by Lyyw = 0. This condition is

equivalent to (Yi(go,y)>gw = 0. Explicit formulas of the solutions Z and W are
Yi
given by
- Ow 0 0
W= (M) +e —+Yi)o—, 2.4.73
(e 22 ) 2+ vy (24.73)

1 Ow d 1 0
Z= -8\ 752 — 4 =SY) +¢ ) —
(S50 + g +o) oL+ (S5t +a) o
where b, ¢; € C®°(M) are S'-invariant smooth functions.
For a given 1-form n = nody + n;dz; on M, Corollary 2.4.12 says that equations
(2.4.64), (2.4.65) are solvable for a and 7 if and only if the condition ix(n) = 0

holds. But, n and X satisfy this condition if and only if (n9) = 0. Formulas of the
solutions are

n=({m)— ng )dzi, (2.4.74)

Oow

o= (%S(no) +a)de + (S(m:) — %‘92(“) O

¢)dg;, (2.4.75)

for arbitrary S'-invariant functions a, &;.
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2.5 The Compatibility Condition From Period-Energy
Relation.

Here, we show that in the Hamiltonian case the compatibility condition (2.4.32)
always holds because of the so called period-energy relation, [2, 10, 29]. This leads
to the well known fact: the homological equation (2.4.32) and the condition (2.4.33)
are solvable in the Hamiltonian case [2, 6, 13, 15].

First, follow [29], we recall some facts concerning to period energy relation.

Proposition 2.5.1 (The Period-Energy relation) Let X be a vector field on a
manifold M with periodic flow and a smooth period function T : M — R. If there
exists a closed 2-form o on M such that

ixo =—dH (2.5.1)
for a certain function H € C*°(M), then
dI'ANdH =0 on M. (2.5.2)
Proof. It follows from (2.5.1) that
Lxo =ixdo+dixo = —d*H = 0. (2.5.3)

On the other hand, we have
1
Lxo=L,yo=wlyo+dwANivoc=wlyo— —dwANdH, (2.5.4)
w

where w = 27“ is the frequency function. Consider the S'-action on M with infinites-
imal generator T = %X - Remark that w and H are first integrals of X and hence
Sl-invariant. Thus, applying the averaging operator to equality (2.5.4) and taking
into account (2.5.3) and that (Lyo) = 0, we get

1
0= (Lx0) = ——dwAdH.

Corollary 2.5.2 The 2-form o is invariant with respect to the S*-action associated
with the periodic flow of X, Lyo = 0.

Proposition 2.5.3 Assume that in addition to the hypothesis of Proposition 2.5.1
the S'-action with infinitesimal generator T = %XH s free on M and consider the
canonical projection p : M — M/S'. Then, for every m € M, there exists an open
neighborhood U of p(m) in the orbit space M /S such that the restriction of the 2-
form o to the S'-invariant domain p~1(U) is exact, ¢ = du and the period function
satisfies the relation

dJ =TdH (2.5.5)

where J € C®(p~Y(U)) is given by
J =T (ixp). (2.5.6)
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Proof. The existence of an open domain U with desired properties follows from
equivariant Poincare Lemma (see Proposition 2.4.14). Then, o = du on the S'-
invariant domain ¢~'(U) C M. Taking into account that Ly{u) = 0 and dH is
Sl-invariant, we get

dJ = 2n(diyp) = 2w (Lyp) — 2w (ivdp) = =T (ixdo) = TdH.

Corollary 2.5.4 If the 2-form o is exact, then relation (2.5) holds on the whole
M.

Now, suppose we start with the Hamiltonian vector field Xy of a function H €
C*°(M) on a symplectic manifold (M, o). Assuming that X has periodic flow with

period function T, consider the corresponding S'-action with infinitesimal generator

T = %X I, where w = 27” is the frequency function. For a given function F' €

C>° (M), we consider the homological problem

Lx, 7 =Xp—W, (2.5.7)

Lx, W =0. (2.5.8)

Proposition 2.5.5 If the regular set Reg(Xy) = {m € M|d,,H # 0} is dense in
M, then the compatibility condition

£<XF>w =0. (2.5.9)

holds and homological problem (2.5.7), (2.5.8) is solvable on M. Every solution is
of the form

— 1
W = X<F> + a(ﬁyw)XH, (2.5.10)

where Y is arbitrary S'-invariant vector field.

Proof. First, let us show that the period energy relation (2.5.2) implies the compat-
ibility condition (2.5.9). By Corollary 2.5.2, the symplectic form o is invariant with
respect to the S'-action with infinitesimal generator T = %X g. This implies that

(XF) = X(py.- (2.5.12)
Then, we have
ixpydH = Lx o H = —Lx, (F) = —wly(F) =0.
It follows from the identity that dw A dH = 0 that

0= i(Xp)(dw NdH) = (i<XF>dw)dH - (Z<XF>dH)dw = (ﬁ(XF>w)dH (2.5.13)
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and hence condition (2.5.9) holds on Reg(Xg). But by assumption the regular set
is dense and hence (2.5.9) is satisfies on the whole M. This implies the global
solvability of the problem (2.5.7), (2.5.8). By Corollary 2.4.6, the corresponding
general solutions are by (2.4.28), (2.4.29). Since the S'-action is symplectic relative
to o. for the Hamiltonian vector field X we have the equality (Fl4)*Xp = X FoF1,
which implies the following property of operator S:

S(XGF) - XGS(F) - S(F)XG + GXS(F)a

for every S'-invariant function G. In particular, S(Xr) = X s(r) Using this property
and (2.5.12), by direct computation, we verify that formulas (2.4.28), (2.4.29) lead
to (2.5.10), (2.5.11). n

Corollary 2.5.6 In terms of the Poisson bracket on (M, o), the compatibility condi-
tion (2.5.9) reads: the S'-average (F) Poisson commutes with the frequency function
w.

In the exact case o = du, Proposition 2.5.3 implies that the S'-action associated to
the periodic flow Xy is Hamiltonian with momentum map J given by (2.5.6).

Taking Y = 0 in (2.5.10), (2.5.11), we get that the solutions W and Z are Hamil-
tonian vector fields. This fact can be also derived from the standard Hamiltonian
approach, [15].



Chapter 3

Global Normal Forms and The Geometric
Averaging Theorem

3.1 Global Normal Forms.

In this section, we formulate some results on Deprit normalization and S'-invariant
normalization. Let A, = Ag +¢eA1 + %Ag + ...+ %Ak. Given an S'-action on M
and assuming the S'-invariance of Ay, we say that A, is in S'-invariant normal form
of order k if Ay, As,..., A are S'-invariant vector fields.

3.1.1 First order normalization

Let A. = Ag+ecA; +O(g?) be an e-dependent vector field on M whose unperturbed
part Ay has periodic flow with frequency function w : M — R. Consider the S'-
action on M with infinitesimal generator ¥ = %.

Theorem 3.1.1 Let
. = F1}, |i—. (3.1.1)

Z’Z — (.; A + £ A w A + S . . 2

where Y is an S'-invariant vector field. Then, for a given open domain N C M with
compact closure, there exists a constant § > 0 such that formula (3.1.1) defines a
near identity transformation ®. : N — M with € € (—0,0) which takes A¢ into the
S-invariant normal form

(B) AL = Ag + ((A1) + (Ly Inw)Ag) + O(£?). (3.1.3)

If the perturbed vector field Ay and the frequency function w : M — R are compatible
by the condition

E<A1>w = O, (3.1.4)

then ®. is a normalization transformation of first order for A. relative to Ag;

[Ag, (41)] = 0. (3.1.5)

47
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Proof. Let Z be the vector field on N given by (3.1.2). By Proposition 1.1.1, there
exists a constant § > 0 such that the mapping (3.1.1) defines a near identity trans-
formation on N for ¢ € (—0,9). Let
~  def * ~ 2

A, = ¢€AE:A0+€A1+O(E ) (316)
From Proposition 1.2.6, we get that vector fields Z and le satisfy the homological
equation B

LaZ =A1 — A (3.1.7)

Since the flow of Ay is periodic, Proposition 2.4.5 tell us that general solution (Zy, gl)
of (3.1.7) is given by (3.1.2) and

Al = (A) + Ly (Inw) Ay, (3.1.8)
where Y is an S'-invariant vector field. In addition, Corollary 2.4.6 asserts that
[A1, Ag] = 0

if and only if vector field A; and w are compatible by (3.1.4). In this case, ®. is a
normalization transformation of first order for A.. [

Remark 3 [t follows form the formula (3.1.3) that a normal form of first order of
A is uniquely determines by (A1) modulo (Ly Inw)Ay.

Suppose we are given a smooth function Iy : M — R which is invariant with respect
to the S'-action with infinitesimal generator ¥ = %. We observe that if I is a first
integral of the averaged vector field (Ay),

LiayI® =0,

then the original perturbed vector field A. has an approximate first integral of the
form -
IL.=1"— EES(AI)IO.

So, we have

La.l=0(?).

Now, let us see how, in the context of the normalization procedure, one can use a
freedom in the definition of ®. given by the S'-invariant Y in (3.1.2) . Consider the
perturbed vector field P. = X +eW and assume that the S'-action with infinitesimal
generator T = %X is free on M. Then, the orbit space O = M/S! is a smooth
manifold and the projection p : M — O is a S'-principal bundle. In this case,
the frequency function is of the form w = wp o p for a certain wp € C*°(0). Let
Ver = Span{Y} be the vertical subbundle and D C T'M an arbitrary subbundle
which is complimentary to Ver. Then, for every vector field u € X(O) there exists
a unique e € Sec(D) descending to u, dpoe = uo p. It follows that [T,e] = bT,
where b € C*°(M) with (b) = 0. Defining hor(u) := e — S(b)e , by property (2.3.9),
we get that [Y,hor(u)] = 0. Therefore, we have the splitting TM = Hor @ Ver (a
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principal connection on M), where the horizontal subbundle Hor = Span{hor(u) |
u € X(0)} is invariant with respect to the S'-action ( for more details, see Section
3.2 and [47]). According to this splitting, the vector field W has the decomposition
W = Whor L WV into horizontal and vertical parts. The following statement shows
that under an appropriate choice of Y € Xiu (M), we can get W' = 0.

Proposition 3.1.2 If
dw # 0 on M, (3.1.9)

then one can choose an S'-invariant vector field Y (3.1.12) in a such way that the
near identity transformation @EN(?).l.l)~ brings the perturbed vector field P. = X +eW
into the form P. = (®.)*P. = Pshor + PY°" with

PYr = X + O(e?), (3.1.10)

PR — ¢ hor(w) + O(£?), (3.1.11)

where w € X(0) is a unique vector field such that dp o (W) = w o p.

Proof. First, let us assume that O is parallelizable and pick a basis of global vector
fields uy, ..., u, on O. Then, we have the basis of global S'-invariant vector fields
Y, hor(uy),...,hor(u,) on M. For the perturbation vector field W, we have the
decomposition W = Whor 4 WWver where Whor = 3™ ¢; hor(u;) and WY = ¢ Y
for some ¢; € C°°(M). Then, its S'-average is given by

n

(W) = (i) hor(ui) + (eo) T

=1

It follows that the condition WY = 0 is equivalent to the algebraic equation iydw =
—(co) for Y € Xiny(M). Under assumption (3.1.9), a solution to this equation is
given by

{c0) ©
Y=—"3 > " aihor(u;), (3.1.12)

i=1
where a; = lpor(y,)dw are Sl-invariant functions on M and a® = Sy a?. In the
general case, the statement follows from the partition of unity argument. ]

Note that, in terms of the averaged vector field w, the normalization condition
(3.1.4) reads Lywo = 0 on O. In this case, [X, hor(w)] = 0.

3.1.2 Second order normalization

Let A, = Ag+cA1 + %Ag + O(£?) be e-dependent vector field on M whose unper-
turbed part Ag has periodic flow with frequency function w : M — R.

Theorem 3.1.3 Let
P, = Fly 1z, (3.1.13)
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be the time-¢ flow of the vector field Zy + €Z1, where

1 1

Z() = aS(Al) + ESZ(EAlbL))AO + Y17 (3114)
1 1

Zy = =S(A2+RY)+ 8Ly ppw) Ao+ Vs, (3.1.15)

with RP = £2ZOA0 +2L7,A1 and Yy, Y are Sl-invariant vector fields. Then, for
a giwen open domain N C M with compact closure, there exists a constant 6 > 0
such that formula (3.1.13) defines a near identity transformation ®. : N — M with
e € (—6,08) which takes A. into the S'-invariant normal form

‘I):Aa = AQ + €(<A1> =+ (ﬁyl lnw)Ao) +
2

% ((A2) + (Ly, Inw) Ag + B(Ag, A1) + C(Y1)) + O(£%), (3.1.16)

where
B(Ao, A1) = (LigaAi+ EW%SQMAIW)AOAQ, (3.1.17)
C(Y1) = 2Ly, (A1) + (L}, Inw+ (Ly; Inw)?) Ay. (3.1.18)

Moreover, if there exists an St invariant vector field Y1 such that the following con-
ditions
Liayw = 0, (3.1.19)
1
5L B0 AN = Lian @ (3.1.20)

hold, then ®:A. is in normal form of second order relative to Ay.

Proof. Proposition 1.1.1 asserts that for every vector field Z on N , there exists a
constant § > 0 such that the mapping (3.1.13) defines a near identity transformation
on N for € € (—4,6). Let

2

©F prA, = Ag+ed; + %12 +O(P). (3.1.21)

A @

From Proposition 1.2.6, we get that vector fields Zy, 71, Ay and A; satisfy the
homological equations B
La,Zy= A1 — Aj. (3.1.22)

and B
L 71 = Ag+ RP — Ay, (3.1.23)

where RP = £QZOA0 + 2L7,A;. Since the flow of A is periodic, Proposition 2.4.5
tell us that general solution (Zo, A;) of (3.1.22) is given by (3.1.2) and

A1 = (A}) + Ly, (Inw) Ay, (3.1.24)

where Y7 is an S'-invariant vector field. Also, by Proposition 2.4.5 , general solution
(Z1,A2) is given by (3.1.15) and

Ay = (A3) + Ly,(Inw)Ag + (RP), (3.1.25)
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with Y5 an S'-invariant vector field. By direct computations, we have

(L%,40) = (Lz,(Lz,40)),
= (Lz,((A1) + Ly, (Inw)Ag — A1)),
Ly, (A1) + Ly, ((Ly; Inw)Ag) — (Lz, A1),
= Ly, (41)+ (/J?/l Inw + (Ly, lnw)2) Ag — (Lz,A1).

and
(L2041) = (Lagan i+ Lga, wagAt) + Ly ().
Thus, we get
+2Ly, (A1) + (L3, Inw + (Ly, Inw)?) Ay.
Finally, Theorem 3.1.1 claims that ®ZA. is in normal form of first order if and only

if A7 and w are compatible by
£<A1>w =0.

It follows from Corollary 2.4.6 that ®XA. is in normal form of second order if and
only if there exist S'-invariant vector field Y7 such that

£<A2>w + EB(AO,Al)w + L’C(yl)w =0. (3.1.26)

Since /J( w = 0, equation (3.1.26) is reduced to (3.1.20) [

£§,1 Inw+(Ly, lnw)2)Ao
Actually, the e-dependent vector field A, = Ag + €Ay + ... + O(¥) admits an
Sl-invariant normalization of arbitrary order.

3.1.3 The regular Hamiltonian case

Let (M,o) be a symplectic manifold. Assume that a perturbed vector field A,. =
Xu. = Xp, +eXpg, + ... is Hamiltonian relative to the symplectic form o. Assume
that the flow of Xp, is periodic with frequency function w and the regular set
reg(Xp,) is dense in M. In this case, we have the following classical result [15].

Proposition 3.1.4 A canonical near identity transformation ®. on (M, o) brings
the perturbed Hamiltonian vector field Vi to the Hamiltonian normal form relative
to X, of arbitrary order in €. In particular, the second order normal form is

H.®. = Hy+ e(H;) + 522 <<H2> +({S <T) ,H1}>) +0(£%).

The corresponding infinitesimal generator of ®. is a Hamiltonian vector field relative
to o and the function

%S(Hl) +e <1S(H2 + {%S(Hl)yHl + <H1>})> :

w

Here { , } denotes the Poisson bracket on M associated to the symplectic form o.
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3.2 The Averaging Theorem on Riemannian Manifolds

Here, we generalize the classical averaging theorem [7, 62, 66] to the case of general
Riemannian manifolds. Consider the so-called the one-frequency system on the
cylinder M = S! x R” = {p(mod27)} x {y = (y1,v2,.-.,%n)} ( equipped with the
(flat) product Riemannian metric):

¢ = w)+eA"(p2),
i = eA(p, ).
Let (¢(t),z(t)) be a solution of this system. The classical averaging theorem [66]

asserts that for small enough ¢, the dynamics of the slow variable z(t) is e-close to
the dynamics of the averaged system

§= (A" ),
2w
W) =5 [ Aoy
0

on the long time scale ¢ ~ % The proof of this fact is based on the following argu-
ments: (i) a near identity transformation whose infinitesimal generator is a solution
of the homological equation; (ii) the triangle inequality and (iii) the Gronwall lemma.
Geometrically, the last argument is related to the fact that the curves ((¢(0), z(¢)))
and (((0),y(t))) can be connected by a minimal geodesic in S' x R”. In the case of
general Riemannian manifolds this property is not necessarily hold. Our approach
is based on the idea of including the “perturbed” trajectory and the averaged tra-
jectory into a parameterized surface which consists of the trajectories of a family of
vector fields.

3.2.1 Basic facts from Riemannian geometry

Arc Length of Curves and Distance Function. Let (M, <,>) be a smooth
connected Riemannian manifold, that is, a smooth manifold M equipped with a
(Riemannian) metric <, > on M assigning an interior product <, >, in each tangent
space T,,M at m € M. Recall that the arc length of every smooth curve ¢ : [0,1] —
M is defined by

1 1 1
L(c) = / (< &(s), é(s) >)¥ds = / lé(s) | ds,

where ¢(s) = %c(s) € Ty(s)M is the tangent vector. For piecewise smooth curves,
the length is defined by taking it for the smooth pieces and then by summing up
over all the pieces. For some p,q € M, consider the set path(p,q) of all piecewise
smooth curves on M that begin at p and end at ¢q. Then the distance function
dist : M x M — R is given by

dist(p,q) = inf{l € R |l = L(c) and c € path(p,q)}

Remark that, in general, the distance dist(p,q) is not necessarily realized as the
length of a curve in path(p,q). An important fact is that ([52]), (M,dist) is a



3.2 The Averaging Theorem on Riemannian Manifolds 53

metric space and the induced topology coincides with the manifold topology on M.
Moreover, by the Hopf-Rinov theorem, (M, dist) is a complete metric space (Cauchy
sequences converge) if and only if each closed and bounded subset of M is compact.
On the complete connected Riemannian manifold any two points can be connected
by a geodesic of minimal length.

For a submanifold N of M, we denote by disty the distance function on N
induced by the restriction of the Riemannian metric <, > to N.

The basis fact in Riemannian geometry, says that for a given Riemannian man-
ifold (M, <,>) there exists the Levi-Civita connection V on (M, <,>), that is, a
R-linear map V : X(M) x X(M) — X(M) satistfying the conditions

VivX = fVy X, (3.2.1)

VyfX =Ly )X + fVyX, (3.2.2)
L(X,)Y)=(VzX,Y)+ (X, VzY), (3.2.3)
VxY - VyX = [X,Y], (3.2.4)

for any X,Y,Z € X(M) and f € C™(M).
From the basic properties of Levi-Civita connection, (Vy X)(m) depends only
on the value of Y at m and not on the variations of Y around m. Therefore, to each

vector field X on M and a point m € M one can associate the R-linear operator
(VX)) : TwM — T,,M given by

(VX)m(v) = (Vy X)(m)

for every v € T,,M. Here, Y is an arbitrary vector field such that Y(m) = v. By
|| (VX),, || we will denote the operator norm on (7,, M, <, >,,). Therefore, we have
the vector bundle morphism VX : TM — TM. The covariant derivative Vy along
Y is a differential operator of local type which is related with the given Riemannian
metric and torsion free.

For every diffeomorphism g : M — M one can defined the push-forward ¢,V :
X(M) x X(M) — X(M) of the covariant derivative V by

(g*v)g*Yg*X = g« (VYX)

forall X,Y € X(M). Remark that if g is an isometry, then g preserves the connection
V, that is, g,V = V.

Lemma 3.2.1 Let g be an isometry on (M,<,>) and X € X(M) a vector field.
Then, || g« X [[m= [|X|lg-1(m) and for the vector bundle morphisms V(g«X) and VX
we have

IV (g2 X)lm = [IVX [ g=1(m)- (3.2.5)
Proof. Since g is an isometry, we have that Vg, y¢.X = ¢.(Vy X) and hence

va*X - (dgfl(m)g) (vdmgil(v)X)
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for every v € T,, M. It follows that

I (Vg X) () llm=] VX (ding™" () lg=1m) -

This equality together with || dyg™ (v) [|g=1(m)=Il v lm implies (3.2.5). [
The curvature of the Levi-Civita connection V is given by

Curv(X,Y)Z :=VxVyZ -V, VxZ -V ixy)Z

for X,Y,Z € X(M). A Riemannian manifold (M, <, >) is called flat if Curv = 0.
Locally, the linear connection V is described by the connection form. Let {e;}
be a basis of local vector fields on U C M. Then, a matrix-valued 1-form 6 = (67)
on U defined by A
VGZ‘ = 9? €;
is called the connection form.

Let [0,1] 5 s — 7(s) € M be a smooth parameterized curve. A smooth function
v :[0,1] 3 s+ v(s) € Ty, M is called a vector field along +. Locally,

v(s) = 0! (s)ej (4(s)).

One can associate to v another vector field V4 v along v given by

(Tav)(s) = (220 1 gy (57) e, (3.2.6)

Using the transition rule for the connection form, one can show that this definition is
independent of the choice of local trivialization {e;}. Remark that , for any smooth
function f : [0,1] 2 ¢t — f(t) € R, we have defv = v + dewv Moreover, if

Y : M — TM is a smooth vector field on M, then the compos,'ltlon Y o~ is a vector
field along ~ and

(T o)e) = (V) () (3.2)

The parallel transport is an isomorphism Py (s) : Ty )M — Ty M given by
Py(s)ei(1(0)) = Y P (s)ej (+(s))
J

where the matrix function P(s) = (PZJ (s)) is a solution of the problem

dP dy
—+40 pP= 2.
15 + <ds) 0, (3.2.8)
P(0)=1. (3.2.9)
The parallel transport is an isometry of tangent spaces
(Py(s)a, Py(s)b)+(s) = (@, b)+(0) (3.2.10)

for all a,b € TyoyM. Let w : [0,1] 5 s — w(s) € T, M be a vector field along vy
given by
W=Vav (3.2.11)

ds

Let us think of this relation as an equation of v for a given w.
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Lemma 3.2.2 The solution to (3.2.11) is given by the formula
v(s) = P(s) /'P,yl(T)W(T)dT + P, (s)v(0). (3.2.12)
0
Proof. In coordinates, the equation (3.2.11) is written as

dZis) +0 <ZZ> v(s) = w(s). (3.2.13)

It follows from (3.2.8),(3.2.9) that the solution to this equation is given by the

formula
S

o(s) = P(s) / PL(r)w(r)dr + P(s)0(0). (3.2.14)
0

|
Recall that a vector field v along ~ is called parallel if Va4, v = 0. It follows from

ds
3.2.12), the vector field is of the form v(s) = P~(s)v(0). The curve ~ is said to be
( ! Y
geodesic if the tangent vector field Z—Z is parallel, V a Z—Z =0.

Lemma 3.2.3 Let w be an arbitrary vector field along v and s — v (s) € T\ M
be the solution of the problem

Vayv=w,
ds

v(0) = v € T, M.
Then,

156 <l ¥ o + [ 19(0) lhoy (3:2.15)
0

Proof. Using (3.2.10) and (3.2.12), we get

S

1v) e < 1 Py(s) / P P w(r)dr [ + | Py()v° [l
0
< / | P W) Ty drt |V o)
0

— / 1w () by drt 1|20l -
0
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Corollary 3.2.4 Let [0,1] 5 s — ~(s) € M be a smooth parameterized curve and
X be a vector field on M. Then,

I X (7v(s)) = Py ()X (7(0)) [l5)< / (VX)) % | ds'. (3.2.16)
0

Proof. Consider the following vector fields along ~:

dry

W<3> - (VX)—Y(S) (%)

Taking into account that the vector field P, (s)X (7(0)) is parallel and using (3.2.7),

we get that V4, v =w with v(0) = 0. Applying (3.2.15) leads to inequality (3.2.16).
ds

]

The Arc Length on Parameterized Surfaces. Now suppose we are given
smooth function
v:[0,T] x [0,1] 5 (t,s) — ~(t,s) € M, (3.2.17)

called a parameterized surface. Introduce the following s-dependent vector fields
along the curve t — ~5(t) = (¢, s)

__Oy(t,s)

vi(t) = = (3.2.18)
and 5
o o

wi(t) = Var 5. (3.2.19)

L= —L 3.2.20
Vougr = Vs, ( )
which is rewritten as
Vo, vs(t) = ws(t). (3.2.21)
ot

It follows from here and Lemma 3.2.3 that

¢
0
N / va V(T s)
7(0.8) % Os
For every t € [0, T}, denote by L(t) the length of the curve [0,1] 3 s +— v (s) = (¢, s),

1 S
L(t>_/0 I (t, )

0s
Integrating both sides of (3.2.22) in s , we get the following result.

<

v(t,s)

dr. (3.2.22)
Y(7:8)

H Nt s)
ds

97(0, s)
p)

S

ds.
Ye(s)
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Lemma 3.2.5 (Basic Inequality) For all t € [0,T], the length L(t) of the s-curve
s +— () satisfies the inequality

Va—y

8 - dsdt’. (3.2.23)
ds

,8)

We will need also the following technical fact. Let Ys (s € [0,1]) be a s-dependent
vector field on M. Then, we associate to Y the vector field (¢, s) = y(t,s) € Ty M
along the parameterized surface y(t, s) given as

Y(tv S) = YVS(W(tv 5))
Recall that ddis denotes the s-dependent vector field on M defined by the condition
Lo | = 4 (Ly,f) for any f € C®(M).

Lemma 3.2.6 For every t € [0,T], the vector field s — yi(s) = y(t,s) along the
s-curve s — y(S) satisfies the relation

ddf (v(t, ) + (VY;)W,S)(%). (3.2.24)

Here (VYs)m : TinM — Ty, M is the linear operator associated to the vector field Ys.
Proof. Locally, Yy = Yie; and

Voyyt =
Os

VY, = (dY] +Y{0)) @ ;. (3.2.25)

On the other hand, y;(s) = Yi(a(t, s))e;(a(t,s)) and by definition (3.2.6), we have
o dY! i (07 ini O\
Vayyy = (== +dY; (a >+Y9 (55))ei-

Comparing this identity with (3.2.25) leads to (3.2.24). [

Flat parameterized surfaces of geodesics. Suppose that we are given a
parameterized surface

~v:[0,T] x [0,1] 5 (t,s) — ~(t,s) € M,

such that, for every ¢ € [0, 7], the curve [0,1] 3 s +— v(s) = v(¢,s) is a geodesic.
Then, the vector field V o %z along the surface satisfies the Jacobi equation
Js

” oy o\
Vas (Va7 8t> Curv (88’ 6t> 95" (3.2.26)

Denote by P52(yt) : Ty, s;,)M — T, (s,)M the parallel transport along the segment

Ve ([s1,82])-
Assume also that there exist two vector fields X and X7 on M such that

87(62’ O _ Xo(r(t,0), (3.2.27)
and
NED _ x4t 1)). (3.2.28)

ot
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Lemma 3.2.7 If the curvature of the Riemannian connection ¥V on M wvanishes
along the parameterized surface -,

oy Oy
—, = | = 2.2
Curv (85’ 8t> 0, (3.2.29)
then V%:%Z is parallel vector field along the geodesic s — (s) which is given by the
formula
0 2 (P () [Xu((1)) = P () X, 2
Voy 5 = (Ps(3) ™ [Xa(3:(1)) = Po (76) Xo(7:(0))] (3.2.30)

Proof. 1t follows from assumption (3.2.29) and equation (3.2.26) that

0
V oy (nga’z> =0

ds

and hence 5
o _
i sa(t,s) + b(t, s),

where a and b are vector field along the surface v which are parallel along the curve

s = 7(s),
Vzﬂa =0 and Va;,b =0.
ds ds

In terms of the parallel transport we have the representations
a(t,s) = (Ps(n) a(t, 1),
b(t,s) = Py(7)b(t,0) = (P; (%)) 'b(t,1).
From here and conditions (3.2.27), (3.2.28) we derive

b(tv 0) = XO(’Y(tv 0))7

a(t, 1) + Py (3)b(t,0) = X1(v(t,1)).

Therefore,

- =a(t,s) = (Ps(n) " [Xa(v(t, 1)) — Po (7)) Xo(v(t, 0))] -

Corollary 3.2.8 Under hypotheses (3.2.27), (3.2.28), the tangent vector to the
geodesic s — v(s) at s =0 is given by

oy

Gt = Pl | (P () alrshar + SL0,9)L
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Corollary 3.2.9 For every t € [0,T], L(t) denotes the arc length of the geodesic

s = 7i(s), X
_ Nt s)| , _ ||[ov(E 1)
= [ [0 - 2000
The following inequality holds
9v(0,0 Lt
2o <l PG [ ([ 19X e as) ey @23

t
+/ H X1 — Xo ||'y(t’,1) dat'.
0

Proof. Rewriting representation (3.2.30) in the form

0 .
V%a% = (P (7))~ [Xo(v(t,1)) = (Pg (7)) Xo(7(t,0)) + (X1 — Xo)(7(t, 1))] .
and using (3.2.16), we get
Oy ! d(t,1)
19550 1< [ 19%0 I 1ds | 252 |
+ 11 X1 = Xo [y -
This together with inequality ( 3.2.23) leads to (3.2.31). [

3.2.2 Gronwall’s type estimates for flows on Riemannian manifolds

The Gronwall type estimates play an important role in the perturbation theory
for dynamical systems. Recall that the (specific) Gronwall lemma is formulated as
follows (see, for example [66]). Suppose that for ¢ <t <ty + T, we have

o) < bt —t0) 401 [ o)+

to

with ¢(t) continuous and constants d; > 0, d2 > 0, and d3 > 0. Then,

o(t) < % + 35 eS1(t—to) _ @
51 51

for tg <t <ty + T. Using this fundamental inequality, we get some estimates for
the time evolution of the distance between points of trajectories of two vector fields.

First, let us consider the special case where the parameterized surface which
comes from trajectories of a parameter dependent vector field . Suppose we start
with a l-parameter family of vector fields X; on M smoothly depending on the
parameter s € [0,1]. Let [0,1] 5 s — [((s) € M be a smooth curve. Then, one can
fix T > 0 such that for every s € [0,1], the trajectory ¢ — Fl% (8(s)) is defined for
all t € [0,T]. Consider the parameterized surface of the form

a(t,s) :== Flx_(B(s)). (3.2.32)

Therefore, for every t, the s-curve s +— ay(s) is a result of the time evolution of the
“initial” curve B(s) under the flow of Xj.
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Proposition 3.2.10 The length L(t) of the s-curve s — o (s) on the parameterized
surface (3.2.32) satisfies the Gronwall type estimate

CQ Cqt 02

Lt) < | = w_ == 2.
()_<Cl+03>€ c, (3.2.33)
for allt € [0,T]. Here
Cr= sup [(VXs)mll »
mea([0,7]x[0,1])
s€[0,1]
Cy = sup 4X,s ,

t€[0,T ds a(t,s)

s€[0,1]

Cs3 = L(0).

Proof. Formula (3.2.24) implies

d

% (0t ) + (TX g (e

75

Ve ar

dX,
ds

H da

a(t,s) H

0
(t.5) + H(VXs)a(t,s)H H(aj)
al(t,s

a(t,s)

a(t,s) ‘
Putting this inequality into (3.2.23), we get

L(t) < L(0) + C / L(r)dr + Cat.
0

By the specific Gronwall lemma, this leads to (3.2.33). [

Theorem 3.2.11 Let (M,<,>) be a connected Riemannian manifold and dist :
M x M — R the corresponding distance function. Let Xy and Xi be two vector
fields on M and p,q € M some points. Assume that there exists an open subset
N C M with compact closure such that

p,q €N, (3.2.34)

distn (p, q) = dist(p, q). (3.2.35)
Consider the s-dependent vector field
X=X+ S(Xl - Xo) (3236)

and choose T > 0 such that for every s € [0,1] and m € N the trajectory t —
Fl%_(m) is defined for all t € [0,T]. Then,

C2

dist(Fl%, (p), Fl, () < (Zj + 03) ecit o (3.2.37)
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for allt € [0,T]. Here

c1 = sup [(VXs)nll, (3.2.38)
meKrp
s€[0,1]
ca = sup [|X1 — Xoll,, (3.2.39)
mEKT
c3 = dist(p, q) (3.2.40)

and K C M is a compact subset given by
Kp = {Flx (m)|meN, te0,T], s€[0,1]}.

Proof. Fix a smooth curve [0,1] 5 s — ((s) € N joining p and ¢, 3(0) = p, 3(1) = q.
Using the flow of the s-dependent vector field (3.2.36), define the parameterized
surface a(t,s) = Fl% (B(s)). Let L(t) be the length of the s-curve s — a(s) on
the parameterized surface a.. In particular, L(0) = L(). By hypotheses (3.2.34),
(3.2.35), for any A > 0, one can choose the curve (3 in such a way that L(0) — A <
disty (p, q) = dist(p, ¢). Then, Proposition 3.2.10 implies

diSt(Oé(t,O), Oé(t, 1) < L(t) < <22 + dist(p, q) + A) eclt — ?
1 1

Since A is an arbitrary positive number, taking the limit A — 0 in the right hand
side of this inequality, we arrive at (3.2.37). |

Corollary 3.2.12 In the case when X1 = X, under assumptions (3.2.34), (3.2.35),
the estimate (3.2.37). takes the form

dist(Fl%, (p), Fl, (q)) < dist(p, )

where

c1= sup [[(VXo)mll,
mEKT

and Kp = {Fl% (m) |m € N,t € [0,1]}.

This result was obtained in [44].

Remark 4 In the case when p = q, assumptions (3.2.34), (3.2.35) can be omitted
and the estimate (3.2.37) is written as

C2

dist (Pl (). Fif () < (2) (e < 1),

C1

Notice that conditions (3.2.34), (3.2.35) do not hold in general.
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3.2.3 Free S'-actions and Riemannian submersions

To formulate the main results, we need some facts on the invariant metrics about
principal S'-bundles.

Sl-actions. Let M be a connected manifold and Ay a vector field on M whose
flow Flf% is periodic with frequency function w : M — R, w > 0. Consider the
action of the circle S! = R /277 associated with infinitesimal generator ¥ = %AO
and assume that this action is free. This means that each trajectory of T is minimally
2m-periodic. Let © = M _/S! be the orbit space of the S!-action and p : M — O the
natural projection. It follows from well-known properties of free actions of compact
Lie groups [24, 49] that there exists a unique manifold structure on O such that
p is a smooth surjective submersion (a fiber bundle). Moreover, p is a principal
S'-bundle over O. For each S'-invariant vector field Y on M there exists a unique
vector field Yo on O which is p-relative with Y,

dpoY =Ypop.

and called the reduced vector field.

Riemannian submersion and horizontal lifts. Recall that a fiber bundle
(M, p, B, F) consists of the manifolds M, B, E and a surjective submersion p : M —
B such that for each b € B the set M|, := p~1(b) is diffeomorphic to F. M is called
the total space, B the base space, p the projection and F' the standard fiber. The
space

V :=kerdp (3.2.41)

is called the vertical subbundle of M. If M is a Riemannian manifold, the horizontal
subbundle H of M can be defined as the orthogonal complement of V|

H:= Vi (3.2.42)
Thus, for each m € M, the linear transformation
dpmp : Hpy, — Tp(m) B.
is an isomorphism. Hence, we have the decomposition
TM =HoV.

The vector fields on M tangent to H and V are called horizontal and vertical
vector fields, respectively.

If B is also a Riemannian manifold, p is a Riemannian submersions if d,,p :
H,, — TpmyB is an isometric isomorphism for all m € M. For every v € X(B)
there exists a vector field hor(v) € XM, called the horizontal lift of v satisfying the
conditions

e hor(v)(m) € Hy,,

e dpohor(v) =vop.
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hor(v) is well-defined and depends on m smoothly. Let « : [a,b] — B be a smooth
curve on B passing trough the point v(0) = z € B. Let m € M, be a point in the
fiber over x. A lift of v trough m is a smooth curve 7 : [a,b] — M such that

° m = 7(a), (3.2.43)
° poy=r. (3.2.44)
A lift curve is horizontal if in addition
d__
a’)/(t) S Hﬁ(t)’ vt € [CL, b} (3245)

Given any smooth curve v : [a,b] — B there exists always a local horizontal lift of
. This means that conditions (3.2.44)-(3.2.45) hold in an interval [a, a +¢] for some
e > 0. If p is a proper surjective submersion then for any 7 : [a,b] — B there exists
a global horizontal lift 5 : [a,b] — M, [52].

Riemannian submersions on the S!'-principal bundle (M, p,O). Pick a
Riemannian metric <,> on M which is invariant with respect to the S'-action,
that is, the flow Fl% is an isometry on (M, <, >). Such a S'-invariant Riemannian
metric always exists and can be obtained from an arbitrary Riemannian metric on
M by applying the averaging procedure . Indeed, if g is the metric tensor of a given
Riemannian metric on M, then formula (see Chapter 2)

1 2w
g:=— [ (Fly)*gdt
21 0
gives the metric tensor of an S'-invariant Riemannian metric. Consider the S'-
principal bundle (M, p, ©) where © = M _/S! denotes the orbit space and p : M — O
the canonical projection. The line distribution Span{Y} coincides with the vertical
subbundle V of M. Since the Riemannian metric is S'-invariant, the horizontal

subbundle is also invariant with respect to the S'-action,
(dn FI5 ) (Hi) = Hpye 1y Vm € M.
Therefore, we have the S'-invariant, orthogonal splitting
TM =HaYV, (3.2.46)

and for every vector field Y on M there is a the decomposition Y = Yhor 4 yver
into horizontal and vertical parts. It is clear that the restriction of the differential
dmp @ T;M — T,)O to Hyy, is an isomorphism. For every vector field v on O
there exists a unique horizontal lift hor(v) on M which is tangent to H and such
that dp o hor(v) = v o p.

Moreover, there exists a unique Riemannian metric <, >° on the orbit space O
such that the projection p is a Riemannian submersion (see [52], page 327),

(ur, u2ym = ((dmp)us, (dmp)uz)pim (3.2.47)

for any m € M and wi,us € H,,. Denote by dist® : O x O —R the distance
function associated to the Riemannian metric <,>° on O. Denote by V and V¢ the
Riemannian connections on (M, <,>) and (O, <, >°), respectively.
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Lemma 3.2.13 Let v : [0,1] 2 s — ~(s) € M be a smooth curve on M and
a:=pory: [0 1] 2 s — p(7(s)) € O its projection to the orbit space. Let (‘17)}1Or €

H, ) and ( L)Y € V) are horizontal and vertical components in the orthogonal
decomposztzon

d7 d"}/ ho d"y ver

— == — . 3.2.48

ds <ds> * <ds ( )
Then,

(a) the arc lengths of the curves v and o
1 oo
!
/ H H ()= / ‘ ds
0

L(a) < L(7) (3.2.49)

L(y) < Do) + / (o)
0

The equality L(c) = L(y) holds if and only if the curve 7y is horizontal,
(lcil%)ver — 0

satisfy the inequalities

ds < V2L(7). (3.2.50)

(b) For any p,q € M, we have

dist®(p(p), p(q)) < dist(p, q). (3.2.51)

)hor

i

Proof. The statement (a) is evident and follows from the relation ‘fi—i‘ = (dy S)p)(%
orthogonal decomposition (3.2.48) and the equality

which is consequence of the property that p is a Riemannian submersion. To prove
the item (b), for arbitrary p,q € M and A > 0, let us choose a curve v on M joining
p with ¢ and such that dist(p,q) + A > L(vy). Then, by (3.2.49) we get

dist®(p(p), p(q)) < L(povy) < L(7)
< dist(p, q) + A.

dOé hor

: (3.2.52)

H ds

Since, A > 0 is arbitrary, inequality (3.2.51) is true. ]

Remark 5 One can suppose that a Riemannian metric on the orbit space is arbi-
trary because of the following fact. For a given Riemannian metric (,)° on O, there
exists a S'-invariant Riemannian metric {,) on M such that the projection p is a
Riemannian submersion.
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The following statement gives us the key property of the horizontal lift.

Proposition 3.2.14 Let X € X(M) be a vector field and v : [0,T] — M the
trajectory of X through my € M, y(t) = Fl; (m?).Consider the projection o = p oy
and its horizontal lift & : [0,T] > t +— &(t) € M through m®, &(0) = m®. Then,
there exists a smooth function T :[0,T] — R such that 7(0) = 0 and

a(t) = g'((t)) (3.2.53)
where
g =FI;". (3.2.54)

Moreover, the curve t — a(t) € M is the trajectory through mq of the horizontal
t-dependent vector field
X, = (gh) XPor, (3.2.55)
that is,
da(t) 5
—= = Xy(al(t)).
= Xi(aw)

Moreover, the following properties hold
| X: la@wy=Il X Il (3.2.56)

and

| Vo la <l VX o - 110 llag (3.2.57)

Jor every v € T, M.

Proof. By definition, the points &(t) and 7(t) belongs to the same fiber p~1(a(t))
and hence they can be joint by a segment of the periodic trajectory of T for the time
7 = 7(t). Differentiating the both sides of (3.2.53) in ¢t and using the decomposition
(3.2.48) give

PO — () 2 1 0yr () (3.2.58)
= (dy )X (1(8) + (a9 X (7 (1)
FROTO)

Remark that the flow of Y is an isometry which preserves splitting (3.2.46) of T M
into horizontal and vertical subspaces. Hence, the diffeo(n;orphisms g' have the same
At

properties. From here and the fact that the velocity doc‘l—t is a horizontal vector, we
deduce from (3.2.58) the relations

dO;it) _ (dw(t)gt)Xhor(’Y(t) (3.2.59)

and
(O ((1) = —(dyyg") X (7(2)).
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The last formula just defines the function 7(¢). Putting () = (¢°)~(&(t)) into
(3.2.59) leads to the relation

dflff) = (dgry-1aw9") X" () (a(t))

= (") X" (a(t))

which says that &(t) is the trajectory through mg of the vector field X, in (3.2.55).
Equality (3.2.56) follows from the property that the differential of ¢’ is a linear
isometry and the representation X;(m) = (dmg")X((¢")"'m). Finally, applying
Lemma 3.2.1, we get

I VoXe lla@=ll Vidawgt) 10X Iy <l VX I - o law

3.2.4 A geometric proof of the averaging theorem

Suppose we are start with a perturbed vector field on M
AE = AO + EAl,

where Ag is a vector field with periodic flow, frequency function w > 0 and A; €
X(M) is a certain vector field. We assume that the S'-action with infinitesimal
generator T = %Ao is free.

Let (A1) be the Sl-average of the perturbation vector field A; and (A;)e the
reduced averaged vector field on O,

dpo (A1) = (A1)o o p.

Assume that the orbit space O is equipped with a certain metric <, >°. The corre-
sponding distance function is denoted by dist® : O x O — R.

Theorem 3.2.15 Fiz m° € M and assume that the trajectory of (A1)o through
20 = p(m®) € O is defined for t € [0,T] and remains in an open domain Dy with
compact closure. Then, there exist some constants eg > 0, Ty > 0 and ¢ > 0 such
that

dist®(p o Fliy_(m”),F1f}y, () < ce (3.2.60)

for all e € [0,20] and t € [0, 1].

We will proceed the proof of this Theorem in few steps.

First of all we choose an S'-invariant metric <, > on M such that the projection
p: M — O is a Riemannian submersion

Step 1. (Fizing 9). Pick another open domain D in O with compact closure
such that Dy C D. Then, Ny = p~}(Dy) and N = p~ (D) are open domains in
M with compact closure which are invariant with respect to the S'-action. It is
clear that mg € No C N. By Theorem 3.1.1 there exist § > 0 and a near identity
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transformation ®, : N — M with which takes the perturbed vector field A, into
the form
(®)*A. = Ag +e(A)) +°R..

for all € € (—0,0). Here, the remainder R. is a smooth e-dependent vector field on
N. Without loss of generality, we can assume that R. is extended to the closure N.
The diffeomorphism @, is given as the time-¢ flow of the vector field

1 1
Z=—~S(A)+ ESQ(QAIW)AO (3.2.61)

which is defined on the whole M.
Since, ®. is a near identity transformation ®., there exists a constant oy € (0, d]
such that
mo € (ba(NO ) Ve € [0,50] (3262)

Condition (3.2.62) can be rewritten as

me == ®-1(mg) € No. (3.2.63)

Lemma 3.2.16 Let [0,00] > € — m. € Ny be the parameterized curve and L. its
arc length. Then, for all € € [0, dy], we have

dist(mg, me) < Le < 3¢
where
»y = sup ||[Z(m)]. (3.2.64)

me Ny

Proof. Consider the parameterized curve [0, dp] 3 € — m. € Ny. Taking into account
that dng = —Z(me), we get

&€
/
0

15
— / 1Z(mo)l| de’ < sup |2, <.

meNg

Corollary 3.2.17 Let [0,20] 2 € — p(me) € Dy be the parameterized curve on the
orbit space and L? its arc length. Then, the inequality

dist®(p(mo), p(me)) < L2 < spe
holds for e € [0, o).
Consider the following (s, e)-dependent vector field on N:

A, = Ag+e(Ay) +se°Re (3.2.65)

where s € [0, 1].
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Lemma 3.2.18 There exists ¢g € (0,00] such that for every trajectory of ;‘1873
through mge
t qes(t) :=FL (mg) €N (3.2.66)

is defined for t € [0,22] if e € [0,20] and s € [0,1].
Proof. By standard properties of flows, we have
Flka’s = Fl, oFI/ (3.2.67)

where

P, = (Pg’s)t = <A1> — t(L<A1>w)T + 68(F120)*R5

is a time-dependent vector field parametercally depending on €, s in a smooth way.
Since the flow of Ay is periodic, it is enough to show that for small enough ¢, the
interval [0, Tp] belongs to the interval of definition of the trajectory of P; through
mse. The vector field (Po); = (A1) —t(L(4,yw)Y is S'-invariant and p-related with
(A1) and hence by the hypothesis of Theorem 3.2.15, its trajectory through my is
defined for ¢ € [0,Tp]. Then, there exists gy € (0, o] such that for every ¢ € [0, ]
and s € [0,1] the trajectory of (Pe): = (Po,s): + es(Fly,)*R. through my. is also
defined for all ¢ € [0,Tp]. Here we use , the following well-known property (see [1],
page 222): if [0,Tp] belongs to the domain of definition of the trajectory through
mg, then there exists a neighborhood U of mg such that any m € U has trajectory
existing for time ¢ € [0, Tp]. [

Step 2 (Triangle Inequality ) Remark that the perturbed vector field is related
with (3.2.65) by the formula

Aa - ((I)a)*Aa 1

)

and hence
t—= Fly_(mg) = (Pc 0 Flks’l)(mg)

Fix g9 as in Lemma 3.2.18. Then, for each € € [0,2¢], the trajectories of the per-
turbed vector field A, and the averaged vector field

Aco=Ap+e(Ar)

through the point my are defined for all ¢ € [0, %] To estimate the distance between
the points of these trajectories, we start with standard triangle inequality argument
[66]

dist(Fl}y _(mo), F15 (ma)) (3.2.68)
< dist(FIy _ (mo), Fl}xal (me)) + oust(]?l%&1 (m.), Flgw (mo))

The first term in (3.2.68) has the following estimate

dist(F1y _(mo), Fl

Agﬁl(ma)) = dist(®. o Flks’l(ma), Fl%gﬁl(mg)) < e (3.2.69)
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where
s = sup [|Z],, (3.2.70)

me

This inequality follows from the same arguments as the proof of Lemma 3.2.16. It
follows from (3.2.69) and (3.2.51) that

dist?(p o FIy_(mo), poFly  (me)) < e
This implies the following fact.
Lemma 3.2.19 For all € € [0,£0] and t € [0, %] the following estimate holds
dist®(p o Flfy _(m?), FIF, , () < sa1¢ (3.2.71)

+ dist’(p o Flf&s’1 (me),po Flf&w (mo)).

Step 3 (Gronwall’s inequality) To estimate the second term in (3.2.71), we make

some preparation steps. For each fixed ¢, denote by 7. : [0, L2]. — N the trajectory

- €
of the vector field A, ; through m.,

Ye(t) = FltA&l (mg).

Consider its projection to the orbit space az = po~, : [0, %] — D and the horizontal

lift a. : [0, %] S t+— a(t) € N through m. of the curve a.. Then, by Proposition
3.2.14 for every t, there exists a fiber wise diffeomorphism g! on N defined by
(3.2.54), such that g2 = id and

Ge(t) = g2(7e(t)).
Moreover, a.(t) is the trajectory of the time-dependent vector field (gé)*Ag(’f where
A?,Olr — <A1>hor + SQRSOI.

Since g! is defined as the re parameterized flow of the infinitesimal generator of the
Sl-action we have that (g%). (4;)"" = (A;)"°" and hence

(98)- A2 = (A1) + 2 (gh) . RE".

For every € € [0,¢0] and s € [0, 1], introduce the following horizontal time-dependent
vector field on N:

Xt = (Xs,S)t = 5<A1>hor + 352(9;)*R120r'

For each ¢ € [0,2¢] , using the flow of this vector field, we define a parameterized
surface in N as

0. : [0, %] x [0,1] > (t,8) > oc(t, s) == Flx, (mes). (3.2.72)

It is clear that
0:(t,0) = FI7} yor (mo).
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Since (Xc,1)¢ coincides with (gé)*.&?of we have
G:(t) = oc(t, 1)

and hence
pooe(t,1) = a(t).

Therefore, for the second term in (3.2.71) we have the estimation (Proposition 3.2.14)
dist’(poo-(t,1),po0.(t,0)) < dist(o:(t,1),0-(¢,0))

which says that it is enough to study the lengths of the s-curves in the surface o-..
For a fixed ¢, consider the horizontal s-curve s — o.(s) = 0-(t, s) and denote by

La(t) = / |
J

dO’E t(S)
L LA NS d
ds y

its arc length.

Lemma 3.2.20 For all e € [0,0] and t € [0, 2] the following estimate holds

Lo(t) < [(%3 + %0> es7at — ”3] e, (3.2.73)

2 2

where s is given by (3.2.64) and

sy = sup (HwAl)hOr te HVRQM ) , (3.2.74)
meN m m
€€[0,e0]
3= sup | R ||, (3.2.75)
EZL[S)EO]

Proof. Applying the basic inequality (3.2.23), we have

t
1
L.(t) < L€(0)+// I V%% o dsdt’. (3.2.76)
0 Js 8t/
0

By definition, the t-curves in o, are horizontal and

oe(t,5) = £ ((A0)"" + 55%(g). R ) o 0.

It follows that

Ooe doe
ot! 0s
522 | Vome ((8)eFE™) Nl +2% | (91 RE | -

1V s o oo € 1 902 |

O¢
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By Lemma 3.2.1, we deduce

do
. t* hor < t* hor . €
| Voo (9B ) o IV (6B )l - | S o
o,
_ hor €
_” VRE Hgl;too'i ’ ” 85 HUs

and
h h
I ()« R [lo =l RE" ||

Putting these relations into (3.2.76) we arrive to the inequality

—t .
ge OO0¢

¢
L2(t) < e+ 5%2/L€(t’)dt’ + &2t
0

Applying the specific Gronwall lemma leads to (3.2.73). ]

Finally, the proof of Theorem 3.2.15 follows from Lemma 3.2.19, Lemma 3.2.20
and the inequality
dist(o-(t,1),0.(t,0)) < L.(t).

Corollary 3.2.21 The e-independent constant in (3.2.60) can be chosen as follows

c= + (%3 + %0> e2To _ @, (3.2.77)
Vo) 2

where the constants »y, 71, 2, 33 are given by (3.2.64)-(3.2.75).

Remark that the upper estimates for the constants s and s; can be expressed
directly in terms of vector fields Ay and Ay by using the following estimate for the
infinitesimal generator (3.2.61) of the near identity transformation:

1 1
12l <~ It + =5 1 2Ly | ol
for every m € M.

Remark 6 Instead of parameterized surface (3.2.72), one can try to use the surface
G. generated by trajectories of the (s,e)-dependent vector field Ac s (3.2.65) which
start at the initial s-curve s — mg.. Then,

dist(po FIy  (me),poFly  (mo)) < Lg(pobey).

But we have estimation for the length L{(p o .1) = O(g) at the time long scale
t~ %, only if Lia,yw = 0.

Applications of the Averaging Theorem. Let A, = Ag + €A be a perturbed
vector field on a Riemannian manifold (M, < - >). Below we suppose that the flow
of the unperturbed vector field Ay is periodic with frequency function w : M — R
and the S'-action with infinitesimal generator ¥ = %Ao is free. Recall that w is a
first integral of Ag and w = p o wp for a certain smooth function wep : O — R. Here
p: M — O is the natural projection.
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Proposition 3.2.22 (Adiabatic Invariant) Assume also that the averaged vector
field (A1)o on the orbit space O = M /S' satisfies the hypothesis of Theorem 3.2.15
and admits a smooth first integral Jo : O — R,

Liayedo=0 (3.2.78)

Then,
J=Joop

s an adiabatic invariant of A, that is,
[T 0 Bl (m®) = J(m®)] = O(e)

form® € Dy , for small enough ¢ and t € [0, Lo].

)€

Proof. Since the closure of the open domain D is compact, the function J» has the
Lipschitz property on D (see, for example, [67])

[Jo(2) = Jo)|” < Asllz —wll°.
Then, by condition (3.2.78) and Theorem 3.2.15 we have
| 0 Fliy_(m°) — J(m?)]|
= [op 0 Fix (m") = Jo(F1Zh, ) (o) |

<\ HP o Fly_(m’) = FIf}y,, (p(m") H

< Ajce,

where the constant c is given by (3.2.77). [

Remark 7 Another important consequence of Theorem 3.2.15 can be formulated as
follows (see, for example Moser [58]). If the averaged vector field (A1)o on O admits
admits a nondegenerate rest point 2° € Dy,

(A1)o(2%) = 0.

then, for small enough €, the original perturbed vector field A. admits a periodic
trajectory ~-(t) whose projection p(y:(t)) € O is e-close to 2° and the period T(e)

has the representation
27
T(e) = ——— + O(e).

 wo(20)



Chapter 4

Periodic Averaging on Slow-Fast Spaces

In this chapter, in the context of normal forms, we study a wide class of perturbed
Hamiltonian systems so-called slow-fast phase spaces. This kind of systems appear
in the theory of adiabatic approximation [7, 38, 62] and its generalizations [16,
17, 19, 43, 74, 76]. In applications, such perturbed models come from e-dependent
Hamiltonians which are slow or rapidly varying in some degrees of freedom as ¢ — 0.
Geometrically, the perturbation theory for slow-fast systems deals with phase spaces
equipped with symplectic forms (or Poisson brackets) depending on the perturbation
parameter € in a singular way at € = 0. As a consequence, the main feature of our
perturbed model is that, in the limit € — 0, the unperturbed system does not inherits
any natural Hamiltonian structure. This means that one can not apply directly any
results of the regular Hamiltonian perturbation theory.

By a slow-fast phase space we mean a product M = 57 x S of two symplectic
manifolds (S1,01) and (S2,02) equipped with a rescaled product symplectic form
o = o1Peoy. We think of M as the total space of the trivial fiber bundle 71 : M — S
over the “slow” base with “fast” fiber S3. On such a phase space we consider a
perturbed Hamiltonian system with Hamiltonian H. = Hy + €H1, whose leading
term Hy depends on the slow variables m; € S; and the fast variables mo € So
appear only in the perturbation H;. The corresponding Hamiltonian vector field
Vu. is of the form Vg = V + eW, where the unperturbed vector field V is no
longer Hamiltonian but projects to the Hamiltonian vector field vy on (S1,01). In
particular, when Hy = 0, we arrive at the adiabatic situation [7, 62].

We are interested in two types of normalization related to S'-actions. First,
we show that in the resonant case, when the flow FI{, of the unperturbed system is
periodic, the perturbed vector field V+eW admits a first order normalization relative
to V. Our main observation is that, although the unperturbed and perturbation
vector fields V and W are not Hamiltonian, because of a special relationship between
V and W, one can still use the general criterion (Theorem 4.2.1) applying the period-
energy relation argument for the Hamiltonian vector field v¢. The term “resonance”
is motivated by the following interpretation of the periodicity condition for the flow
Fl@-. Since the flow Fl%, is a fiber preserving mapping on the trivial symplectic
bundle S7 x S — 51, under the periodicity of the flow of vy, one can introduce
the monodromy map g : S; — Sym(S2,02). Then, the flow FI, is periodic if
g*(my) = id for all m; € Sjand some integer k > 1. In the particular case, when
Sy = R?™ and H; is a quadratic function in the fast variables, this condition is
precisely the resonance condition between the “tangential” and “normal” frequencies
of the linearized Hamiltonian dynamics over S7 . Such perturbed models appear in

73
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the study of Hamiltonian dynamics near an invariant symplectic submanifold (S1, 01)
[39, 74]. Here, S;x R?™ plays the role of the normal bundle of the submanifold S;
and the unperturbed vector field V presents the linearized dynamics around S .

The second normalization setting for V. = V+eW is motivated by the question
on the geometric meaning of the normalization transformation in the proof of the
classical adiabatic theorem [7, 62]. In this case, the flow of V is not necessarily
periodic and we only assume that V admits a circle first integral J. This means that
the vertical Hamiltonian vector field V; is an infinitesimal generator of an S'-action.
Therefore we deal with the situation when the unperturbed vector field V is invariant
with respect to the S'-action but not the symplectic form ¢ nor the Hamiltonian H..
To correct this “defect”, we are looking for a near identity transformation 7. which
brings the original perturbed model to a system which is €2 close to a S'-symmetric
Hamiltonian system. We show that such a normalization transformation can be de-
fined as a symplectomorphism between the symplectic structure o and its S'-average
(o). In the case of two degrees of freedom, we perform a detailed analysis of the
properties of 7, and derive various results concerning nearly integrable Hamiltonian
systems and adiabatic invariants. Here, our main tools are the averaging technique
on symplectic fibered spaces [28, 47, 55|, the notion of weak coupling symplectic
structures [30] and the Moser homotopy method [57] (see also [17, 74]).

4.1 General Normalization Settings

Let M = S; x S be a product of two symplectic manifolds (S1,01) and (S, 02).
Let my : M — S7 and my : M — S5 be the canonical projections and di and do
the partial exterior derivatives on M along S7 and S5, respectively. It is clear that
d = dy + do is the exterior derivative on M and d% = d% =diody+dyod; = 0.
Denoting ¢1) = 701 and 6(®) = 7509, let us consider the following e-dependent
2-form on M

o=0W4e0? (4.1.1)

which is a symplectic structure for all ¢ # 0. For H € C*°(M), denote by Vp the
Hamiltonian vector field relative to o. Then, Vg = VIS,I) + %VS), where VF(II) and

VI?) are vector fields on M uniquely defined by the relations

iv(1)0‘(1) =—d1H, (4.1.2)
H
iV}(;)o(z) =0, (4.1.3)
and
iv(z)U(2) = —doH, (4.1.4)
H
in(Iz)U(l) = 0. (4.1.5)

It follows that, for all mq; € S1 and my € Sy, the vector fields Vf(ll) and VIS,Q) are
tangent to the symplectic slices S7 x {mao} and {m;} x Sa, respectively. For every
u € X(S1), denote by & = u® 0 € X(M) the lifting associated to the canonical
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decomposition TM =TS, ®TS2. By {, }1 and {, }2 we denote the Poisson brackets
on M associated to the presymplectic structures o(*) and ¢, respectively. Then,

{H,G}; = W (dH,dG) = Lyo)G and {H,G}y = I®(dH, dG) = Ly@G. Here,

1M, 11® € y2(M) denote the corresponding Poisson tensor fields. In this terms,
we have Vf(ll) = idHH(l) and V}(IQ) = idHH(2).

On the slow-fast phase space (M, o), let us consider the following perturbed
Hamiltonian model [17, 19, 74, 76]

H.= fom +¢F, (4.1.6)

for some f € C*°(S1) and F € C°°(M). The corresponding Hamiltonian vector field
takes the form

Vi, =V +eW, (4.1.7)
where
V=d;+V (4.1.8)
and
W=y (4.1.9)

are unperturbed and perturbation vector fields, respectively. Here vy denotes the

Hamiltonian vector field on (S1,01) of f. It is clear that 0y = Vf(;)rl

the relations

and we have

[y, Vi) = VéliF (4.1.10)
(o7, Vi) = Vg(QiF (4.1.11)

In the bracket form, the Hamiltonian system of (4.1.7) is written as follows

£ = {fom, & +e{F €},
¢ = {F,z%},,

where ¢ = (¢) € S1 and z = (z%) € So.

The Deprit Normalization. The first normalization question we address for
Hamiltonian vector field (4.1.7) is the standard one: put Vy._ into a normal form
relative to V up to desired order. Since the vector field in (4.1.8) and (4.1.9) are
related through the dependence of F', first of all, it is natural to see under which
conditions perturbed vector field (4.1.8) is in normal form relative to V. We need
the following useful technical fact.

Lemma 4.1.1 For every G € C*°(M), the Lie brackets between the vector fields
V((;l), C(;Q) and V (4.1.8) are given by the relations

i[vé”,w(g(l) +0®) = LydiG - Ly daF, (4.1.12)

2 2
V& V) = vy (4.1.13)
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Proof. From relations (4.1.2)-(4.1.4) and Cartan formula Ly = ix od + doix, we
get
%@AU:—QO@G ziyﬂmzq (4.1.14)

ﬁVIgQ)U(l) =0, ﬁVIgQ)U(Q) = —dj odoF. (4.1.15)

It follows that Ev(l)
G
using the identity i

(M +6®3) = —dy 0 d,G and i, (M + 6®3) = —dyF. Next,
F

@ =L ol @ —1i @ oL, a), we derive the followin

formula for the Lie bracket between V((;l) and V}Q)

i[Vc(;l),Vﬁ)](o-(l) + 0'(2)) = —[:Vc(l)dgF + iV;Q) (d2 0 d1G), (4.1.16)

_G%MQO@FHd%MmO@GD.

Finally, (4.1.10) implies the equality i (e 403 = d1(Ly,G) which together

with (4.1.16) leads to the formula

\ARET

i[VG(l),ﬁf+VP£2)](O—(1) + 0(2)) = dl(ﬁﬁfG) — iVIEF) (dl o) dQG) — (iVC(;) (dl e} d2F>> .

Taking into account the property dy o L;, = L4, o dq and the equalities

iV(2) (dl o dQG) =L )le and iv(1) (d1 o dQF) = ,Cv(l)dgF,
F G G

vi?

we derive the identity (4.1.12). Formula (4.1.13) follows directly from (4.1.11) and
the identity [V((;2), Vf(?)] = —Vﬁ(z)@)G. [
VF

The canonical decomposition TM = T'S1&T.S, induces decomposition of every of
1-forms on M into horizontal and vertical components which vanish the vector fields
tangent to the slices {m1 } x Sy and S7 x {ma}, respectively. Taking into account that
d1G and doF' are horizontal and vertical 1-forms respectively, we observe that the
first and the second terms in the right hand side of (4.1.12) belong to the subspaces
vertical and horizontal, respectively. This leads to the following consequence of
Lemma 4.1.1.

Corollary 4.1.2 The perturbed vector field V 4+ eW (4.1.7) is in normal form rel-
ative to V,
[V, W] =0,
if and only if the functions f and F are related by the conditions
L‘leF =0 and ﬁwsz =0. (4.1.17)

Therefore, in general, the vector fields V and W do not commute. This fact gives
rise to the normalization question.

The Hamiltonization Problem. We observe that in general, the unperturbed
vector field V is not Hamiltonian relative to the symplectic structure (4.1.1). Indeed,
it follows from (4.1.14), (4.1.15) that

ﬁVa' = —€d1 (e} d2F (4118)
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and hence V is Hamiltonian relative to ¢ for € # 0, only in the case when F =
7 f1 + 75 fa, for some fi € C*°(S1) and fo € C*°(S3). This feature of our un-
perturbed system comes from the singular dependence of the symplectic form o on
the perturbation parameter at ¢ = 0. In the limit ¢ — 0, the 2-form o becomes
degenerate and one can think of V as a Hamiltonian vector field only relative to the
pre-symplectic structure o).

To correct this “defect” of the unperturbed dynamics one can try to search a
Hamiltonian structure for V by deforming the symplectic structure o. The following
result [17, 74] shows that it can be done under some appropriate conditions.

Proposition 4.1.3 If there exists a horizontal 1-form 0 satisfying the homological
equation

Lyb = d,F, (4.1.19)

then the vector field V is Hamiltonian relative to the pre-symplectic structure

& =0—edl (4.1.20)
and the function
H. = fom +¢F, (4.1.21)
where
Fi=F —i,0. (4.1.22)

Moreover, the functions f o and F are first integrals of V.

Proof. Let 6 be an arbitrary horizontal 1-form. Taking into account that iv(2)0 =0,
F

we get the relation

iv(cW) +e0@) = —dy(fom) — edoF = —d(f omy + eF) + edi F
and iy o df = Ly — d(i, f(9). It follows from here that

iv(cW) +e0@ —edf) = —d(f om +e(F —i5,0)) — e(Lvd — di F).

Therefore, if 0 satisfies (4.1.19), then formulas (4.1.20),(4.1.21) give a Hamiltonian
structure for V. Finally, it is easy to see that f o w is a first integral of V. Then,
by the representation (4.1.21) for the Hamiltonian function of (4.1.19), we conclude
that F is also a first integral. ]

One can show [20] also that the solvability of (4.1.19) is necessary in some sense
for the Hamiltonization of V. There is also a geometric interpretation of the homo-
logical equation related with the notion of invariant connections [17, 20, 74].

In general, the solvability criteria for homological equation (4.1.19) is a nontrivial
question [20, 74]. But, if this equation is solvable, one can get a normalization
of the following type [16, 17]: there exists a near identity transformation 7; such
that the unperturbed vector field V and the transformed vector field (7z)*Vy, are
Hamiltonian relative to one and the same symplectic form 7o for small € # 0.
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St-invariant Normalization. Given an action of the circle S = R/27Z on M
and assuming the S'-invariance of the unperturbed vector field V, we are looking
for a near identity transformation which brings V. to a Sl-invariant vector field
up to desired order. The infinitesimal generator Z of a first order normalization
transformation must satisfy the equations

LyZ = W-W,
LYW = 0,

where T is the infinitesimal generator of the S!'-action. We distinguish two situations,

the first one when the S'-action comes from the periodic flow of V. In this case

normalization results depend on the properties of Hamiltonian vector field vy. In
the second case, the flow of V is not necessarily periodic.

4.2 Normalization Relative to Periodic Skew Flows

Our point is to study normal forms of perturbed model (4.1.7)-(4.1.9) in the periodic
case, when the flow of the unperturbed vector field V is periodic.
4.2.1 The first order normalization

The vector field V is 7i-related with vy and hence the trajectories of V are projected
onto trajectories of the Hamiltonian vector field vy, m o Fli, = ¢! om,. Here, ¢
denotes the flow of vy. Therefore, F1} is the skew-product flow,

FI§ (m1, ma) = (¢'(m1), G, (ma)), (4.2.1)

where G!, , is a smooth family of symplectomorphisms on (52, 02) determining as the
solution of the time-dependent Hamiltonian system

dgy,, (ma) 2
—= = Vi (1), G, (m2)), (4.2.2)
Go, =idg, . (4.2.3)
Assume that the flow F1, is periodic with frequency function w = 2% Then,
TN ) (1) = o () (4.2.4)

for all m; € S1,mo € Sz and t € R. If vy # 0 on Sy, then differentiating equality
(4.2.4) along Sy says that the period function 7 is independent of mgy and hence w =
w o7, for a certain smooth positive function w on S;. Therefore, the Hamiltonian
flow ! of vy is also periodic with frequency function .

Let Vi, = V + W be the Hamiltonian vector field on (M = S; x Sp,0 =
oM 4+ e0(?).

Theorem 4.2.1 Assume that the flow of vector field V.= 0y + V}2) (4.1.8) is peri-
odic with frequency function w : M — R and the set Reg(vy) = {m1 € Si|vg(m1) #
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0} is dense in Sy. Then, the vector field W = V}l) (4.1.9) satisfies the compatibility
condition
Lyyyw =0 on M (4.2.5)

where (-) denotes the averaging with respect to S'-action on M with infinitesimal
generator T = %V.

Proof. 1t is sufficient to show that (4.2.5) holds on the domain 7! (Reg(vs)) which
is dense in M. By Proposition (2.5.1), the period-energy relation for vy says that
dw A df =0 on Reg(vy) and hence

dw Nd(fom)=0 (4.2.6)

on 7, '(Reg(vy)). The hypotheses of the theorem imply that d(f o m) # 0 on
71 (Reg(vs)). On the other hand, taking into account (4.1.2), (4.1.4), (4.1.9) and

the identity 0y = Vf(;)rl, we get
EVF = EﬁfF = Wikal(vjc(i}‘_l, VF(vl))

— —wi‘al(vél), Vf(;)rl) = —Lw(fom).
It follows from here and the S'-invariance of f o 7 that

Loy (fom)=(Lw(fom))=—(LvF)=—Ly(F)=0.

Finally, using these relations and applying the interior product with (W) to both
sides of (4.2.6), we get the equality

0= (1<W>dw)d(f ] 7T1) - (1<W)d(f o] Wl))dw = —(L’<W>w)d(f o 7T1)

which implies (4.2.5). [
Now, on the phase space (M = S; X Sz,0 = oM + 60(2)), let us consider the
perturbed Hamiltonian is of the form

2
H.=fom +eF+ %G+0(53) (4.2.7)

for a certain G € C°°(M). For ¢ # 0, the corresponding Hamiltonian vector field is
represented as

Vi, = V 4+ (W + %Vc(f)) +O(2), (4.2.8)

Theorem 4.2.2 Suppose that the unperturbed vector field V satisfies the hypothesis
of Theorem 4.2.1. Then, the perturbed Hamiltonian vector field Vi, (4.2.8) admits a
normalization of first order with respect to V, that is, for every open domain N C M
with compact closure and small enough €, there exists a (noncanonical) near identity
transformation ®. : N — M such that

O Vy, =V +e((W) + %(V((f)» + 0(e?) (4.2.9)

and
[V, (W) = [V, (V)] = o. (4.2.10)
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Proof. Tt is clear that [,V(z)w = 0 and hence £<V(2)>w = 0. Then, by (4.2.5), we
G

G
conclude that the perturbation vector field satisfies the compatibility condition

1
L(W-ﬁ-%VéQ))w = <£W+%Vé2)w> = Lwpyw + §’C<Vé2>>w =0
It follows from here and (4.2.5) that conditions (4.2.10) are satisfied. Finally, ac-
cording to Theorem 3.1.1, the normalization transformation ®. in (4.2.10) is defined
as the time-¢ flow of the vector field
Lo 1o@y, 1 e
Z = ES(VF +5Ve )+ E‘S (L

V;1)+%VG(2W))V'

By this theorem and Proposition 3.2.22, we derive the following fact.

Corollary 4.2.3 The frequency function w = w o w1 s an adiabatic tnvariant of
Hamiltonian system (4.1.7).

Proposition 4.2.4 Under the hypothesis of Theorem 4.2.2, we have the following
representation

2 2
vy =v @, (4.2.11)
(W) = P 4 p(2) (4.2.12)
where

PO =iy, 0, pA =i, T®, (4.2.13)

. . F
a=ipmdaf — (i, wB), B:=38(d ()) (4.2.14)

F w

For the proof of this proposition, we need the following fact.

Lemma 4.2.5 The Poisson tensor II®) and the presymplectic 2-forms o) and
c® —dp (4.2.15)

are invariant with respect to the S'-action on M with infinitesimal generator ¥ = g.
Here, the 1-form (3 is given by (4.2.14).

Proof. By the hypotheses, we have w = w o 71 , where w : S — R is the frequency

function of the period flow of the Hamiltonian vector field vy. The period energy

relation says that dw Adf = 0. Computing the Lie derivative of II® and o) along
(2)

the infinitesimal generator T = %ﬁ s V; gives

LyTT®) = £ T® =0,
F

1 1
LyoM) = —d(;dl(f omy)) = Edl(w om) Adi(fom)=0.
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. . . . . 2) F
Now, using the property of averaging operator and the identity iyoc® = —da(5),
we get

0= (Lyo?) = (d(iyc@)) = —(d1 o dy <i) ).

Taking into account this equality and the identity d3 = —S(d; o dy (5)) together
with the properties of the operator S, we verify the invariance of 2-form (4.2.15)

Lyo®P 4 LyoS (d1 o dy <F)> = d(ixc®) +dyody <F>
w

w
F F
= —djody (> +djody ()
w w
|

Proof of Proposition 4.2.4.  The equality (4.2.11) follows from the representation

V((;Q) = iycI1® and the S'-invariance of the Poisson tensor IT1(2). According to

splitting T'M = T'S; @& T'Sa, we have the decomposition (W) = P + P2 By the
St-invariance of ¢, we have

i<v§1’>0(1) - <iv;1>0(1)> =—(d1F). (4.2.16)

This says that in terms of Poisson tensor II1)| the vector field P() in (4.2.12) has
the representation (4.2.13). Next,

ivél)(U(Z) —df) = —i,0dif —i,0)df,

and hence
<iv(1)(0(2) —dp)) = —<iv(1)d1ﬂ> — <iv(1)d2,3>. (4.2.17)
F F F

On the other hand, using the S'-invariance of 2-form (4.2.15), we get

(i (1)(0(2) —dp)y = 1,0 (0(2) —dp) = iP(1)(0(2) —dp) + ip(z)(0(2) —dp),
Vi (V')

= —ipnydif —ipndaf +ipeo® —ipeydif—  (4.2.18)

Comparing (4.2.17) and (4.2.18) gives
ip@0? =1ipedi B +ipe daf,
ipayd1f+ipmde = (ij,o)d18) + (ij,) d2/3).
F F
Rewriting the last equation in terms of Poisson tensor II?), we get (4.2.12). |

The Adiabatic Case. In the situation when f =0 and G = 0 in (4.2.7), we
arrive at a perturbed Hamiltonian model

Vi, = V2 4+ v

€
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which appears in the theory of adiabatic approximation [6, 62]. Suppose that the
flow of V = VIQ) is periodic with frequency function w. In this case, the periodicity
of the flow of V does not imply that the perturbation vector field W = Vlgl) satis-
fies compatibility condition (4.2.5) and hence Theorem 4.2.2 does not provide the
existence of the first order normalization of Vp_ relative to Vﬁ). The period-energy

relation for the restriction of V}g) to the symplectic slices {m;} x S implies only
that dow A doF' = 0. On other hand by the general result of Theorem 4.2.2, we con-
clude that under the near identity transformation 7 (4.2.9), the perturbed vector
field V. is transformed to normal form of first order

T ( }2) + EV}D) = }2) + 5idF<H(1)) + 0(e?),

which is invariant relative to the S'-action on M associated to the periodic flow of
VIQ). Then, the compatibility condition (4.2.5) reads

MW)Y(dF, dw) = 0.

Remark that the S'-average (ITM) of TI(Y) is not a Poisson tensor in general.

In contrast to the regular case (see Section 3.1.3), vector field Vél) is not Hamil-
tonian on (M, o) in general. As consequence, the normalization transformation ®. is
not necessarily canonical. This “defect” of the normalization transformation comes
from the following feature: the S'-action associated to the periodic flow of the un-
perturbed vector field V does not preserve the symplectic form o (see condition
(4.1.18)).

4.2.2 Periodicity criteria and resonances

The periodicity of the flow of vector field V (4.1.8) can be formulated as a resonance
relation. Suppose that

e V is a complete vector field;
e the flow ¢ of vy is periodic with frequency function @ : S1 — R;

e the regular set Reg(vy) is dense in S; and the orbit ¢ — ¢!(m;) through every

point m; € Reg(vy) is 7(my)-minimally periodic, where 7(m;) = w(%zl).

It follows from these conditions that vy satisfies all hypotheses of Theorem 4.2.1
and the S'-action associated to the periodic flow ¢! is free on Reg(v 7)- The group
property of the flow FI{, implies the relations

t1+t2 _ ot to __ ot2 t1
gm1 — g@tg (m1) o gm1 — gtptl (m1) o gml

t+T(m1
mi

for any m1 € S1 and mo € Ss. In particular, we have G ) — g;fnl © gm,, Where

Gmy o= G, (4.2.19)
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Definition 4.2.1 The symplectomorphism gm, : S2 — Sz in (4.2.19) is called the
monodromy of the flow F1i, over a point my € Sy.

Proposition 4.2.6 The flow FY, is periodic if and only if there exists an integer
k > 1 such that
gk =id Vm1 € Reg(vy). (4.2.20)

In this case, the corresponding frequency and period functions can be defined as

1
w:Ewom, and T =krom.
Proof. We assume that flow of V is periodic with period function 7. Since V and vy
are mi-related, there exists a positive integer k such that T' = k7 o m;. Conversely,
we assume that there exists and integer £ > 1 such that condition (4.2.20) holds.
Let T = k7 om;. By the group property of G, equation (4.2.1) and periodicity of ¢!,
we have

FI ™ (m1, ma) = (0" (ma), G, © g, (m2)) = (9 (m1), G, (m2)).

Therefore, Fl%, is periodic with period function 7. [
It is naturally to separate the resonance condition (4.2.20) into two hypotheses.
First, we assume that the monodromy mapping does not depend on the points in
S1 up to conjugation, that is, for any mi,m; € S there exists a diffeomorphism
U : Sy — Sy such that

Giny =U 0 gy oU™L. (4.2.21)

Then, the resonance condition (4.2.20) reads
Gao = id, (4.2.22)

where m{ € Reg(vy) is fixed.
In the linear case, condition (4.2.21) is known as the

property.

“isospectral deformation”

Example 4.2.1 Consider perturbed model (4.1.6) in the case when S; = S! x R =
{(s, a(mod 27))} is a cylinder and Sy = R? = {x = (x1,22)} is a plane equipped with
canonical symplectic forms o1 = ds A da and o9 = dx1 A dzo, respectively. Suppose
that f = f(s) and the perturbation term in the Hamiltonian H. is a quadratic
function in the fast variables,

1
F(s,a,z) = 3 (JV(s,a)z, ), (4.2.23)
where J = <(1) _01 and V : St x R —s1(2;R) is a smooth matriz-valued function.
In this case, the dynamical system of the unperturbed vector field V is of the form
s o, 9 _ e, (4.2.24)

dt dt
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d
d—f =V(s,a))z, (4.2.25)
where w(s) = 8—£ > 0. It is clear that the flow of this system satisfies all conditions

above and is given by
Fl (s, a,7) = (s,@(8)t + o, Gs o)

where G o € Sp(1;R) is the fundamental solution of the s-dependent periodic linear
Hamiltonian system:

d 1
LG, =
do 7 w(s)

G.o=1

Since V(s,a+2m) = V (s, ), we have that G ay2x = Gg o - Gs2x and the mono-
dromy of V is a linear symplectic mapping g : R? — R? given by gs = G 2x. Remark
that the minimal period of V in « is not necessarily equals 2. We have the follow-
ing fact [26] ; the linear monodromy gs possesses the property (4.2.21) if and only if
there exists a vector field on (S* x R) x R? of the form U = %—F < U((s,a)z, % >
which commutes with V, that is, the following “zero curvature” condition holds

V(s,a)Gs.q,

ou o0V 1

— - —+4+—[U,V]=0.

da  0Os + w[ V=0
Under this hypothesis, the periodicity condition (4.2.22) is formulated as follows.
Fiz sy € R, then the flow of system (4.2.24), (4.2.25) is periodic if and only if
gso =1, =T or

tr gs, = 2 cos (2%%)

for some coprime integers m,k € Z such that 0 < m < k. In each case, the

5
corresponding period functions are T(s) = %, ;(’;), ;?rf) This result follows from

the Floquet theory for linear periodic Hamiltonian systems [26, 79] and says that
the periodicity condition for the flow of V coincides with the resonance condition for
the frequencies of the quasiperiodic motion of system (4.2.24), (4.2.25) which are
defined by w and the Floquet exponent.

Condition (4.2.21) can be also derived from the following homogeneity argu-
ments. Let A be a smooth manifold which will be play the role of a parameter
space. Suppose we have two smooth mappings

Q1:AX51—>31, QQZAXSQ—MS’Q

of the form p1(\,m1) = 07(m1) and g2(\,m2) = 05(mz) where o7 : S; — S and
0y : Sy — S are diffeomorphisms for every A € A. Let o be the A-dependent
diffeomorphism on M = S; x Sy defined as as the direct product o*(my,ms) =
(07(m1), 03 (mz2)). Assume that the family {0*} ea of diffeomorphisms gives a “con-
formal symmetry ” for the unperturbed vector field in the sense that

(0M)*V = k(\)V (4.2.26)
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for some nowhere vanishing smooth function x : A — R. It follows that (o})*v; =
k(A)vs. In terms of the flows these relations read

0 o FIEWV! = FIY, 0 (4.2.27)
and
0} 0 "Nt =t o g} (4.2.28)

By (4.2.1), we have

FI (0} (m1), 03 (m2)) = (' (e} (m1), Gl (03 (m2)) )
On the other hand,
A EY (mama)) = 0 (" ), G5V () )
= (ot 0@ (m), g} 0 G5V (my))

By property (4.2.27), the left hand sides of the last two equalities coincide and hence
we get

Gl imny = @3 2 G 0 (03) ™! (4.2.29)

for any m; € S;. Now, let 7 : S — R be the period function of the flow ¢! of vf.
Then, identity (4.2.28) implies (07 (m1))

for all my € Sy, A € A. Since vy # 0 on Sy, this identity says that £(A\)7(o}(m1)) is
independent of A\. Suppose that S; is connected and there exists Ag € A such that

(Xo) =1 and ¢° =id. (4.2.30)
Then, we get the equality
7(ma)
k(A = ———F—.
7(0}(m1))

Putting this relation into identity (4.2.29) for t = 7(0}(m1)), we arrive at the fol-
lowing fact.

Proposition 4.2.7 Assume that V is complete and the flow ¢ of vy 1s periodic
with period function T : S1 — R. Under hypotheses (4.2.26), (4.2.30), we have the
following variation of parameters formula for the monodromy mapping gm, : S2 —
Sa

o (my) = €3 © gmy © (03) 7! (4.2.31)

for any my € S, A € A.

In the case when the S'-action associated with flow ¢! is free, the orbit space
Orb(vy) is a smooth manifold. If the hypotheses of Proposition 4.2.7 hold for the
parameter space A = Orb(vy), then the “isospectral deformation” condition (4.2.21)
is satisfied.
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Example 4.2.2 On the standard slow-fast space (R* = R? x R%, 0 = dp; A dqy +
edpa Ndqa), consider the Hamiltonian system H. = fom +¢eF, where the functions
f and F are homogeneous in the weighted degree with a weight n,

FOp1, MNagr) = N f(p1,q1),

F(X\p1, N, M2, Mage) = \"F(py1, 1,02, ¢2)

for all A > 0 and some nonzero integers s and l. If the level set {f(p1,q1) = 1}
is bounded in R2, the open domain Sy is foliated by periodic trajectories of the
Hamiltonian vector field vy = O 0 _ 0L D Iy this case, A = Orb(vy) = Ry

Op1 Oq1 Oq1 Op1°
and conditions (4.2.26), (4.2.30) hold for scaling map

'Q)\(ph q1, P2, Q2) = (Aspla /\lq1, )\SPQ, )\ZQQ)
where \g = 1 and formula (4.2.26) reads rk()\) = \" 57

4.3 S!-Invariant Hamiltonian Normalization

In this section, we study a perturbed Hamiltonian system of the form (4.1.1), (4.1.6)
in the case when the flow of the unperturbed system is not necessarily periodic but
this system possesses a S'-symmetry. We formulate some results on the approxima-
tion of the original perturbed model by an e-dependent Hamiltonian system with
Sl-symmetry. This setting is not standard in the Hamiltonian perturbation theory
[6, 50] because of the singular dependence of the symplectic structure on the small
parameter €.

4.3.1 Hamiltonian systems with rapidly varying perturbations
On the standard phase space (R*, dp; Adq; +dPaAdQs), let us consider a Hamiltonian

system of the form [19]

B Qz) : (4.3.1)

H = f(plaql) +el <p17q17 677 Elin

where ¢ < 1 is a small parameter and s € [0,1] is a constant. After rescaling

P2 = %7 G2 = E?—fm we get the e-dependent symplectic form

o =dp1 Ndg + edps N dqo, (4.3.2)
and the Hamiltonian

H. = f(p1,q1) + €F(p1,q1,p2, 92), (4.3.3)

depending regularly on €. According to the appearance of the small parameter € in
the corresponding Poisson bracket

{plaql} = 17

1
{an q2} - g7
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one can separate the space coordinates into slow (p1,¢1) and fast (pa, g2) variables.
For € # 0, the equations of motion of Hamiltonian system (4.3.2), (4.3.3) are of the
form

: of oF . 0f OF
=———&e—, = ——+e—, 4.3.4
n o og T T ap T Som (4.3.4)
OF ) oF
YR q2 = 73—,
ol 27 Ope
and viewed as a perturbed dynamical system. As we have mentioned above, for
e = 0, the unperturbed system

P2 = (4.3.5)

) of . of
__OF 29 4.3.6
n oq o op1 ( )
oF oF
o = : (4.3.7)

_87q2’ Q2 = 8792’
is not Hamiltonian relative to o, in general. According to the notations introduced in
Section 4.1, the total space M = R* is product of the symplectic planes S; = Rghql
and So = Rz%z,cn which is equipped with symplectic structure o = (1) 4+ e0(?) | where
oM = dp; Adgr and 0@ = dpy A dga. Moreover, the unperturbed vector field of
system (4.3.6), (4.3.7) is represented in the form V = o + V}Z), where

af & of o
99 99 438
of O0q1 Op1 ~ Op1 Oqu ( )
(2) oF 0 oF 0
R =220 O O
F 0q2 Op2 ~ Op2 0qa

Circle first integrals. As is usual in the perturbation theory, we need some good
properties of the unperturbed dynamics. We make the following assumption:

o (Symmetry Hypothesis). In an invariant open domain N C R* the unper-
turbed system (4.3.6), (4.3.7) admits a first integral J = J(p1,q1, 2, ¢2),

OF 9]  OF 0 _

LyJ=Ly] — ——+—— = 4.3.9
v T Oga Opy - Opa Ogo (4.3.9)
such that the flow Fl’;/@) of the vector field
J
oJ 0 oJ 0
VJ(2) = (4.3.10)
Op2 0q2  Oq2 Ops
is periodic and the corresponding period function is equal to 27,
FI' 27 = F1 ) . (4.3.11)

2
v =Py

This means that T = VJ(2) is an infinitesimal generator of the S'-action on N C R* =
2 2 : 1 : 2

RS o, x R2, .. The circle ' = R 727Z acts along the slices {p1,q1} x R>, . NN

in a Hamiltonian fashion, with momentum map J,, 4, parametrically depending

on the slow variables pi,q;. We admit that this S'-action is not necessarily free.

Therefore, the phase portrait of the Hamiltonian system with one degree of freedom

(dpa2 A dga, Jp, q,) consists of periodic orbits and rest points.
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Definition 4.3.1 A smooth function J : N — R satisfying (4.3.9)-(4.3.11) is said
to be a circle first integral of V.

Under above assumptions, the unperturbed vector field V has two first integrals
fom and J. Here, as usual, 7 : R1231,q1 X R}%z,qz — RZ%LQI denotes the canonical
projection and throughout this section, by (-) we will denote the average with respect

the S'-action on N associated to the infinitesimal generator VJ(2).

It is clear that the first integrals f o w1 and J are invariant under the S'-action.
Moreover, the unperturbed vector field V is also S'-invariant, (V) = V.

Indeed by (4.3.9) and formula (4.1.13), we get [V, VJ(Z)] = ﬁ(?/)J = 0. On the
other hand, it follows from (4.1.15) that

LVJ<2)U = —Sdl e} ng,

and then, for ¢ # 0, symplectic form (4.3.2) is not S'-invariant, and hence the
S'-action is noncanonical, in general.

Original perturbed Hamiltonian system (4.3.2), (4.3.3) is nonintegrable, that is,
does not admit an additional first integral. In what follows, a natural question is
to construct an approximation of (4.3.2), (4.3.3) by a completely integrable system
as € — 0. Remark that our setting is slightly unusual in Hamiltonian perturbation
theory because of the singular dependence of the symplectic structure in the small
parameter €.

4.3.2 Approximate Hamiltonian models with S'-symmetry

Here we formulate the results on S'-invariant normal forms of perturbed Hamiltonian
system (4.3.2), (4.3.3).

Suppose that the symmetry hypothesis holds and we are given a circle first
integral J : N — R of the unperturbed vector field V defined on an open subset N C
R* with compact closure. Consider the S'-action on N with infinitesimal generator
VJ(Z). Recall that by a near identity transformation we mean a smooth family of
mappings 7 : N — R* ¢ € (—6,9) such that 7y = id and 7- is a diffeomorphism
onto its image.

Theorem 4.3.1 For small enough € # 0, the following assertions are true:

(a) the St-average (o) of the original symplectic structure o (4.3.2) is a nondegen-
erate closed 2-form on N;

(b) the St-action is Hamiltonian relative to (o),

iV}2)<0> = _5d‘]07

where the function J° : N — R is given by
JO = iv(z) (pde2> (4.3.12)
J

and related with J by
J—J"=gom (4.3.13)
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for a certain function g € C®°(m1(N));
(c) there exits a near identity transformation T : N — R* which gives a symplecto-
morphism between o and (o),

(o) =T 0 (4.3.14)

(d) the pull-back by Tz of the original Hamiltonian system (4.3.2), (4.3.3)
(N, (o), HeoT:) (4.3.15)
is e2-close to the Hamiltonian system with S'-symmetry
(N, (o), (He) = fom +e(F)) (4.3.16)

in the sense that
H.oT. = (H.)+O(). (4.3.17)

(e) JV is a first integral of the Hamiltonian vector field Xa.y of (He) on (N, (o))
and

X<H5> =V+0(e). (4.3.18)

Remark 8 Relations (4.3.13), (4.3.18) mean that VJ(Z) = V}g) and JV is also a
circle first integral of V. In general, J is not a first integral of (4.3.16), we have
only that

ﬁX JZO(E).

(He)
Remark 9 The symmetry hypothesis can be reformulated as follows: the unper-
turbed vector field V admits a first integral G : N — R of V such that the flow of
Vc(f) is periodic with period function T : N — R. Then, the statement of Theorem
4.3.1 remains true, where formula (4.3.12) reads

T,
JO = %lvc(;z) <p2dq2>. (4.3.19)

Therefore, Theorem 4.3.1 states that under the symmetry hypothesis, the original
perturbed Hamiltonian model (4.3.2), (4.3.3) can be transformed by a near identity
transformation to a system which is approximated by Hamiltonian system with S'-
symmetry (4.3.16). The approximate Hamiltonian system is defined as the averaged
system where the “new” symplectic form (o) is a e-deformation of the original one.
The next result says that under natural additional assumptions the approximate
Hamiltonian system (4.3.16) is completely integrable.

Proposition 4.3.2 Assume that in addition to the symmetry hypothesis the follow-
ing condition holds
(i) there exists an open dense domain U in w1 (N) such that

df #0 on U. (4.3.20)

Then, the first integral J° is functionally independent with Hamiltonian (H.) on
Ny =y H(U). Moreover, if
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(11) the flow of vy is periodic on U with frequency function w : U — R and the

Sl-action associated to infinitesimal generator VJ((?) s free on Ny = 711_1(1/1), then:

(a) the flow of the unperturbed vector field V is quasiperiodic on Ny,
V=wT+wVy (4.3.21)

where Y is a vector field with 2m-periodic flow on Ny such that [Y, VJ(g)] =0 and
w) =wom,ws : Ng — R are frequency functions;
(b) for small enough € # 0, the averaged Hamiltonian system (N, (o), (H.) = fom + e(F))
18 completely integrable and the Liouville 2-tori are connected components of the level
sets of two first integrals,
T2 (e)={fom +e(F)=ci; J°=c} (4.3.22)

C1,C2

which carry a quasiperiodic motion with frequencies wi + O(g) and ws + O(g).
Proof. By hypothesis of Proposition we have

e vector fields V and VJ((?) are independent on N and commute;

e the functions fom; and J? are functionally independent on N and give mutual

first integrals of V and VJ((?);

e the connected components of f om; and JO are compact.

Then, it is well-known (see, for example [6]) that {fom = ¢1; JO = 3} is a 2-
torus ’I[‘zl’c2 (0) carrying a quasiperiodic motion along the trajectories of V. It remains
to derive some information about the corresponding frequency functions. Remark
that the vector field W%V is projectable relative to w1 : M — S and descends to the

2

vector field %v s with 2m-periodic flow . Moreover, each torus Tz . (0) is invariant

with respect to the S'-action with infinitesimal generator VJ((? ). Tt follows from these
properties that for every m € T2 _ (0) there exists a a = a(m) # 0 such that

C1,C2

FI2T ., (m) = Fl‘;‘/((? (m).
wi Jo

C1,C2

If we take another point m’ € T2, ,(0) such that m’ = FI'; | (m), then Flﬁv(m’) =

Fliﬁy(m) = Fli’rv(m) and hence a(m) = a(m’). In other words , the function
wq w1 ~
m — a(m) is first integral of V. Then, we can define the vector field T in (4.3.21)

as
_ly_2y@

Tw o Y

Its flow is 27-periodic,

FIZT(m) = FIT 0 Fl%;v@) (m)

w1 27~ j0
= Fli’rV o Flff;()m) (m) =m.
w1 VJO
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Therefore, the second frequency of the quasiperiodic motion is defined as

(6%
W9 = —TW O .
2w

Notice that for € = 0, the connected components

T2 (0)={fom =c; JY = 9}

C1,C2

are just the quasiperiodic 2-tori of the unperturbed vector field V.

Remark 10 One can use Proposition 4.3.2 to apply the KAM arguments [6, 14] to
the nearly integrable Hamiltonian system (N, (o), H. o71:) to state the persistence

of quasiperiodic tori TZ, ., (¢). For more applications see also [18, 19]

Adiabatic Models. The adiabatic situation appears in the case when the leading
term in Hamiltonian (4.3.3) is zero, f = 0. The dynamics due to the adiabatic model

(0 =dp1 Ndqy + edpz Ndge, H. = eF(p1,q1,p2,4q2)) (4.3.23)

is described by the system

oF oOF
) = —€—, 1 =€e—, 4.3.24
b oq1 n Op1 ( )
o . _oF

, -4 4.3.25
0w 2= o ( )

which is known as a slow fast Hamiltonian system [62].

Remark 11 System (4.3.24), (4.3.25) can be also derive starting from a slow vary-
ing Hamiltonian
H = F(gﬁpla 6175@17]927 QQ)

on the standard phase space (R*, dPy AdQ1+dps Adqs). After the scaling p1 = Py,
g1 = €'7FQ1 we arrive at the adiabatic model

.1
(0' = —dp1 Adqy + dpz Ndga, He = F(p1, 41,02, Q2)>
whose dynamical system coincides with (4.3.23), (4.3.24).

The unperturbed vector field of (4.3.24), (4.3.25) is of the form V = VISQ) and
the corresponding dynamics is describes by the 1-dimensional Hamiltonian system
(R2,dpa A dga, Fp, 4,) for frozen value of the slow variables py, qi:

: a P1,91 . 8 P1,91
_OFp, ——pna 4.3.26

where F, 4 (p2,q2) = F(p1,q1,p2,92). In this case, the symmetry hypothesis is

. . . . 4 _ 2 2 .
formulated as follows: there exists an open domain N in R* =Ry xRS with
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compact closure which is invariant with respect to the flow of V and Flt/@) N —> N

F
is periodic with period function T" : N — R. This condition is reduced to the
verification of the compactness of the level sets {F},, ;, = const} in the slice Ny, 4, =

NnA{p1,q1} x Rg%% for every (p1,q1) € S1 = m1(N). Consider the S!-action on

N defined by the 2m-periodic flow of the vector field T = %V}(ﬂ?) . The circle first
integral in (4.3.12) is given by

T
JO = i dgs).
5 iy (p2daa)

Then, we have the relationship
T
doJ? = —d,F,
27
which says that the infinitesimal generator of the S'-action is just T = VJ(OQ). In
a open domain Ny C N where the S'-action is free, the circle first integral J°

is defined as the standard action [5, 42] of Hamiltonian system (4.3.26) with one
degree of freedom:

1 1
ngmn (p2,q2) = - Area(Dmm) = Gy j{ p2dqo

Tr1.91

Here, vp,.4.(t) = Flifﬁ) (p2,q2) and Dy, 4, is a domain in N,, 4, bounded by the

periodic trajectory Y, q;- It is clear that F is invariant with respect to the S'-action
and hence (F) = F. But, if dj o doF' # 0, then the S'-action is not Hamiltonian
relative to . Theorem 4.3.1 leads to the following normalization result.

Proposition 4.3.3 Under the symmetry hypothesis, for small enough €, a sym-
plectomorphism T, : N — R* between the original symplectic structure o and its
St-average (o) brings slow -fast Hamiltonian system (4.3.24), (4.3.25) to another
one which is approzimated mod 2 by the Hamiltonian system with S'-symmetry

(N, (o), H. = €F).

The S'-action associated to the infinitesimal generator %V}g) 1s Hamiltonian on
(N, (o)) with momentum map eJ°.

As we will show in Subsection 4.3 (Theorem 4.3.20), in the adiabatic case, the
symplectomorphism 7; can be viewed as a free coordinate normalization step in the
proof of the classical adiabatic theorem [6, 62] (the usual method uses action-angle
variables and generating functions).

4.3.3 The averaging procedure and the homotopy method

Here we give a proof of Theorem 4.3.1 in few steps which carry a general character
and are based on the averaging technique on symplectic fibered spaces [28, 47, 55],
the notion of weak coupling symplectic structures [56] and the Moser homotopy
method [38].
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Given 2-dimensional symplectic manifolds S; and S5, we start with a Hamil-
tonian system H. = f om + €F on the 4-dimensional symplectic manifold (M =
S1 x So,0 = M) + £6(?). Through this section we will assume that the symmetry
hypothesis holds and a circle first integral J : N — R of the unperturbed vector field
V is fixed. The corresponding S'-action on N is given by the infinitesimal generator
T = V(2) satisfying the relations iv(g)a( ) = —dyJ and i (2)0( ) = 0. By (p1,q1)
and (p2,q2) we will denote (local) Darboux coordinates on the symplectic surfaces
S1 and S5 , respectively.

The S'-Average of the Symplectic Form. Recall that the S!-average of the
e-dependent symplectic form o = ¢! 4+ 62 is defined by the formula

2w

1 *
(o) = 5 / (FY. ) ot

0

Since the exterior differential commutes with the averaging operator, the 2-form (o)
is closed but it is not necessarily nondegenerate for all € # 0.

Lemma 4.3.4 The S'-average (o) has the representation
(o) =0 —edf®, (4.3.27)

where the 1-form 0° = 09dp, + 0dq, is given by

2m
1 k
0= S(d]) = 5 / (6 =) (FL ) d1 (4.3.28)
0
and has zero S'-average,
(%) = 0. (4.3.29)

Here diJ = 8p1 L dp; + 8q1 Ldq,. Moreover, the S'-average of diJ is a closed 1-form
which has a representation on N:

(d1J) = 7l (4.3.30)
for a certain closed 1-form ¢ = ¢1dpy + cedq on w1 (N) C Si.

Proof. By Proposition 2.4.13, the closed 2- form o splits into a S'-invariant form
and an exact one,

o= (o) +d(i,»5(0)),
J
*
where S(o) = & 027r(t —m) (Fl;(2)> o. Taking into account that the exterior
J
differential d commutes with operator S and using the identity iv(z)a = —edyJ, we
J

get
i%@) (S(o)) = S(iv}z)d) = —e8(d2J) = —ed o §(J) +eS(d1J)
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and hence d(iVJ(z)S(a)) =ed(S8(d1J)). To prove (4.3.30), first, we remark that
0= <.cV}2)a<2>> = <d(iVJ<2)a<2>>> = —d({d1J)) (4.3.31)

and hence (dyJ) is closed on N. On the other hand, by properties (FI;}Q) Y¢dp1 = dpr
and (Fl';/@))*dql = dq, we have (d1J) = (2L)dp, + <g—q‘]1>dq1. It follows from here

g op1
and (4.3.31) that
oJ 0J

do(=—) =da(=—) =0 4.3.32
25} = dal 5o (4332
and hence (4.3.30) holds for ¢ = (%’J and ¢ = <g—q‘]1>. [

Now, let us associate to the 1-form 6° (4.3.28) the following A-dependent vector
fields

o 009 9 00 9

L opy ( )(3172 0q2  Ogo 3102) ( )
o 069 o 009 9

27 gy ( )(5102 0qa  Oqo 3p2) ( )

It is clear that , for every A, the set

o 0
YNV, —, 4.3.35
{ 1 2 apQ 8(]2} ( )
defines a basis of vector fields on IN. Consider also the dual basis of 1-forms
{dp1,dq1, T}, T3}, (4.3.36)
where o0 960
= d 11—\ Ld —24d 4.3.37
1 2+ ( )<8q2 101+aq2 Q1>, ( )
009 069
Iy :=d 1—X La —2dq ) . 4.3.38
bim it (0= (G + 2 ) (4339
Lemma 4.3.5 There exists 6 > 0 such that
ox=(1=N){o)+ Ao (4.3.39)

is a symplectic form on N for all € € (0,6) and X € [0,1].
Proof. By Lemma 4.3.4, the 2-form o) is represented as
oy =0 — (1= Ned.

It is clear that o) is closed for all values of A and . To study the nondegeneracy of the
2-form o, let us use bases (4.3.35) and (4.3.36). By a straightforward computation,
we obtain

9
Op2

=0, oLy =o,

O-/\(le)\7y2>\) =1- SA)H O-)\(YlAv )
q2
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0 0 g 0
oY, =—)=0, (¥, =—)=0, or(=—,=—)=c¢
)\( 2 8p2) )\( 2 an) )\(8]72 an)
where
00y 069 000 009 06" 003
Ay=1-N |2 -2 +0-N(2E2 - L2 4.3.40
r = ) Op1  Oq ( )(3]92 g2 0q2 Op2 ( )
It follows that the 2-form o) has the representation
ox = (1 —eAy)dps Adgqy + el AT (4.3.41)

and has the coefficient matrix of o) with respect to basis (4.3.36) is given by

0 —(1-gA) 0 0
1— ey 0 0 0
0 0 0 —¢
0 0 e 0

The determinant of this matrix equals €2(1 — eAy)%. Since N is compact, there
exists 0 > 0 such that 1 —eAy # 0 on N for all € € (0,6) and A € [0, 1]. [

A Normalization Transformation 7;. To construct a normalization map 7,
one can use a parameter-dependent version of the Moser homotopy method [30]. For
every ¢ € (0,0), consider the curve of symplectic forms oy (4.3.39) on N joining (o)
with 0. Introduce the following (e, A)-dependent family vector fields on N :

1
Z)\'

= m[—egyﬁ + 6973 (4.3.42)

For a fixed ¢, denote by ®* the flow of the time-dependent vector field e Z),

d
aqﬂ =7, (").

P = id.

Lemma 4.3.6 One can choose § > 0 in Lemma 4.3.5 such that the flow ® : N —
M is well-defined for all € € (—0,0) and X € [0,1]. Moreover, we have

(@M)*ox = (o), VYAe]0,1]. (4.3.43)

Proof. By Lemma 4.3.5, we can fix 6 > 0 so that o) is nondegenerate on N if
e € (0,0), that is, 1 — Ay # 0. Since the closure A is compact, shrinking § if it is
necessarily, we can arrange that the flow ®* of the time-dependent vector field 2
is defined on N for all € € (—4,0) and A € [0, 1]. Next, to verify (4.3.43), we have to

show that
0

a((qﬂ)*m) = 0. (4.3.44)

Because of the identity

0 . . 0
(@ 0)) = () (L, 00+ 5200),
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condition (4.3.44) is equivalent to the equation for Zy

€£Z/\U)\+ oy =0.

A

Taking into account that B%U)\ = edf° and the closeness of oy, we conclude that it
is sufficient to find a vector field Z) satisfying the relation

iz, on = —6°. (4.3.45)

Then, putting
0

0
ZA—cY + Y + ¢
141 219 3 8(]2

82+C4

and using representation (4.3.41), we get equality
iz,on = —ca(l —eA))dpr +c1(1 —eAy)dg — 5C4Fi\ + sc;;F%‘.

which says that a solution to (4.3.45) is just given by formula (4.3.42). [

Corollary 4.3.7 The time-1 flow of time-dependent vector field eZy (4.3.42)
1. = FlezA Ia=1 (4.3.46)

gives a symplectomorphism between the original symplectic structure o and its S'-
average (o).

The S!'-Invariant Plane Distribution H. For A = 0, the vector fields Y;* and
Y in (4.3.33), (4.3.34) can be represented as

0

Y0 = o+ V( ), (4.3.47)
0o_ 9 )
=gtV (4.3.48)

Lemma 4.3.8 The vector fields Y? and Yy and the function

0 0 0 990 0 990
A O om0 oon o ot s
Op1 Oq1  Op20qa  Og2 Opa

are S'-invariant, that is,
Y2 v = viP =0, (4.3.50)

and
EV(Q)AO =0. (4.3.51)
J
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Proof. 1t follows from representations (4.3.47) and (4.3.48) that

v =vE (4.3.52)

1
Yo, v®?) = Vc(ilo .. (4.3.53)

By definition (4.3.28) of the 1-form §° and properties of the operator S (see Chapter
2), we have
L0 =diJ —(diJ).
J

Taking the interior product of both sides of this equality with vector fields 8%1 and

%Jm% get
oJ oJ
= (—— = {—). 4.3.54
Lypd = (5 Lypd =(5) (4.3.54)

From here and property (4.3.32) we get the identities
dQ(LYIOJ) - d2(£y20<]) - O

which together with (4.3.52) and (4.3.53) prove (4.3.50). Property (4.3.51) follows
from (4.3.50) and the relation

1—elg = (0)(Y), )
which is consequence of (4.3.41). [

Let us associate to every vector field u = ula%l + uQ% on m(N) C S, the
following vector field on the total space N :

hor, = u'Y +u?Yy = i+ V4. (4.3.55)
By Lemma 4.3.8, hor,, is S'-invariant. Then, the (horizontal) plane distribution
H := {hor, | u € X(m (N))} (4.3.56)

is also invariant with respect to the S'-action.

Lemma 4.3.9 For any vector field u on w1 (N) and G € C*®(N), the S'-average of
the vector fields V((f) and 4 are given by the formulas

Vi =ve, (4.3.57)
(@) = hor, . (4.3.58)

Proof. To verify identity (4.3.57), let us consider the degenerate Poisson tensor on
M:
0 0

n® = = A=,
Op2  Oqo

(4.3.59)
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Then, in terms of II?), the definition (4.1.2), (4.1.3) of the vector field Véz) reads

V) = igenl®. (4.3.60)

This says that Vc(f) is a Hamiltonian vector field relative to II®) and hence the flow

of VG(Q) preserves 112, In particular, we conclude that II(?) is invariant with respect
to the S'-action,
L‘VJ@)H@) =0. (4.3.61)

Averaging both sides of (4.3.60) gives the identity <Vé2)> = id<G>H(2) which proves
(4.3.57). Next, by (4.3.55) we have the representation @ = hor, —Vi(2) Applying

a0°"
again the averaging operator to this equality and using the S'-invariance of hor,,,
property (4.3.29) and identity (4.3.57), we get

(1) = (hor,) — V7, = hor,.

We have also the follow useful technical result.

Lemma 4.3.10 For every S'-invariant function I on N the following identity holds
ia(di]) = Loy, Vu € X(S)), (4.3.62)
where hor(u) is defined by (4.3.55).
Proof. First, using the S'-invariance of dI and formula (4.3.58), we get
(iadl) = i(gydl = ihor(u)d = Lyor(u)! -

On other hand, the S'-invariance of hor(u) and the fact that (d;J) is horizontal
1-form imply

(igdl) = (igdiI) = <iﬁ+ve<§(>u>d1[) = iﬁ+V9(022u)<d1[> = ig(di1).
Comparing these identities, we show (4.3.62). [

For any 1-forms o and 8 on M denote by {a A (}2 the 2-form given by {a A
Br2(X,Y) ={a(X),8(Y)}2 — {a(Y),8(X)}2.

Lemma 4.3.11 The S'-invariant distribution H (4.3.56) is involutive if the 1-form
0° satisfies the equation

1
d6° + 5{90 N6°}e = 0. (4.3.63)
Proof. Consider the 2-form

1
Ci= 16 + S{6° N 6} (4.3.64)
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It is clear that C annihilates the vector fields 86 and 88 and hence condition (4.3.63)

reads C (a—pl, qu) = 0. On other hand, we have the equality
d 2) O 2

YO’YO — V(o),i—i_v(o) V( ) ,

Y] op % o Capr3er)

which says that conditions (4.3.63) implies the involutivity of H, [V, Y] =0. m
By direct verification one can show that there is the representation C = Ago? and
hence condition (4.3.63) is equivalent to the following

Ag = 0. (4.3.65)

Remark 12 According to [{7] the S'-invariant splitting TN = H @ TSy gives the
Hannay-Berry connection on a trivial symplectic bundle mp : S1 X So — S1 equipped
with S*-action. The horizontal distribution H can be derived by applying the gen-
eral averaging procedure [47] to the trivial connection associated to the canonical
distribution T'S1 @ {0}. The curvature of the Hannay-Berry connection is just the
vector valued 2-form VéZ). Therefore, condition (4.3.63) (respectively (4.3.65)) im-
plies vanishing of the curvature and can be called the zero curvature equation. If
(4.3.63) holds, then the distribution is integrable in the sense of Frobenius.

The e-expansion of the Hamiltonian H. o 7.. To end the proof of Theorem
4.3.1 it remains to find the e-expansion of the transformed Hamiltonian H. o7,
where the near identity transformation 7; is given by 7. = Flg‘zA ! y—p- Remark that
the vector field Zy in (4.3.42) has the following expansion at ¢ = 0:

Zx(e) = X = NV 4+ eA\(X = \Y) + O(£?), (4.3.66)
where
2 2
X =09y + 00y, Y= —egve(?) + eova(o ), (4.3.67)
Ay = (1= X)A¢+ A\ —1){67,65}5. (4.3.68)

Lemma 4.3.12 Under the near identity mapping 7z, original perturbed system (4.3.2),
(4.3.3) is transformed to a system which is Hamiltonian relative to the symplectic
structure (o) and the Hamiltonian

2
H.oT. = fom +e(F) + %K+O(a3), (4.3.69)

where the second order term and its S*-average is given by the formulas

K = %EX(F—F 2(F)) — ; i 00+ <Ao - ;{09,93}2> ((F)— F), (4.3.70)

2F+(F)

(K) =~y )= ({60, 09ha((F) — F). (1371)

2F4(F)
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Proof. Let H = Hy + ¢H;. Using (4.3.66) and the identity
>\ /
HoFl}, =H+ / (Lz, H) o F12y ,dN,
0

by direct computation we derive the following representation

1
(H() + €H1> oT. = Hp+e <H1 + 2£2)(_yH0> (4372)
g2 9 1
+ 5 (L% — g(ﬁyoﬁx+£xoﬁy)

1
+Z£§) +ci1ly + CQﬁy)(HQ) + ﬁzx_yH1>

+ 0(e%),
where .
1
c1 = 2/ And\ = Ay — g{e‘f, 09}, (4.3.73)
0

1
o = —2/ AAyd. (4.3.74)

0

Putting Hy = f om and H; = F, que get that £yHy = 0 and the first order term
in the decomposition (4.3.72) takes the form

[:XHO + H1 = —i@feo + F (4375)
By (4.3.57), (4.3.58), the S'-average of V = + V}@ is given by the formula

5 (2)
(V) —vf—i—VF

(P is, 0 (4.3.76)

On the other hand , we know that (V) = V. Then, this property together with(
4.3.76) implies the relation

F)+1i,,0°=F+com, 4.3.77
f

for a certain ¢ € C*°(w(N)). TOhe averaging of both sides of this equality gives
com = —ig, (6°) = 0 and hence

(F)=F — i, 0°. (4.3.78)
Next, the second order term in (4.3.72) is given by the expression
1
(Lx — §,Cy)£x(Ho) +caLxy(Hy) + Loxy—y(Hy),

which together with (4.3.73), (4.3.75) and (4.3.78 leads to (4.3.70). Finally, averag-
ing (4.3.70) and using the equalities (Ag) = A and (X') = 0, we prove (4.3.71). =
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Remark 13 It follows from (4.3.72) that the near identity transformation Tc can
be also represented as the time e-flow of a time-dependent vector field Z) with Zo =

— 3V

Hamiltonian S'-Spaces. It follows from (4.3.27), (4.3.28) that the s-dependent
Poisson tensor associated to the S'-invariant symplectic form (o) = o —edf" is given
by the formula (see, also [49])

1 19 d
= YOANYD + 22 A — 4.3.
176AO],A 2 + @n/\aw (4.3.79)

This is just straightforward computation. It is clear that II is well defined in the
invariant domain {1 —eAqg # 0, € # 0} in M. Moreover, II is S'-invariant,

£V(2)H =0. (4.3.80)
J

This fact follows directly from (4.3.50), (4.3.51) and (4.3.61). The Hamiltonian
vector field X relative to II and a function G is defined by the relation Xq = izl
and represented as

1
XcziizﬁgaﬁﬁGn?_ﬁﬁGnT> Lye (4.3.81)

In particular, the Hamiltonian vector field of the approximate model is of the form

1 0 2, €@
Xfom+e<F)+§K 1—cAg hor,, +V<F>+§VK (4.3.82)
3
Sy (o ((F) + SRYS = (Lyg ((F) + S K))YY)

1
:V+e(;é”+&mmw+wwumxﬂ—w@wwwv+0@%

The following result says under which conditions the canonical S'-action is
Hamiltonian on (N, (o})).

Proposition 4.3.13 The S'-action associated to the infinitesimal generator ¥ =

VJ(Q) is Hamiltonian relative the symplectic form (o) if and only if the cohomology
class of the 1-form < in (4.3.30) is trivial, that is,

(d1J) =d(gom) (4.3.83)

for a certain g € C*°(m1(N)). Under this condition , the corresponding momentum
map is e(J — gomy),
i@ (0) =—ed(J —gom)
J
Proof. Tt follows from representation (4.3.81) that the infinitesimal generator VJ(Q)
of the S'-action is Hamiltonian relative to IT (also, relative to (o)) and a function
G, Vj(z) = X¢ if and only if
@ _ 1@
Vo'l =€V,
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and G is a first integral of the vector fields Y and Y7, LyoG = LyoG = 0. These
conditions are equivalent to the following: G = e¢(J — g o 1) for a certain g €
C*®(m1(N)) and

dg dg
Lyod = —,Lyo] = —. 4.3.84
T ap T T dg ( )
By (4.3.54) we have the relations LyoJ = <%>,£Y20J = <g—q‘]1> which together with
(4.3.84) lead to (4.3.83). [

Corollary 4.3.14 If the domain w1 (N) is simply connected, then the S'-action is
Hamiltonian on (N, (0)).

Lemma 4.3.15 If condition (4.3.83) holds for a certain g € C*°(m1(N)), then the
function J — g o is a mutual first integral of the vector fields Y°, Y3 and the
Hamiltonian system (N, (o), (H:) = fom +&(F)). Moreover,

Ly,9=0.
Proof. The fact that J = J—gom is a first integral of Y, YY) is a direct consequence
of (4.3.83). The S'-invariance of (H.) and condition (4.3.83) mean that Lo (He) =
J
0 and V}Q) = eX;. It follows that

1

Lx ) =—Lx,(H)=—-L

; 8 V§2)<Hg> =0. (4.3.85)

By (4.3.82) we have X = V + O(¢). From here and (4.3.85) we deduce that
Evj =0. |
In the following special case, condition (4.3.83) is always satisfied.

Lemma 4.3.16 Consider the S'-action associated to the infinitesimal generator
T= VJ(2) and suppose that the presymplectic 2-form @ is exact on N,

o® =dp (4.3.86)

for a certain 1-form n € QY(N). Then, the function

JO =iy (n) (4.3.87)

satisfies the relations
ivo = —dyJ°, (4.3.88)
(dyJ%) = 0. (4.3.89)

Proof. Since the 1-form (n) is S'-invariant, we have L'V(z) (n) = 0 and hence
J

diy, ) (1) = —1y @ (dn).
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In terms of the presymplectic 2-form o(?), this equality is rewritten as follows

i (0®) = -dJ’. (4.3.90)
J

On the other hand, averaging the identity iv(z)a(2) = —doJ gives
J

iy (0®)) = —(dyJ) (4.3.91)

. Taking into account the identity (d2J) = diJ —(d1J) +d2J and equations (4.3.90),
(4.3.91), we deduce the relationship between J and J°:

dyJ — {diJ) + doJ = dyJ° + doyJ°. (4.3.92)

It follows that da(J — J°) = 0 and hence there exists a function g € C°°(71(N))
such that

J—J'=gom. (4.3.93)
This implies (4.3.88). Moreover, it follows form (4.3.92) that d1J° = d1.J — (d1J).
So, equality (4.3.89) holds. [

Corollary 4.3.17 In the exact case (4.3.86), condition (4.3.83) holds for a function
g given by (4.3.93). Thus, T = VJ((%) and the S'-action is Hamiltonian relative to

(o).

To complete the proof of Theorem 4.3.1 it remains to apply Lemma 4.3.16 to the
case when So = R? and 0(® = d(padgp).

Remark 14 Hypothesis (4.3.18), called the adiabatic condition was introduced in
[47, 55], in the context of the theory of Hannay-Berry connections on symplectic and
Poisson fiber bundles.

4.3.4 The geometric structure of normal forms

Resuming the above results, we will formulate a free coordinate version of Theorem
4.3.1 and clarify the geometric meaning of the corresponding normal forms. Let
(S1,01) and (S2, 02) be two 2-dimensional symplectic surfaces. Consider a perturbed
Hamiltonian system with two degrees of freedom

(M =8; x8,0=cb +e0® H.=fom +eF), (4.3.94)

for some f € C*(S1) and F € C*°(M). Assume that on an open domain N C
M, the unperturbed vector field V admits a circle first integral J : N — R and

consider the S'-action with infinitesimal generator T = VJ(Q). By Lemma 4.3.4, the
cohomology class of the closed 1 form ¢ on 71 (N) C S; given by

(d1J) = 7l (4.3.95)

is an intrinsic characteristic of the S'-action.
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By Lemma 4.3.8, the 1-form §° = S(d;J) induces the horizontal distribution
H = {hor, | u € X(71(N))} which is invariant with respect to the S'-action. Here
hor, = o + Vi(fgo. Consider a smooth global function Ag on N which is defined
as the density of the horizontal 2-form C = d16° + 3{6° A 6°}> with respect to the
pre-symplectic 2-form o) = mjo1, C = AgoM. The coordinate representation of
Ay is just given by (4.3.49). Let II; € x?(S1) be the nondegenerate Poisson tensor
associated to the symplectic structure oy on Sj. Denote by hor(Il;) the horizontal
lift of IT; to N via the connection H, that is, a unique bivector field on N which is
tangent to ‘H and such that

hor(Iy) (7ydf, 7{dg) = 11 (df,dg) o m1 = o1(vf,vg)
for all f,g € C*(Sy). It is clear that hor(Il;) is S'-invariant and locally,
hor(IT;) = Y A Y,

where the vector fields Y{? and Yy are given by (4.3.47), (4.3.48). Moreover, it is
easy to see that the global representation of the function K in (4.3.70) is

K= %L‘X(F + 2(F)) — %i 6° + <A0 — é{eo A 00}2> (F) — F), (4.3.96)

where
X = igohOI“(Hl ) .

Theorem 4.3.18 Suppose that the closure of the domain N is compact. Then,
(a) for small enough & # 0, the near identity mapping 7. (4.3.46) brings the original
perturbed model to a Hamiltonian system of the form

2
(N, (0) =0 —ed® H.oT. = fom +e(F) + %K + 0(53)) : (4.3.97)

where the Hamiltonian vector field Xg_o7. = 1. Vh. of H.o7. relative to the averaged
form (o) has the representation

Xu.or. = V4 eW 4 0(e?), (4.3.98)
where e
V = hory, +Vi, (4.3.99)
and )
W = Ag hory, +igmhor(Il;) + iv}ﬁ’. (4.3.100)

(b) Moreover, if the cohomology class of the 1-form ¢ in (4.3.30) is trivial,

then the S'-action associated to the infinitesimal generator V}Q) is Hamiltonian on
(N, (o)) with momentum map £J°, where

J'=J—gom (4.3.101)
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for a certain g € C*®(m(N)) satisfying (4.3.83). In this case, perturbed system
(4.3.97) is 2-close to the Hamiltonian system with S*-symmetry

(N, (o), (He) = fom +&(F) ) (4.3.102)

and the function JY is a first integral of this system and the averaged perturbation
vector field W in (4.3.98),

L0 JO = 0. (4.3.103)

(W)
Proof. The proof of the first part of the theorem is a direct consequence of the results
of the previous subsection. Representation (4.3.99) follows from equality (4.3.78).

By Lemma 4.3.12, we have (VI((Z)> =V

(K)* Then by averaging the both sides of the
equality

_ 1
W = Ao hory, +Ham VY A Y + Vi,

we get the formula for the S'-average of the perturbation vector field

. 1 (2
(W) = Ag hor,, +igm Y A YY) + §V<(K)>

which together with properties £y0J = 0 (see Lemma 4.3.15) and the identity
L, J = —Lye) o (k)—o implies (4.3.103). n

(K)

We observe that condition (4.3.18) holds in each of the following cases:
e the “slow” symplectic manifold S; is simply connected;
or

e the symplectic form on “fast” symplectic manifold Ss is exact.

In the last case,
o =dn, n=min° (4.3.104)

for a certain 1-form 7° on mo(N) C Ss. Then, according to Lemma 4.3.16, the
function J° in (4.3.101) can be defined as

T =1 (). (4.3.105)
J

Consider the splitting TM = H @ T'So, where H is the S'-invariant horizon-
tal distribution. Then according to this splitting the perturbation vector field W
(4.3.100) has the decomposition

W=Wg + Wy
into the horizontal and vertical parts given by

Wy = Aghor,, + id<F>hor(H1),

1
Wy = SV,
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It follows that Wy is S'-invariant and
- 1
(Wy) = §V<(;2<)>

Therefore, the near identity transformation 7; (4.3.46), brings the Hamiltonian vec-
tor field V. into an Sl-invariant normal form of first order only in the horizontal
direction. Remark that the horizontal lift hor(Il;) coincides with the horizontal part
of (IIM) and is not a Poisson tensor, in general. For example, hor(Il;) is a Poisson
tensor if Ag = 0 and hence H is integrable. Then, the horizontal normal form Wy
is a Hamiltonian vector field relative to the Poisson tensor hor(II;) and the function

The next question is to remove the non-invariant vertical component by making
an additional near identity transformation.

Corollary 4.3.19 Suppose that there exist functions G € C*°(N) and c € C®°(m1(N))
satisfying the homological equation

LyG = %(K —(K))+com. (4.3.106)

Then, for small enough € # 0, the near identity transformation

T.=T.0 FI°, 2 (4.3.107)

brings the Hamiltonian vector field Vi_ on (M, o) into S*-invariant normal form of
first order:

TV, =V +e(Wy + %Vf?») +0(e?). (4.3.108)

Proof. The statement follows from Theorem 4.3.18, the representation
* B 9 _ 1. (o
<F1€V(2>> (VW) = V4 (= [V, VP + War + SV + 0()
K

and the identity [V, V"] = V7. .

The Adiabatic Invariants. On the phase space (M = S} x So,0 = M) 4 e6®?),
we consider a slow-fast Hamiltonian model

E=evi) (ce sy, (4.3.109)

i =V (xS, (4.3.110)

for a certain ' € C*°(M). Assume that the regular set Reg(VP(?)) is dense in M
and the flow of VF(2) is periodic with frequency function w : M — R. Consider the
Sl-action with infinitesimal generator YT = %Vﬁ). It is clear that the restriction of

Vﬁ) to each slice {m;} x So gives a Hamiltonian system with periodic flow. Then,
applying to this system the period-energy relation argument (see, Proposition 2.5.1),
we get the identity

dow ANdoF' =0
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which says that the 1-form %dgF is do-closed on M. Given an S'-invariant open
domain N C M with compact closure, we assume that

1
—doF is dy-exact on N. (4.3.111)
w

This implies that %dQF = doJ for a certain smooth function J : N — R and hence

Ly _y® o . (4.3.112)

It follows that J is a circle first integral of the unperturbed vector field V}Q) and
hence the initial hypotheses of Theorem 4.3.1 hold.

Theorem 4.3.20 Under above assumptions, the following assertions are true:
(a) for small enough e, the near identity transformation

T.=T.oFl o :N—M,

2VS(K)
brings the vector field of slow-fast system (4.3.109), (4.3.110) to S*-invariant normal
form of first order
S (2 1 2 . 1@
T (VP +evi) = v 4 e(igphor(IT,) + 5v<<K>D>) +0(2). (4.3.113)

where

_ 0
Ko = lvls})g .

(b) If there exists a smooth function J° € C*°(N) such that
o 1
doJ" = adgF, (4.3.114)

(d,J°) =0, (4.3.115)

then J° is a first integral of the second term in the normal form (4.3.113). In the
case when the S'-action is free on N, the function Jy is an adiabatic invariant of
system of system (4.3.109), (4.3.110).

Proof. 1t is clear that (F') = F'. By Theorem 4.3.1, in the adiabatic case f = 0, the
slow-fast Hamiltonian model

(M = Sl X SQ,O' = 0'(1) +€U(2),HE = €F)
is transformed under mapping 7. (4.3.46) into the Hamiltonian system

2
<N, (o),H.0T. =eF + ZK+O(€3)> ,

where
K =LxF —i,00° = LxF + Ko.
F
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The corresponding Hamiltonian vector field is of the form
XH.oT. = V}Q)—FEW + 0(52). (4.3.116)

Since the flow of V = Vg) is periodic, homological equation (4.3.106) has a solution

of the form G = %S (K) and ¢ = 0. Moreover, the property (X) = 0 implies that

(K) = —(i,(g0) = (Ko), Therefore, this proves item (a). As a consequence, we get
F

the representation

, 1
(W) = 1thor(H1)+§V<(I2<2)>

1o

= (LyoF)YS — (Lyo )Y + 5V<(K)0>.

To prove the item (b), we recall that condition (4.3.115) is equivalent to the following
LyoJ® =Ly’ =0. (4.3.117)

Finally, using these properties and condition (4.3.114), we compute

_ 1
LWy = (LyoF)LyoJ? — (LyoF)LyoJ® + =L (o J°
1 2 2 1 2 V<K0>
= V(K =0

In the case when the S'-action is free, the fact that JO is an adiabatic invariant
follows from Proposition 3.2.22. ]

Combining Theorem 4.3.20 and Theorem 4.2.2 leads to the following criterion.

Corollary 4.3.21 The vector field i;*(vﬁ) +€Vp£1)) is in normal form of first order
relative to V}(}) if and only if

hOI‘(Hﬂ(dF, dw) + %({Ko,w}2> =0.

By Theorem 4.3.20, the existence of a function J" with properties (4.3.115), (4.3.114)
is provided by conditions (4.3.111) which is automatically satisfied in the exact case.

Proposition 4.3.22 Suppose that the flow of Vb@ is periodic with frequency func-
tion w : M — R and the exactness condition (4.3.104) holds. Then, the function

1, .
JO = —ipem), n= min° (4.3.118)

satisfies the conditions (4.3.115), (4.3.114).
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Proof. Using the invariance of w and dF with respect to the S!-action with infinites-
imal generator Y = %VP@ and that J° = iy (n), we obtain
dpJ° = da(ix (n)) = doix(n) — d1.J°,
= L (n) — i (dn) —d1J°,
1
——@ﬂﬁb—duﬂzauﬂw—ddﬂ
1 1
= —dF — —(d\F) — d,J°.
w w
From here we get the identity
1 1 1
doJ? — —dyF = —d\F — —(d, F) — dJ°
w w w
which splits into the two relations

1
doJ? = =dyF,
w

1 1
dyJ' = —diF — —(d, F).
w w
This proves (4.3.115), (4.3.114). [

Therefore, Proposition 4.3.22 gives us a free action-angle coordinate version of
the classical adiabatic theorem [7, 38, 62].

4.3.5 Generalizations

The above results remain true in the general case when we start with a phase space
(M = S1 x S, 0 = o 4+ 80'(2)), where S7 and S5 are symplectic manifolds of
arbitrary dimensions. Below we give some computational formulas for the main
objects which appear in the formulations of Theorem 4.3.1. Let (¢, z) = (¢, 2%) be a
(local) coordinate system on M adapted to the symplectic factors, & = (¢) € Sy and
x € (x%) € Sa. Then, the presymplectic forms oM and ¢@ have the representations

1 . .
o) = Soi) (€)de' A dg,

2 _ 1 ()( )dz® A daP.

o = 1o

Recall that the summation over repeated indices is understood. Suppose we are
given an S'-action on M with an infinitesimal generator
ap 0J 0
0P Dz
for certain smooth function J = J(&,z) on M. Here [c(®]*? denote the elements of

the inverse of the matrix (agﬁ)) Introduce a 1-form 0% = 69(¢, x)d¢" on M whose
coeflicients are given by

vy =1o®)

oJ
- Flt *
/ )
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and (69) = 0. Let us associate to §° the following 2-form

F = %J%(f,x)dé ndg = mio™ —e(di + %{90 N6%}2),

0 960 0 9
Fi e GZ(;)Jrg(@@z _ 99 Ha(g)}a[;%z]),

o&  og dz OxP
and (local) 1-forms
009 .
a _ a 1218 YYi i
I =dz® — [0'] 920 de'.

A multidimensional version of Lemma 4.3.4 and Lemma 4.3.8 is formulated as fo-
llows.

Proposition 4.3.23 The S'-average (o) of the symplectic form o with respect to
the S'-action Fl:/(z) has the representations
J

1
(0) =0 —edf® = f+§a§j;ra AT? (4.3.119)

and is nondegenerate if and only if det(F;j) # 0. The both terms in the last decom-
position in (4.3.119) are S'-invariant. Moreover, there is an SYinvariant splitting

TM =H @ TS5, (4.3.120)

where the horizontal distribution H is generated by the vector fields

9 980 9
yo — Qes i “
P =g Tl g e

The S'-action is Hamiltonian relative to (o) if and only if (d1J) = 0 or, equivalently
Lyo] =0, (4.3.121)
fori=1,2,... dimS;.

The proof of this statement is based on the same arguments as in subsection 4.3.3
(see also [17]).

Remark that the last representation in (4.3.119) says that the averaged form (o)
is a weak coupling symplectic form which has the following geometrical interpretation
[30, 73]. The S!'-invariant splitting (4.3.120) gives the Hannay-Berry connection
[55] in the trivial symplectic bundle m : M — S} associated with the horizontal
subbundle ‘H and the connection form I' = T'* ® %. The horizontal 2-form F
controls the curvature of I' and coincides at ¢ = 0 with the pull-back 7jo1 of the
symplectic form on the base Sj. For example, in the 2-dimensional case, F =
(1 —eAg)mio1 (where Ag is given by 4.3.49 ) and the zero curvature condition reads
Ap = 0. The second term of the last representation in (4.3.119) is a 2-form on M
which vanishes along the horizontal distribution H and coincides with oy on the
fiber of 7. Therefore, the weak coupling symplectic form is the result of coupling
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of the base of symplectic form o; with the fiberwise symplectic symplectic form oo
via the Hannay-Berry connection I

As well as in Theorem 4.3.1, the averaging principle says that in the multidi-
mensional case, a good approximation to the original perturbed system is the model
((o), (H.)) which becomes a Hamiltonian system with S'-symmetry if condition
(4.3.121) holds.

4.4 The Quadratic Case

Here we apply the general results to a special type of perturbed Hamiltonian system
(M =81 xS2,0= oW 4ec@ H, = fom +¢eF) where the fast factor Ss is a vector
space and the perturbation term F' is a quadratic function in the fast variables.
As we have showed in Section 2, such perturbed models appear in the study of
Hamiltonian dynamics near invariant symplectic submanifolds (see, also [39, 74]).
In this context, the unperturbed dynamics is defined by the first variation system
over an invariant submanifold.

4.4.1 Perturbative setting for linearized dynamics

Let R" = {x = (z!,...,2")} be the Euclidean space and S; a smooth manifold.
Consider the product manifold M = S; x R", identifying S; with submanifold in
M by means of the slice S7 x {0}. Suppose we are given a vector field X on M for
which S is an invariant submanifold. Then, we have

. o 0
X = ZXl(f,a;)agi + Zxa(g,x)% (4.4.1)

with
X£0)=0(a=1,..,r). (4.4.2)

Here, ¢ = (£%) is a coordinate system on S;. The restriction of X to S; is a vector

field given by
i 0
V=X [s= Y vE) 55

v'(€) = X'(€,0).

For every € € R, € # 0, consider the scaling map p. : M — M, p.(&,z) = (§,ex). It
is clear that p. is a diffeomorphism if ¢ # 0.

Proposition 4.4.1 The pull-back A = p:X is an e-dependent vector field on M
with Taylor expansion at € =0

A, = varg(X) +eA; + O(e?), (4.4.3)

where

W e i @ N OXOED) D
varg, (X) —il_I%pEX—zi:v(&) ,+Z EIC Ry

Q,
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Aq = lim 1(,O*X — varg, (X))
aX (6.0) 50 92X ( oy
_Z R T Z amﬁaxv iyt

Proof. In local coordinates, vector field A, takes the form

A& x)=piX = ZXZ £ ex) +Z Xa (& e2) 5 8 . (4.4.4)

gt

Since the vector field A, is not defined at € = 0, the terms of the Taylor expansion
of A, are given by

Ay = varg,(X) = L Jim an
e—0
1
A1 déf lim — (p:X — Ao) .
e—=0¢

From (4.4.4), we get

) 0 0X*(&,0 0
varg, (X) = Zvl(g)@+z 81('2 )xﬁaxa'

a7/8

1
Next, we compute the vector field — (p:X — Ap) in local coordinates,
€

X A = (X en) ) g

1 1 X%(&,0) B 0
— X - = .
+Za: ) (575517) c Zﬂ: 81:5 Or
Taking limit as € — 0, we obtain

DX(€,0) D2X(,0) 5 . 9
Z T 028 agz Z 928027 ‘e dzo

777

Vector field Ay = varg(X) , called the linearized (or first variation) vector field of
A, at S, presents the unperturbed dynamics of (4.4.3). The small parameter ¢ char-
acterized the “radius” of a neighborhood of the invariant submanifold S where we
study the original dynamics of X. We have the following properties: the linearized
vector field is invariant with respect to scaling, pf varg(X) = varg(X). And the Lie
derivative along varg(X) preserves the space of smooth functions on M = S x R"
which are linear in x € R".

Consider the following particular case. According to the canonical splitting
TM = TS5 & R" the vector field X has the decomposition onto “tangent” and
“normal ” components relative to S: X = X(1) 4+ X@ In coordinates, the vector



4.4 The Quadratic Case 113

fields X and X@ correspond to the first and second terms in (4.4.1), respectively.
Assume that

p XM = xM) (4.4.5)
P XP = AX® wreR. (4.4.6)
Then, one can define the unperturbed vector field as follows
A, = pf/gX.

In this case, we have
A, =varg(X) +eA; + O(e?)

where

PX(E,0) 5 PXUED) 5, o O
Z T 02807 ag@ Z axﬂaxvaxo T e

Finally, let us consider the Hamiltonian case. Suppose that (S1,0) is a symplectic
manifold with symplectic form

o™ = 23" 0P ()de! A de?
(2]

1 2m)

and the Euclidian space R*™ = {x = (z!,...,2?™)} is equipped with canonical

0 -1
I 0 ) Assume that

on the phase space M = S; x R?™ with symplectic structure

symplectic structure ¢t = % < Jdxz N dx >, where J = <

1
o=ob 4+ 3 < Jdz A dx > (4.4.7)

we are given a Hamiltonian vector field Xy whose Hamiltonian H = H (¢, =) satisfies
the condition
oH

This means that condition (4.4.2) holds and hence the symplectic submanifold S ~
S x {0} is invariant with respect to the flow of Xp. The restriction of Xz to this
submanifold is the Hamiltonian vector field vs on (Si,o!), that is, i, jw = —dif,
where f(§) := H(&,0). In addition, assuming that p* | H = H, we get that Xy
satisfies conditions (4.4.5),(4.4.6). Therefore, applying the scaling map by the factor
Ve to symplectic form (4.4.7) and the Hamiltonian vector field Xp gives

UE:p*\/gazal+§<de/\dx>,

A, = p"\‘/gXH =varg(Xpg) + A + O(e).

Here, the unperturbed and perturbation vector fields have the form varg(Xpy) =
vf+ V]£[21)a and Ay = Vf(lll) + VI?), respectively and

Z 03;0‘61:5 Ja"a’

For small € # 0, A, represents a perturbed Hamiltonian system on (M, o) .
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4.4.2 Circle first integrals from Lax’s equation

Suppose that we start with a slow-fast phase space (M = S; x Sz, 0 = o) —|—€0(2)),
where S; is an arbitrary symplectic manifold and the Sy = R? = {x = (p2, q2)} is
the plane equipped with canonical symplectic form. Then,

1 ) .
n_ 1 (@ i
o) = oy (§)de’ N dg,

1
c® =dpy ANdgy = d(iJX -dx).

On this phase space, let us consider a perturbed Hamiltonian system of the form

Ho= (@) + = (1(6) - 33VOx ) (148)

where fo, fi € C(S1) and V : S1 — sp(1;R) is a smooth matrix-valued function.

0 -1
Here J = < 1 0
F'is a quadratic function in the fast variables po, g2. The corresponding unperturbed
vector field is

. Therefore, we deal with the case when the perturbation term

. d
V =195+ Vx- " (4.4.9)

Lemma 4.4.2 Suppose there exists a smooth vector function A : S; — sp(1;R)
satisfying the Lax type equation on S :

Lo, A+[A,V]=0, (4.4.10)
and the condition
det A =1. (4.4.11)
Then,
(a) the function
J(€,x) = —%JA(f)x x (4.4.12)

is a circle first integral of the unperturbed vector field V satisfying the adiabatic
condition (4.3.115).

(b) the approzimate Hamiltonian system with S*-symmetry (M, (o), (H.)) is given
by
_ (1) g 1
(o) =0 + id Jx-(dx — i(AdlA)x , (4.4.13)

(He) = foom +¢ <f1 om — iJ(V ~A"'VA)x- x) : (4.4.14)

Proof. Consider the function J = —%JA(S)X - x. First, by direct computation we
verify that the equality LyJ = 0 is just equivalent to the Lax equation (4.4.10) for
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A. Under condition (4.4.11), the flow of VJ(2) = Ax - 8% is 2m-periodic, because of
the representation

Fl:/@) (&,x) = exp(tA(&))x = (cost)x+sintA(£)x.

Now, let us justify formulas (4.4.13), (4.4.14). It is clear that the presymplectic form
0@ is exact, 0(®) = dn, where a primitive can be chosen as follows 1 = %JX -dx.
Then, we have the following property of n: the pull-back of 1 by a diffeomorphism
® : M — M of the form ®(&,x) = (&, ®(£)x), for a certain smooth matrix valued
function ® : S; — Sp(1;R), is given by the formula:

1
d'n=n+ 5J><-(<r1d1<§)x. (4.4.15)

Taking ® = costI+sintA, we have @1 = costI—sintA, d;® = sintd; A and by
(4.4.14) we compute

int
(Fli/@))*n =1+ —Slg Jx:(costI—sintA)(d;A)x.
Jo

This leads to the following formula for the S'-average of n:
1
(n) =n— ;3% AldiA)x. (4.4.16)

Then, representation (4.4.13) follows from the identity (o) = ¢(!) +d(n) and expres-
sion (4.4.16). Moreover, we observe that

1
iVJ(z) <77> = iV}Q)/f] = —§JA(§)X -x =J.

Hence J = J° and by Lemma 4.3.16, J° satisfies the adiabatic condition (4.3.115).
Finally, we compute the S'-average of I

(F)(&,x) = fi(§) — i /07r JV(costx+sintAx) - (cos tx+ sin tAx)dt

= f1(&) — %J(V - A 'VA)x - x.

|
By direct computation, we get that the 1-form 6" in (4.4.13) is just given by the
formula

1
0 = =X J(AdA)x.
Then, one can show that Cpo = d16° + %{00 A0°}2 = 0 and hence the zero curvature

condition holds. The corresponding horizontal distribution H is integrable.

Remark 15 If A~: S1 — sp(1;R) is a solution of Lax equation (4.4.10) satisfying
the condition det A > 0, then det A is a first integral of vy,, Evfo(det A) =0, and

1
the matriz valued function A = [det A} A is again a solution of (4.4.10) with
property (4.4.11).
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Now, let us consider the adiabatic situation fy = 0. The corresponding slow-fast
Hamiltonian system is of the form

=< (ujt0) - 3l OIS e ). (1.417)

x = V(O)x.

Assuming that det V(§) # 0 V¢ € S1, we get that the matrix valued function
A = [det V]_% V satisfies conditions (4.4.10), (4.4.11). In this case, formula (4.4.12)
reads
—%JV(f)X X

2[det V(£)]?

and by Theorem 4.3.20 J° is an adiabatic invariant of system (4.4.17) in the domain
where the S'-action is free.
In the particular case, when

Ho—c (p? + 13 w2(q1)q§>

J(&x) =

2 * 2

formula (4.4.12) gives the classical formula [7] for the adiabatic invariant

Jo _ Pi+w(a)es
2w(q1)

4.4.3 Circle first integrals from strong stability

On the 4-dimensional slow-fast space (R* o = dp; A dqy + edps A dgo), we consider
again a Hamiltonian system whose perturbation term F' is a quadratic form in the
fast variables po, ga:

5
H. = f(p1,q1) + §(F11p% + 2F 12p2g2 + F 2243), (4.4.18)

where F;; = F;j(p1,q1) are some smooth functions on R2. The corresponding un-
perturbed vector field is written as

of 9 of 9 0 0

V=co—a- — o+ (Fup2 + F12¢2) 5 — — (Fi2p2 + F22q2) 57— (4.4.19

Op10q1  Oq1 Op ( )3612 ( )3132 ( )
We assume that the Hamiltonian system (R?, dp; Adqy, f) with one degree of freedom
admits an invariant open domain S; C R? such that the flow ¢! : S — S; of vy is
periodic with period function 7 : S — R. Moreover, we suppose that the trajectory
of vy through each point (p1,q1) € Si is 7(p1,¢1)-minimally periodic. Therefore,
according to general definition (4.2.1), the monodromy of V at a point (p1,q1) € Si
is a linear symplectomorphism g, 4, : R? — R? given by

Ipr.r = Gprai (1) ’tZT(pl,ql) . (4.4.20)

Here, Gy, 4, () € Sp(1;R) is the fundamental solution of the linear periodic system:
d

Gpl,(h = V(Sat(pl? Q1))Gp1,q1, (4421)

dt
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Gp,.(0) =L, (4.4.22)

where

—F12(p1,q1) —F22(p1,q1)
A% = € sp(1; R). 4.4.23
(p17QI) F11(p1,g1) F12(p1,q1) p( ) ) ( )
Remark that the trace of the monodromy map g,, 4, is constant along the trajectories
of vf, tT gyt (py,q1) = T Gpy,qr» and hence it comes from a function on the orbit space
Orb(vy). We make also the following assumption:

=2 <trgp,.q <2 V(p1,q1) € Si. (4.4.24)

As is known [26, 79], this condition implies the strong (parametric) stability of
7(p1, q1)-periodic linear Hamiltonian system (4.4.21) for every (p1,q1).

We observe that the plane {(ps = 0,¢2 = 0} is invariant with respect to the flow
of the perturbed Hamiltonian system (4.4.18) whose first variation system over the
invariant plane is defined by V. First, we observe that condition (4.4.24) means that
perturbed Hamiltonian system (4.4.18) is non-integrable.

Proposition 4.4.3 If condition (4.4.24) holds, then perturbed Hamiltonian system
(4.4.18) does not admit a first integral G defined in a neighborhood of the invariant
submanifold Sy x {0} and such that doG # 0 at S1 x {0}.

Proof. As we have mentioned above the vector field V represents the first variation
equations at the invariant domain foliated by periodic trajectories of Hamiltonian
system (4.4.18). If Hamiltonian system (4.4.18) admits an additional first integral
independent with H, then by the well-known criterion [26, 77], the monodromy of
V must satisfy the condition tr gy, 4, = 2. |

Now, we will show that under above hypothesis the unperturbed system admits a
circle first integral. We need the following interpretation of condition (4.4.24) (see,
for example [26]). Let us associate to the unperturbedvector field V the Riccati
equation on S

Ly, D+ F11D* +2F 12D + F 22 = 0. (4.4.25)

Proposition 4.4.4 Stability condition (4.4.24) is equivalent to the following: the
Riccati equation (4.4.25) admits a unique smooth, complez-valued solution

513 (p1,q1) = D(p1,q1) = Di(p1,q1) +iD2(p1, q1)
satisfying the condition
Da(pr,q1) >0 ¥(p1,q1) € S (4.4.26)
This criterion leads to the following fact.

Proposition 4.4.5 Under above hypotheses, the unperturbed vector field V (4.4.19)
admits a circle first integral on S1 x R? of the form

1

(p2 — D1g2)* + (D2g2)?] (4.4.27)
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where D = Dy +1i Dy is the solution of (4.4.25), (4.4.26). Moreover, this integral
satisfies the the adiabatic condition

(d1J) = 0. (4.4.28)

Here, the average ( - ) is taken with respect to the the S'-action with infinitesimal

generator VJ(Z).

Proof. By direct computation and by using Riccati equation (4.4.25), we verify that
formula (4.4.61) gives a first integral of V. The 2n-periodicity of the flow of VJ(2)
follows from the following argument. Consider the transformation ¢ : Sy x R? —
S1 x R? given by

¢(p1,q1, P2, q2) (m, a1,V Dapa + Fqg, \Z%) (4.4.29)

it is clear that this is a diffeomorphism with inverse

- p2 — Digo
o (p1,q1, P2, @2) = (PLQL, D2€I2> 4.4.30
( ) D (4.4:30)

Moreover, we have

0 0 0 0

— AN—)=— A — 4.4.31
Op2 3Q2) Op2  Oqo ( )

o (
and .
Jog=3 (p2? + ¢22) (4.4.32)

It follows that the transformation ¢ takes the vector field VJ(Q) into the form

0 0
*V(Q) V( ) Y
o Jop — 92 Opa +p2— EYS
and hence
Flv(z) (p1,q1,p2,92) = (p1,q1,p2cost — gasint, pasint + ga cost), (4.4.33)
Jog

FI! (2) —Qf)_ o FI v 0.

Joq>

Next, to prove (4.4.28) we observe that
¢*(d1J) = ¢*d(J) — ¢*(d2]) = d(¢"J) — (¢"da]).

Taking into account the equalities

¢*p2 = / Dapa +

—q, Q= KL
F ’ VDy’

—D D + (D? + D2
D2 142 dpy + (=Dip2 + (D5 + D3)q2)
Do Doy

ClQJ = dq27
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we get
* P2 Daps + D1g2 1 G
doJ = d —Dips + Daga) d . (4.4.34
¢2\/172<\/172)\/E( i 2Q2)<¢172>( )
The averaging with respect to the trivial S'-action (4.4.33) gives
1
(p3) = (a2) = 5 (P2 + @2), (p2a2) =0, (4.4.35)

Using these relations and equalities (4.4.32), (4.4. 34) we compute

- o (25) B3
1
+ \/7—2(]9261 <\/D>2CJ2) — VDa(g2d (\/7)
= d( (3 + ) = ("),
It follows that ¢*(diJ) = 0. [

Now, let us consider the S'-action defined by the infinitesimal generator VJ(Z)
associated to the circle first integral (4.4.27). The next proposition gives us effec-
tive formulas for computation of the S'-averages of the symplectic form and the
perturbation term F' of H. in terms of the solution D of the Riccati equation.

Lemma 4.4.6 The S'-average of the symplectic form o = dpi A dq, + edpa A dgo
has representation (o) = o — edf°, where the 1-form 6° = 0%dp, + 69dq, with zero
average is given by

1

(b*go — _E ((qg — p%)dlDl + 2p2(]2d1D2) . (4436)
Moreover,
¢"(F) = 4D, (F (DY + D3) 4+ 2F 12D1 + F 22) (p3 + 3) - (4.4.37)
Proof. First, we remark that
¢*(dp2 A dgz) = dpa A dgz + dp, (4.4.38)
where the 1-form [ is given by
1 2
g=—(L2aqp + @dng (4.4.39)
2\ Dy

Indeed, under mapping (4.4.29) the 1-form padgs is transformed as follows

= (s B3

B +D1 d 1 +D1 dDs
= | P2 D2Q2 q2 9 D2 D, Q2D2’
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and hence

¢ (dp2 A dga) = d(¢"(p2dgz)) (4.4.40)

Dy 1

2
Q2 Dl
=d dgg —d| =2d(—) ) —d | — + — dDs | .
P2 /A 642 (2 (D2)> <2D2(p2 DQQ2)q2 2)

Using relations (4.4.35) , we deduce the following formula for the average of 1-form

B (4.4.39) relative to S'-action (4.4.33) :

1
(B) = —TDQ(]?% +¢3)d1D1. (4.4.41)

Next, by definition of the 1-form 6°, we have (dps A dgo) = dpa Adgs — d6°. Tt follows
from here and identity (4.4.38) that

¢ (dpy A dgo) = ¢*(dpa A dga) — d(¢*0°) (4.4.42)
= dpa Ndgy + dB — d(¢*60").

On the other hand, using the property that the trivial S'-action (4.4.33) preserves
the 2-form dps A dgo, we get

¢*<dp2 A dq2> = <¢*(dp2 A d(p)) = <dp2 A dge + dﬂ> =dps Ndgo + d<ﬂ>
Comparing this equality with (4.4.42) gives
B—¢*0" = (8) +, (4.4.43)

where 7 is a closed 1-form which has the representation v = vy1dp; + y2dq1. By
closedness of =y, the coefficients «; and 9 are independent of the variables ps, ¢o
and hence 7 is the the pull-back under m; of a 1-closed on S7. This means that ~ is
invariant with respect to the S'-action (4.4.33), () = 7. Moreover, by the property
(6°) = 0 and equality (4.4.43) we conclude that (y) = 0. Therefore, ¥ = 0 and the
identity

6"0° = 6 — (B) (4.4.44)
together with identities (4.4.39) and (4.4.41) implies (4.4.36). Finally, from

P°F = F11D3p3 + 2(F 11D1D2 + F 12D2)pags + (F 22 + F11D3 + 2F 12D1)g3) |

2Dy (
relations (4.4.35) and the identity ¢*(F) = (¢*F') we deduce representation (4.4.37).
[

Remark 16 Formula (4.4.37) can be also derived from identity

O (F) = 6" F — i5, 670"

which is a consequence of (4.3.78).
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Remark 17 By the same arguments as in the proof of Lemma 4.3.16, one can
show that the circle first integral J in (4.4.27) satisfies the relation J = iv(zm,
J

where n = %(deQQ — q2dp2).
Resuming, we arrive at the following result.

Proposition 4.4.7 Under above assumptions, for small enough ¢, there exists a
near identity transformation 1. such that the pull back of the original perturbed
Hamiltonian system (4.4.18) by the mapping Tz o ¢ is e%-close to the completely
integrable Hamiltonian system (&, H.) given by

- €

F=d (pldql + epadgs — E(pg + q%)d1D1> , (4.4.45)
~ 5
He = f(pr,0) + 35 (F11(D} + D3) +2F 12Dy + Fa2) (P53 +¢3) . (4.4.46)

The corresponding additional first integral is just J o ¢ = %[pzz + q%]

Proof. Let 7. be a near identity transformation defined in Theorem 4.3.1. Then,
Tro = (o), H.oT. = fom +¢&(F)+ O(£?). Applying transformation ¢ (4.4.29) by
formulas (4.4.38), (4.4.44), we get

= ¢"T o = ¢ (o) = dp1 Ndq1 + €™ (dpa A dgs) — ed(4*0°),
= dp1 A dgy + edpy A dgz + £d(5 — ¢*0°),
= dp1 N dqy + edpa N dga + €d(3).
This together with representation (4.4.41) leads to (4.4.45). Moreover,
H:oT.op=fom+e(F)op+0()

and from (4.4.37) we derive representation (4.4.46) for H. = fom +e(F)o¢$. m

It follows from this theorem and the Liouville-Arnold theorem that for small
enough € # 0, the motion along the trajectories of the model Hamiltonian system
(4.4.45), (4.4.46) is quasiperiodic and the corresponding Liouville tori in the phase
space (51 x R?, ) are given as

€ 1
T2 o (€) = {f + 2D, (F11(D3 + D3) + 2F 12D1 + F 22) ¢2 = 1, 5(10% +q2%) = 02}-

By (4.3.82) the Hamiltonian vector field of (4.4.46) is e-close to the vector field ¢*V
which has two first integrals f o7 and J o ¢p. The level sets of these functions give
quasiperiodic 2-tori

T2 0 (0) = {Fpr0) = a1} x {5(° +@2%) = &2},
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that is, the trajectory through a point (p1, q1, p2, g2) € T2

i1.¢,(0) is quasiperiodic with

frequencies w; = w(p1,q1) = T(pzl’qu) and wy = wa(p1,q1), where
2cos<2w“9> = - (4.4.47)
w1

This formula follows from the Floquet theory for linear periodic systems [26]. More-
over, there are two commuting vector fields T(") and T3 on S; x R? whose flows
are 2m-periodic and such that

¢V = TW 4w, TP, (4.4.48)

Here, T2 = VJ(z()ﬁ = pQ(%z — q28%2 is just the infinitesimal generator of the trivial
S'-action (4.4.33). Remark also that the“normal” frequency ws is just the Floquet
exponent of linear periodic system (4.4.21) and can be expressed in terms of the
solution of the Riccati equation as follows [26]

wo = (F11D2)1.

Here (-); denotes the average with respect to the S'-action on S; associated to the
periodic flow of vy.

Therefore, combining Theorem 4.4.7 and the KAM-theory [6, 14] one can try
to establish the persistence of the quasiperiodic tori T7 . (0) for the perturbed
Hamiltonian system (&, H; o 7z o ¢).

Now, let us consider the resonance case. Taking into account equalities (4.4.47),
(4.4.48), we get the following criterion.

Proposition 4.4.8 (The Resonance Case) The flow of the unperturbed vector field
V is periodic if the parameter » satisfies the condition

tr gp, g = 2cos (27r%) (4.4.49)

for arbitrary coprime integers m, k € Z such that and 0 < m < g The corresponding
period function T : S; x R?2 — R is given as

T =kr(p1,q1)- (4.4.50)

and presents an adiabatic invariant of system (4.4.18).

Condition (4.4.49) means that £* = 7' and hence we have

P*V = % (k:T(l) + mT@)) :
The S'-action associated with periodic flow of ¢*V is the product of two S'-actions
with infinitesimal generators kY™ and mYT(?). Therefore, under condition (4.4.49),
Theorem 4.3.18 and Averaging Theorem 3.2.15 to the perturbed vector field ¢*V +

e¢* W + O(£?) coming from the non-integrable Hamiltonian system, we get

2
(6.H.0Tog=fom+e(F)op+SKop+O()).
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4.4.4 Hamiltonian systems of Yang-Mills type

As an application of the above results, we consider a family of Hamiltonian systems
of the Yang -Mills type [41] on the slow-fast space (R*, o = dp; A dq + edpa A dgo):

1 %—1—1)22]

1 € »
H. = pr +-qf + = [p% + (2611Q2 (4.4.51)

4 2

where ¢ < 1 is a perturbation parameter and s € R is a constant. Therefore, the
perturbed Hamiltonian is of the form (4.3.3) with

1

1 1 n(x+1
F=tpelg aa pollpe 2t g (4.4.52)
2 4 2 2
The corresponding Hamiltonian equations of motions are
dp 3 n(x+1) dqi
— g = = 4.4.53
dt q1 € 2 q192, dt b1, ( )
dpo n(x+1) , 3 dgs
2\ — =2 = po. 4.4.54
i 5 192 — €492, dt b2 (4.4.54)
The unperturbed and perturbation vector fields are written as follows
0 0 0 x(x+1) 0
V = _ g3 I S NS 4.4.55
and ( 0 5 5
r\x + 2 3
W=————q1¢5— —¢5—. 4.4.56
2 2 op P op, ( )

The plane {ps = 0,¢qo = 0} C R* is invariant under the flow of system (4.4.53),
(4.4.54) and the unperturbed vector field V just represents the first variation system
at the invariant plane. Under natural projection w1 : R* — R?, the vector field V
descends to the Hamiltonian vector field

vp=—qi—— + 2

of the Hamiltonian system (R?,dp; Adqi, f) with one degree of freedom. The trajec-
tory of vy through each point (p1,¢1) in the open domain S; = R? \ {0} is periodic

with minimal period
(P, 1) = — -
T 1,q91) = T = T
)T (297 + g

where 7 = 4v/2 fol \/%. Therefore, the flow ¢! of vy is periodic with frequenct

function w : }R% — R given by

2m 1
@(p1,q1) = —(2p] +q1)7.
70
The monodromy of V at a point (p1,q1) € R3 is a linear symplectomorphism gy, 4, :
R? — R? given by
Ipr.q1 = GP17Q1 (t) ’t:‘r(pl,ql) .
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Here G, 4, (t) € Sp(1;R) is the fundamental solution of the linear periodic system

(4.4.21), (4.4.22) with
0 _%(%—i—l)qg
A% = 2 1.
(pla(h) <1 0

Notice that the trajectory of vy passing through a point (p(l),q?) € Rg intersects
the semiline {p; = 0,¢1 > 0} exactly at the point (0, (4f(p!, q?))%) This says that
the dependence of the mondromy mapping in varibles pi, g1 is determinated up to
conjugacy by symplectomorphisms gogq,. In terms of the Jacobi elliptic functions

[4], the flow of vy is represented as

1 1 11 11
to,, — ((4f)7 cn((4 %t,—,—2 2sn(4f)it, —)dn(4f)st, —)).
¢ (0,,q1) = ((4f)7 en((4f) \@) f2sn(4f)it, =) dn(4f) \/5))
For the function G 1(t), system (4.4.53) takes the form
d _xletl) 20 1
2Goa = ( (1) 2 Sn (. 75) Go.1. (4.4.57)

The coefficients of this system are periodic in ¢ with minimal period 37(0,1) = 2.
By the Yoshida formula [77] for the monodromy of time periodic system (4.4.57),
we have

tr G071(%) = 2v/2cos (%(1 + 2%)) .

It is clear that

70 70

g0.1 = Go1(m0) = Goa(5) - Goa(5)
Moreover,
Go(t) = ( apt ) Goa((4f)t) ( S )
. 0o 1) " 0 1
and hence

1 0 1
I 4f)a 0
90,q1 = ( (46)1 1 ).90,(11 ( ( é) 1 > .

Taking into account the identity tr(G?) = (tr G)? — 2, for any symplectic matrix
G € Sp(1;R), we arrive at the following fact.

Proposition 4.4.9 For every (p1,q1) € ]R%, the trace of the monodromy map of V
s given by the formula

™

tr gpr.gn = 8 cos” (4 (1+ 2%)) — 2. (4.4.58)

By Proposition 4.4.3, a necessary condition for the existence of an additional
first integral of system (4.4.53),(4.4.54) is trg,, 4, = 2. By formula (4.4.58), this
condition is written as cos (Z(1 + 25)) = £3.
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Corollary 4.4.10 If the parameter s is not integer,
PN/ (4.4.59)

then original perturbed Hamiltonian system (4.4.53),(4.4.54) is not integrable in the
sense that does not admit an additional first integral in a neighborhood of ]Rg x {0}
which is functionally independent with H..

In the non-integrable case (4.4.59), using above results we will approximate the
perturbed system (4.4.53),(4.4.54) by a completely integrable Hamiltonian system.

Proposition 4.4.11 Suppose that the parameter » takes values in the open set

xe | J(2s,25+1). (4.4.60)
SEZ

Then, the unperturbed vector field V (4.4.55) admits a circle first integral on RZ x R?

of the form
1

~ 2D,
where Dy = D1(p1,q1) + i Da(p1,q1) is a smooth complex valued solution on R3 of
the Riccati equation

J [(p2 — D1g2)* + (D2g2)?] (4.4.61)

sn(x+1)
2

with Do > 0. Moreover, the circle first integral satisfies the adiabatic condition
(4.4.28).

L,,D+D*+ @ =0 (4.4.62)

Proof. It follows from (4.4.58) that condition (4.4.24) holds for the monodromy g, 4,
if and only if the parameter s satisfies (4.4.60). Then, the statement follows from
Proposition 4.4.5. ]

It follows from this proposition and Theorem 4.4.7 that for every parameter s
satisfying (4.4.60) and € < 1, Hamiltonian systems of the Yang -Mills type (4.4.53),
(4.4.54) is approximated by the completely integrable Hamiltonian system relative
to the symplectic form 6(4.4.45) and Hamiltonian

~ 1 1 € #x(x+1)
1LI5 = 5])% + qu + T.DQ <D% + Dg =+ 2q%) (p% + q%) :

By Proposition 4.4.8 and formula (4.4.58), we derive the resonance criterion.

Proposition 4.4.12 The flow of vector field V (4.4.55) is periodic if the parameter
2 satisfies the condition

V2 cos (2(1 + 2%)) = cos <7r%) (4.4.63)

for arbitrary coprime integers m, k € 7Z such that and 0 < m < k. The corresponding
period function T : R2 x R? — R,

T = k7 (p1,q1)
is an adiabatic invariant of system (4.4.53), (4.4.54).
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Remark that the parameter s satisfying condition (4.4.63) runs over an dense nu-
merable subset in the open set | J . (2s,25+1). Therefore, by Theorem 4.2.2, under
condition (4.4.63), perturbed system (4.4.53), (4.4.54) admits a first order normal-
ization relative to V and the function f = %p% + iqi‘ is an adiabatic invariant of this
system.

4.5 Particle Dynamics with Spin in a Magnetic Field

Let us consider a slow-fast phase space (M = Sy x So, 0 = 0(1) + £0(?)) in the case

when S is an arbitrary symplectic manifold and Sy = S? C R? = {x = (2!, 22, 23)}

is the unit sphere equipped with standard area form. Therefore,

1 ) .
1) (1) 7
o) = Soi ()dg" e,

1 o
o = §eijkxzda:9 A da®.
Suppose that we are given a smooth mapping n : S; — S? and define the function
J e C®(M) by
J(€,%) = n(€) - x (4.5.1)
for ¢ € S; and x € S?. Then, we have the S'-action on M associated to the
infinitesimal generator

V}Q):—nxx-aaX

which is given by the rotations exp(—tA on) in R2 about the axis —n. Here Aon
denotes the matrix of the cross product in R with n. We have the following explicit
formula for the S'-action

Fli/(?) (&,x) = costx + (1 — cost)(n(§) - x)n(§) — sint(n(£)xx). (4.5.2)

Lemma 4.5.1 The S'-average of the symplectic form has the representation (o) =
o — edf?, where
6° = (n x x) - din. (4.5.3)

Moreover,
d1(90 = X-din Adin, (4.5.4)
{00 A 90}2 = 07

and, function J in (4.5.1) satisfies the adiabatic condition (d1J) = 0. Hence, the
St-action is Hamiltonian relative to (o) with momentum map e.J.

Proof. First, we have that d1J = x-d;n. Hence, (Fl;(z))*dlj = Fl';/(z) (&, z)-din. By
J J

(4.5.2) and direct computations, we have (d;J) = (n-x)(n-din). Since n has cons-
tant norm, the adiabatic condition holds. Analogously, we get that 00 = S(d;.J) =
(n X x) - din. Therefore, formula (4.5.4) tell us the the curvature of the Hannay-
Berry connection associated to 1-form (4.5.3) is nonzero. [
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Now, suppose that on the slow fast space we are given a perturbed Hamiltonian
system of the form

He(€,x) = f(§) +eB(E) - x, (4.5.6)

for some f € C°°(S;) and a smooth vector function B : S; — R3 which will play the
role of a magnetic field. The corresponding unperturbed and perturbation vector
fields are given by

VB (4.5.7)
W = —[gD)w ky O
75 e
where 07 = [0(1)]27’ ggfl{%

Lemma 4.5.2 Function J in (4.5.1) is a circle first integral of unperturbed vector
field (4.5.7) if and only if the vector functions n and B are related by the condition

Lin+Bxn=0, (4.5.8)
. 9

where Oy = [U(I)WBTJC@'B%J‘

Proof. Let 0y = (@f)j%. By straight fc')'rward computation, we get ggi = —%(@f)jaﬁ).
Since o! in nondegenerate, 0 = (oD ggi %. Now, we compute the Lie derivative
of J along V.

LyJ=(Lymn) - x—Bxx-n=(Lyn+Bxn) x

Hence, J is first integral of V if and only if condition (4.5.8) holds. [

Now, let us apply this result to the equations describing the motion of a non rela-
tivistic particle with spin in a slow varying magnetic field [12, 46, 76]. In this case,
the slow phase space S1 = R%ng is equipped with symplectic form

1 1
o = 5P Ada+ 5(B(q) x da) Adg,

where B = B(q) is a divergence free field on Rg, divB = 0. Therefore, o) equals
to the canonical symplectic form on R%XRg pulse the “ magnetic” term. Putting

f= %2 into (4.5.6), we get he following perturbed Hamiltonian dynamical system
on M = (R} xR3)x S

dq _
dt_p’
dp OB p
Tt PXB—€(afq) X,
CC%(ZXXB.

This system describes the motion of a non relativistic particle with spin in a slow
varying magnetic field, where the mass and charge of the particle m =1 and e =1,
the gyromagnetic ratio g = 2. The unperturbed system is of the form

dq _

_ 4.5.9
il (4.5.9)
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dp

P _pbxB 4.5.10
o —PxB ( )
—Cf; =x x B. (4.5.11)

System (4.5.9), (4.5.10) corresponds to the Lorentz force equations and equation
(4.5.11) describes the spin precession.

Lemma 4.5.3 Condition (4.5.8) holds for the following choice of the vector func-

tion n :
1

n=_——-p.
Ip

Proof. The vector field V generating the system (4.5.9), (4.5.10) and (4.5.11) has
the form

0 0 0

By direct computation, we have

P
Ipll’

1 . 1
pr-x—(p ﬁ)pr'p—pr-x:O.
Pl Ipll Ipll

el el

It follows that the infinitesimal generator of the Hamiltonian S'-action and the
momentum map are of the form

1 1
Vi=——xxp and J=—p-x (4.5.12)
Pl Ipl

Moreover,

1
60 = _E(X X p) - dp.

Finally, we get that the approximate Hamiltonian system with S'-symmetry is

1 1 € P P
(o) = —dpANdq+ =(B(q) xdq) Ndq+ —(x x dx) Ndx —ex - di(—) ANdi(+—),
2 2 2 Ip Ipl
and )
p 5
(He) = = + —(p-x)(p- B).

2 p
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