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Universidad Autónoma de San Luis Potośı
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Introduction

In this thesis we develop bigraded calculus for differential operators with applications
to some problems in Poisson geometry, related to singular foliations.

A Poisson manifold consists in a smooth manifold M and a Poisson bivector field
Π, called Poisson structure, which satisfies the integrability condition

[Π,Π] = 0 (1)

written in terms of the Schouten - Nijenhuis bracket [16]. Algebraically, this
condition means that the Poisson structure induces a Lie bracket {, } on the space
of smooth functions C∞M by

{f, g} := Π(df, dg),

called the Poisson bracket. Geometrically, the integrability condition (1) leads
to the study of singular foliations. It is well-known that every Poisson structure
induces a symplectic foliation, which is singular in general, and it is integrable in
the sense of Stefan - Sussman [28, 27]. Thus, one can think of a Poisson manifold as
the union of symplectic manifolds (symplectic leaves) of varying dimensions, fitting
together in a smooth way. A symplectic leaf is said to be singular if the rank of the
Poisson structure is not locally constant at the leaf. Poisson structures near singular
symplectic leaves are described in terms of the coupling procedure [36, 33, 34, 37].
This approach is based on the use of a non-linear (Ehresmann) connection, which
gives rise to bigraded calculus on Poisson fiber bundles (see [9, 36, 33, 7, 34, 6, 18]).

The goal of this work is to give a unified approach to the Schouten - Frölicher
- Nijenhuis - Ehresmann calculus on fibred and foliated manifolds and apply
this approach to the study of infinitesimal automorphisms and first cohomology
of Poisson manifolds with singular symplectic foliations. Some results on
computing Poisson cohomology in the regular case can be found, for example, in
[38, 39, 31, 32, 8]. In some special singular cases, Poisson cohomology has been
studied in [5, 22, 23, 24, 25].

One of our main results is a geometric splitting for the first cohomology group
of coupling Poisson structures in fiber bundles. We give a natural bigrading to the
Lichnerowicz - Poisson complex [16], by means of the geometric data of the coupling
structure, and split the first Poisson cohomology group using that bigrading. In order
to derive this result, we first develop a general scheme to study the first cohomology
group of an abstract bigraded cochain complex (C, ∂), i.e., a cochain complex such

1



2 Introduction

that C is Z× Z-graded and the coboundary operator has a bigraded decomposition
of the form

∂ = ∂1,0 + ∂0,1 + ∂2,−1. (2)

In this context, the coboundary condition ∂2 = 0 implies that ∂1,0 and ∂2,−1 are also
coboundaries. Moreover, we get the following short exact sequence, in which every
object is intrinsically defined in terms of the bigraded cochain complex.

Claim 1. Let H1
∂ be the first cohomology group of ∂ and Zp,q∂0,1

the space of

coboundaries of bidegree (p, q) for ∂0,1. There is a short exact sequence,

0→ H1
∂1,0

↪→ H1
∂ →

ker ρ

B1
∂0,1

→ 0, (3)

where ∂1,0 : Zp,0∂0,1
−→ Zp+1,0

∂0,1
is a coboundary operator given by the restriction of ∂

to Z•,0∂0,1
, and ρ : A −→ H2

∂1,0
is a canonical morphism from a subspace A ⊂ Z0,1

∂0,1
to

the second cohomology space of ∂1,0.

Up to our knowledge, this special result is not well known in the literature. An
important example of a bigraded cochain complex of the type (2) is the de Rham
complex of a foliated manifold [32, 30]. Our point is to describe the relationship
between the Lichnerowicz - Poisson complex and a bigraded cochain complex of the
type (2). To do so, we consider, in a fiber bundle (E, π,B), the bigraded Poisson
algebra of vertical - valued forms in the base VE := ΩB ⊗C∞B χV(E), and prove that
the Lichnerowicz - Poisson complex of a coupling Poisson structure Π on the fiber
bundle (E, π,B) is isomorphic to the bigraded cochain complex (VE , ∂γ), where ∂γ

is a coboundary operator in VE induced by the geometric data of Π. Because of this
isomorphism, one can apply Claim 1 to the bigraded cochain complex (VE , ∂γ) in
order to split the first Poisson cohomology group in the sense of (3). In the context
of the linearization problems, cochain complexes of the type (VE , ∂γ) appeared in
[12, 11, 6, 18].

One of the most interesting applications of this result is related to effective ways
of describing infinitesimal automorphisms (the first cohomology group) of a Poisson
manifold around a symplectic leaf in some “extreme” cases, when the transverse
Poisson structure has specific properties.

Now we give a more detailed description of these results, explaining briefly the
content of each chapter.

In Chapter 1, some useful results about bigraded cochain complexes of the type
(2) are established in full detail. We develop a general scheme to study the first
cohomology group of bigraded cochain complexes. More precisely, the main result
proved in this chapter states that (3) is a short exact sequence (Theorem 1.2.2).
Also, we give the precise definition of all spaces and operators appearing on its
formulation. These objects are canonically defined by the bigraded cochain complex



Introduction 3

(see Section 1.2). In particular, this general scheme is applied to the Lichnerowicz -
Poisson complex in Chapter 4.

Chapter 2 is devoted to the description of some algebraic and geometric tools
we need along this work. First, we revise the theory of graded derivations and
differential operators on vector bundles, in order to define intrinsically the Frölicher
and Schouten - Nijenhuis brackets [19, 20]. We also present the concept of generalized
connection [21] on bigraded manifolds, which gives a natural generalization of
the Ehresmann connections on foliated and fibered manifolds. For a generalized
connection γ in the manifold M , with curvature R and co-curvature R′, we prove in
Theorem 2.5.6 that the exterior differential has the following bigraded decomposition

d = d1,0 + d0,1 + d2,−1 + d−1,2,

and the Frölicher - Nijenhuis decompositions of these operators are

d1,0 = LIdTM−γ + 2iR − iR′ , d0,1 = Lγ − iR + 2iR′ , d2,−1 = −iR, d−1,2 = −iR′ .

The concept of coupling Poisson structure [36, 33] in a foliated manifold is
presented in Chapter 3. Specially, we are interested in the case of coupling Poisson
structures Π defined on a fibration E

π−→ B. In this context, the main result
presented in this chapter consists in proving that the Lichnerowicz - Poisson
complex (χE , δ

Π) induced by Π is isomorphic to a bigraded cochain complex
(VE , ∂γ) induced by its geometric data (γ, σ, P ). This fact can be found without
proof in [6, pp. 507-508] and with proof in [18, p. 93]. We present a proof of this
result in Theorem 3.4.2. Such isomorphism allows us to apply the theory developed
in Chapter 1 to the Lichnerowicz - Poisson complex induced by a coupling Poisson
structure.

Our main result is presented in Chapter 4, where we combine the theory
developed in Chapters 1 and 3 to obtain a splitting for the first Poisson cohomology
group. We first aboard the case of regular Poisson structures, for which we prove
that the first Poisson cohomology group splits as

H1
LP (M,Π) ' H1

dS
⊕ {Y ∈ X̄V

pr(M,H) | LY ω is dS-exact},

where dS denotes the foliated exterior differential of the symplectic foliation S. After
that, we apply the theory developed in previous chapters to obtain a similar splitting
for the first Poisson cohomology group of a coupling structure in a geometric manner.
Starting with a coupling Poisson structure Π in the fiber bundle (E, π,B), we
naturally define a triple of geometric data (γ, σ, P ) [36, 33], where γ is an Ehresmann
connection, σ is an horizontally non-degenerate horizontal 2-form, and P is a vertical
Poisson structure. On the other hand, in the fiber bundle (E, π,B), we can define
the bigraded Poisson algebra VE of vertical - valued forms in the base. Furthermore,
the geometric data (γ, σ, P ) of Π induces a bigraded coboundary operator ∂γ in VE
such that the bigraded cochain complex (VE , ∂γ) is isomorphic to the Lichnerowicz
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- Poisson complex (χE , δ
Π) of Π, as proved in Chapter 3. Applying our main result

of Chapter 1, we obtain the following splitting-type result for the first cohomology
of the coupling Poisson structure Π:

H1
LP (E,Π) ' H1

∂
γ
1,0
⊕ ker ρ

Ham(E,P )
.

Here, ∂
γ
1,0 : ΩB ⊗ Casim(E,P ) −→ ΩB ⊗ Casim(E,P ) is a coboundary operator

and ρ : Aγ ⊂ PoissV(E,P ) −→ H2
∂
γ
1,0

is a canonical linear morphism from a Lie

subalgebra of vertical Poisson vector fields to the second cohomology group of ∂
γ
1,0.

The proof of this (Theorem 4.2.5) is practically a direct consequence of the main
results of Chapters 1 and 3. On the other hand, we present some particular cases
for which the computation of the first Poisson cohomology group simplifies. For
example, a regular Poisson structure around a symplectic leaf B can be modeled by
a coupling structure Π in a fiber bundle (E, π,B), with geometric data P = 0 and
σ the pull-back of the symplectic structure in the base B [36]. We show that the
first Poisson cohomology group of a coupling Poisson structure Π of such type is
isomorphic to the sum of the first leafwise de Rham cohomology of the symplectic
foliation and the trivial deformations of the leafwise symplectic structure:

H1
LP (E,Π) ' H1

dS
⊕ {Y ∈ X̄V

pr(E,H) | LY ω is dS − exact}.

Another particular case we present is when the vertical Poisson cohomology is trivial,

PoissV(E,P ) = Ham(E,P ). (4)

Under this assumption, the first Poisson cohomology group of Π is isomorphic to
H1
∂
γ
1,0

. Furthermore, if P satisfies (4), then we show that the first Poisson cohomology

groups of every coupling Poisson structure in (E, π,B) having P as vertical part,
are isomorphic to each other. Finally, the last family of given examples cannot be
directly obtained by the abstract framework developed in Chapter 1. Such examples
arise when the Casimir functions of the vertical Poisson structure are precisely the
projectable functions in the bundle: Casim(E,P ) = C∞pr (E). These examples are
important since this condition can be only held in the singular case. In fact, P = 0
implies Casim(E,P ) = C∞E 6= C∞pr (E). Under this assumption, the first Poisson
cohomology group can be computed as

H1
LP (E,Π) ' H1

dR(B)⊕ ker ρ

Ham(E,P )
,

where H1
dR(B) is the first de Rham cohomology group of the base space B.

Finally, we consider a class of coupling Poisson structures on a locally trivial
vector bundle whose vertical part P is defined by a 3-dimensional linear Poisson
tensor. To apply the above results to this case, we present a classification of all
3-dimensional linear Poisson structures which admit only constant Casimir functions.
We show that there are five non-isomorphic families in which this occur, and in most
of these cases, the symplectic foliation is an open book foliation.



Chapter 1

Bigraded Cochain Complexes. Algebraic

Framework

In this chapter, we study the first cohomology group of a cochain complex (C, ∂),
where C is assumed to be a Z× Z-graded R-vector space such that the coboundary
operator ∂ has the following bigraded decomposition:

∂ = ∂1,0 + ∂0,1 + ∂2,−1. (1.1)

We say that a cochain complex of this kind is a bigraded cochain complex. In
differential geometry, a classical well known example of a coboundary operator with
bigraded decomposition as in (1.1) is the exterior differential on fibred or foliated
manifolds (see, for example, [30, p. 184], [2, p. 3-6]). Also, bigraded cochain
complexes have great importance in the study of the Poisson cohomology groups of
regular structures (see [32], [8]).

We study some properties of bigraded cochain complexes in the general
(abstract) case. Also, as our main result, we present a short exact sequence for the
first cohomology group of bigraded cochain complexes. Such result, Theorem 1.2.2,
is, up to our knowledge, not well-known in the literature. To derive it, we develop
some properties on bigraded cochain complexes and conclude using some theory on
homological algebra.

This chapter is divided in three sections. In Section 1.1 we present some
preliminary notions of graded modules and algebras, which will be needed
throughout this work. In Section 1.2, we set the problem to be addressed and
present the main result. We also define some objects we need in order to state the
main result: a coboundary operator, a subspace of cocycles for this new operator,
and some morphism from this space to the second cohomology space of such
operator. These objects are intrinsic in the bigraded cochain complex, and they
acquire geometric meaning when we apply this general scheme to the Lichnerowicz
- Poisson complex in the context of Poisson manifolds (see Chapter 4).

The proof of the main result of this chapter (Theorem 1.2.2) is detailed in
Section 1.3. We play with the properties of bigraded cochain complexes and, by
means of the bigraded components of the operator in (1.1) and the objects presented
in the previous section, we first prove the existence of short exact sequences for
cocycle and coboundary spaces. Finally, we apply well-known results in homology

5



6 1. BIGRADED COCHAIN COMPLEXES. ALGEBRAIC FRAMEWORK

theory [17] in order to derive de short exact sequence for the first cohomology group
of the complex.

In further chapters, some examples of bigraded cochain complexes are studied,
and we then apply the main result of this chapter to them. Specially, we apply
this abstract result to the Lichnerowicz - Poisson complex in the context of Poisson
manifolds with singularities.

1.1 Bigraded modules

Let R be a commutative ring with identity and (G,+) an Abelian group. An
R-module C is said to be G-graded if, for each g ∈ G, there exists an R-module Cg
such that

C =
⊕
g∈G
Cg.

Elements of
⊔
g∈G Cg are called homogeneous and, for each nonzero homogeneous

element η ∈ C, the degree |η| is defined by the unique g ∈ G such that η ∈ Cg.

A G-graded R-algebra of degree d ∈ G is a graded G-module A equipped with
an R-bilinear operation

◦ : A×A −→ A

such that

Ag ◦ Ah ⊆ Ad+g+h ∀g, h ∈ G.

If C and D are G-graded R-modules, then a graded morphism of degree g ∈ G
is an R-linear morphism L : C −→ D such that L(Ch) ⊂ Dh+g ∀h ∈ G. The
R-module of graded morphisms of degree g is denoted by Homg

R(C,D). Note that

Homg
R(C,D) ◦Homh

R(D, E) ⊂ Homg+h
R (C, E).

The R-module of graded endomorphisms of degree g in C is defined by
Homg

R(C, C) and denoted by EndgRC. Moreover,

End•RC :=
⊕
g∈G

EndgRC,

is an associative G-gradedR-algebra with the composition of graded endomorphisms

(E ◦ F )(a) := E(F (a)).

This work is focused on the following special cases of graded algebras:

• A Z-graded algebra is simply said to be a graded algebra.

• A Z× Z−graded algebra is said to be a bigraded algebra.
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It is clear that every bigraded module C can be endowed with a graded module
structure with the following Z-grading

Cn :=
⊕
p,q∈Z
p+q=n

Cp,q. (1.2)

In this case, the Z×Z-grading is said to be compatible with the Z-grading in C. This
means that, for any η ∈ Ck, there exists, for each p, q ∈ Z with p+ q = k, ηp,q ∈ Cp,q
such that

η =
∑
p+q=k

ηp,q.

The right-hand side of the last equation is called the bigraded decomposition of η.
Moreover, if (A, ◦) is a bigraded algebra, then (A•, ◦) is a graded algebra with the
compatible grading. Observe that if C•,• is a bigraded R-module, then

Endp,qR C
•,• ⊂ Endp+qR C

•,

where the grading of C• is defined as in (1.2). Moreover, if the sum in

C =
⊕
j∈Z
Cj

is finite (i.e., only a finite number of Cj are non-zero), then the grading of EndRC•
is compatible with the bigrading EndRC•,•, i.e.,

EndkRC =
⊕
p+q=k

Endp,qR C.

Example 1.1.1. Let M be a differential manifold and E a vector bundle of rank k
over M . For each n ∈ Z, take

An := Γ
n∧
E,

and A := Γ
∧
E. It is clear that (Γ

∧
E,∧) is an associative graded C∞M -algebra,

where ∧ is the usual exterior product. The following are particular cases of such
algebras:

• For E = T ∗M , denote the C∞M -module of differential n-forms by Ωn
M :=

Γ
∧n T ∗M . Moreover,

ΩM =
⊕
n∈Z

Ωn
M

with its exterior product, is called the Cartan’s Z-algebra.

• Similarly, for E = TM , is denoted χnM := Γ
∧n TM and its elements are

called n-vector fields; Γ
∧
TM is denoted by χM and is elements are called

multivector fields.
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1.2 Main results

In this part we introduce the concept of bigraded cochain complex, which is a
cochain complex (C, ∂) with a compatible bigrading for C, in the sense of equation
(1.2), and a particular bigraded decomposition of the coboundary operator ∂.

We will give the precise definition of a bigraded cochain complex, set the general
problem and state the main result. We derive short exact sequences for cocycles,
coboundaries, and cohomology groups of ∂, which are presented in terms of some
objects intrinsically defined by the bigraded cochain complex.

Later on, in Chapter 4, we will apply these general-algebraic results to the
Lichnerowicz - Poisson complex.

1.2.1 Setting of the problem

Let C be a graded R-vector space,

C• =
⊕
n∈Z
Cn,

and ∂ : C• −→ C• a coboundary operator of degree 1, i.e., ∂ ∈ End1
RC• such that

∂2 = ∂ ◦ ∂ = 0. Such a pair (C•, ∂) is said to be a cochain complex.

Additionally, assume that C is a bigraded R-vector space,

C•,• =
⊕

p,q∈Z×Z
Cp,q,

such that this bigrading is compatible with the original grading in C:

Cn =
⊕
p+q=n

Cp,q, ∀n ∈ Z.

Further, assume the following properties:

1. If p < 0 or q < 0, then Cp,q = {0}.

2. For each k ∈ Z, we have the splitting

EndkRC• =
⊕
p+q=k

Endp,qR C
•,•. (1.3)

3. The coboundary operator ∂ splits in the sum of three bigraded operators

∂ = ∂1,0 + ∂0,1 + ∂2,−1, (1.4)

where ∂i,j ∈ Endi,jR C•,• ∀(i, j) ∈ {(1, 0), (0, 1), (2,−1)}.
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Recall that L ∈ Endp,qR C•,• if and only if L(Cr,s) ⊂ Cr+p,s+q ∀r, s ∈ Z. The
right-hand side of equation (1.4) is the bigraded decomposition of the operator ∂.

Definition 1.2.1. A bigraded cochain complex (C, ∂) is a cochain complex
satisfying all conditions given above.

Some immediate consequences of the first property are

C0 = C0,0, (1.5)

C−n = 0 ∀n > 0. (1.6)

In particular, equation (1.3) is satisfied if only a finite number of Cn’s are
non-zero. It is useful to take into account the following diagrams associated to
a bigraded cochain complex (C, ∂):

Cp,q
∂2,−1

ssgggggggggggggggggggggggg

∂1,0{{vvv
vv

vv
vv ∂0,1

##HH
HH

HH
HH

H

Cp+2,q−1 Cp+1,q Cp,q+1

C0,0

||yy
yy

yy
yy

""EE
EE

EE
EE

C1,0

||yy
yy

yy
yy

""EE
EE

EE
EE

C0,1

sshhhhhhhhhhhhhhhhhhhhhhhhh

||yy
yy

yy
yy

""EE
EE

EE
EE

C2,0

||yy
yy

yy
yy

""EE
EE

EE
EE

C1,1

sshhhhhhhhhhhhhhhhhhhhhhhhh

||yy
yy

yy
yy

""EE
EE

EE
EE

C0,2

sshhhhhhhhhhhhhhhhhhhhhhhhh

||yy
yy

yy
yy

""EE
EE

EE
EE

C3,0

||yy
yy

yy
yy

""EE
EE

EE
EE

C2,1

sshhhhhhhhhhhhhhhhhhhhhhhhh

||yy
yy

yy
yy

""EE
EE

EE
EE

C1,2

sshhhhhhhhhhhhhhhhhhhhhhhhh

||yy
yy

yy
yy

""EE
EE

EE
EE

C0,3

sshhhhhhhhhhhhhhhhhhhhhhhhh

||yy
yy

yy
yy

""EE
EE

EE
EE

C4,0 C3,1 C2,2 C1,3 C0,4

Since ∂ is a coboundary operator, representation (1.4) implies that

0 = ∂2 = (∂1,0 + ∂0,1 + ∂2,−1)2

= ∂2
0,1 + ∂2

2,−1 + (∂1,0∂0,1 + ∂0,1∂1,0)

+ (∂1,0∂2,−1 + ∂2,−1∂1,0) + (∂2
1,0 + ∂2,−1∂0,1 + ∂0,1∂2,−1).

Note that, in the last sum, operators with the same bidegree are grouped in a
parenthesis. Because of (1.3), the condition for ∂ to be a coboundary operator reads

∂2
0,1 = 0, (1.7)

∂2
2,−1 = 0, (1.8)

∂1,0∂0,1 + ∂0,1∂1,0 = 0, (1.9)

∂1,0∂2,−1 + ∂2,−1∂1,0 = 0, (1.10)

∂2
1,0 + ∂2,−1∂0,1 + ∂0,1∂2,−1 = 0. (1.11)
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Equations (1.7) and (1.8) imply that ∂0,1 and ∂2,−1 are also coboundary operators
in C. Therefore, it is convenient to present the following notation: given a cochain
complex (E•, δ), we define:

• the space of δ-closed elements in Ek, also named k-cocycles,

Zkδ := ker(δ : Ek −→ Ek+1);

• the space of δ-exact elements in Ek, or k-coboundaries,

Bkδ := Im(δ : Ek−1 −→ Ek);

• the cohomology k-space,

Hkδ :=
Zkδ
Bkδ

.

Moreover, if E has a compatible bigrading, then we will denote

Zp,qδ := Zp+qδ ∩ Ep,q and Bp,qδ := Bp+qδ ∩ Ep,q.

So, our point is to study the first cohomology group of (C•, ∂) in terms of the
bigraded components of the coboundary operator ∂.

1.2.2 Splitting theorem for the first cohomology

Here, we formulate the main result related to cocycles, coboundaries and cohomology
of operator ∂. First of all, taking into account equations (1.7)-(1.11), we observe
that η = η1,0 + η0,1 ∈ C1 is a cocycle of ∂, i.e. ∂η = 0, if and only if

∂1,0η1,0 + ∂2,−1η0,1 = 0, ∂0,1η1,0 + ∂1,0η0,1 = 0 and ∂0,1η0,1 = 0.

In the same fashion, η = η1,0 + η0,1 is a coboundary of ∂, i.e. η = ∂f for some
f ∈ C0, if and only if

∂1,0f = η1,0, and ∂0,1f = η0,1.

Therefore, computation of ∂-cohomology is reduced to the study of above equations.

Our main result is formulated as follows:

Theorem 1.2.2. Let (C, ∂) be a bigraded cochain complex. We have the following
short exact sequences for cocycles, coboundaries and cohomology groups of C

0→ Z1
∂1,0

↪→ Z1
∂ → ker ρ→ 0, (1.12)

0→ B1
∂1,0

↪→ B1
∂ → B1

∂0,1
→ 0, (1.13)

0→ H1
∂1,0

↪→ H1
∂ →

ker ρ

B1
∂0,1

→ 0. (1.14)

Here, ∂1,0 : Zp,0∂0,1
−→ Zp+1,0

∂0,1
is a coboundary operator given by the restriction of ∂

to Z•,0∂0,1
, and ρ : A −→ H2

∂1,0
is a canonical morphism from a subspace A ⊂ Z0,1

∂0,1
to

the second cohomology space of ∂1,0.
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We now present some particular cases of the previous theorem.

Corollary 1.2.3. The following are consequences of equation (1.14).

1. Assume that the first cohomology group of ∂0,1 is trivial. Then,

H1
∂ ' H1

∂1,0
.

2. Suppose that the operator ∂0,1 is identically zero. Then, ∂1,0 is a coboundary
and

H1
∂ ' H1

∂1,0
⊕ ker(ρ),

where

ker(ρ) = {Y ∈ A | ∂2,−1Y is ∂1,0 − exact}.

Notice that the coboundary operator ∂1,0, the subspace A and the morphism ρ
are intrinsically defined by the bigrading of the complex. Below, we will describe
more precisely these objects.

1.2.3 Coboundary operator ∂1,0

Lemma 1.2.4. For any p, q ∈ Z,

∂1,0(Zp,q∂0,1
) ⊂ Zp+1,q

∂0,1
. (1.15)

Moreover, for any η ∈ Zp,0∂0,1
, we have ∂2

1,0(η) = 0. Therefore, there exists a cochain

complex (Z•,0∂0,1
, ∂1,0), where

Z•,0∂0,1
:=
⊕
p∈Z
Zp,0∂0,1

and ∂1,0 := ∂1,0|Z•,0∂0,1

is the restriction of ∂1,0 to Z•,0∂0,1
.

Proof. If η ∈ Zp,q∂0,1
, then ∂0,1η = 0. Therefore, ∂0,1(∂1,0η) = −∂1,0(∂0,1η) = 0,

in virtue of equation (1.9). So, ∂1,0η ∈ Zp+1,q
∂0,1

, proving equation (1.15). For the

second part, take η ∈ Zp,0∂0,1
. Then ∂0,1η = 0, and ∂2,−1η = 0, since it has bidegree

(p + 2,−1). From (1.11), it follows that ∂2
1,0η = −∂2,−1∂0,1η − ∂0,1∂2,−1η = 0, as

desired.

By a bigrading argument, it is clear that ∂|Z•,0∂0,1

= ∂1,0|Z•,0∂0,1

. By (1.15), we

conclude that for each p ∈ Z, we have ∂1,0 : Zp,0∂0,1
−→ Zp+1,0

∂0,1
.
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1.2.4 Subspace A

Because of our previous development, the operator ∂1,0 naturally restricts to the

subspaces of ∂0,1-cocycles, ∂1,0 : Z0,1
∂0,1
−→ Z1,1

∂0,1
. Note that, in Z1,1

∂0,1
, there is the

subspace of ∂0,1-coboundaries, B1,1
∂0,1
⊂ Z1,1

∂0,1
. We now consider the subspace A ⊂

Z0,1
∂0,1

such that the following diagram commutes

A

∂1,0

��

� � // Z0,1
∂0,1

∂1,0

��
B1,1
∂0,1

� � // Z1,1
∂0,1

.

More precisely, define the subspace A ⊂ Z1,0
∂0,1

consisting of elements whose image
under ∂1,0 has trivial ∂0,1-cohomology:

A := {Y ∈ Z0,1
∂0,1
| ∂1,0(Y ) is ∂0,1-exact}. (1.16)

The last definition means that for each Y ∈ A, there exists β ∈ C1,0 such that

∂1,0(Y ) = −∂0,1(β). (1.17)

Note that B0,1
∂0,1
⊂ A. Indeed, a typical element of B0,1

∂0,1
has the form ∂0,1f , for

some f ∈ C0,0. Because of equation (1.9), we have ∂1,0

(
∂0,1f

)
= −∂0,1∂1,0f . So,

∂0,1f ∈ A, with β = ∂1,0f .

Lemma 1.2.5. For arbitrary Y ∈ A and β ∈ C1,0 satisfying equation (1.17), the
following equalities are satisfied:

∂0,1

(
∂1,0(β) + ∂2,−1(Y )

)
= 0, (1.18)

∂1,0

(
∂1,0(β) + ∂2,−1(Y )

)
= 0. (1.19)

Proof. The first identity follows from equations (1.9), (1.11) and (1.17):

∂0,1

(
∂1,0(β) + ∂2,−1(Y )

)
= ∂0,1∂1,0(β) + ∂0,1∂2,−1(Y )

= −∂1,0∂0,1(β)− ∂2
1,0(Y )− ∂2,−1∂0,1(Y )

= −∂1,0∂0,1(β) + ∂1,0∂0,1(β)− ∂2,−1(0) = 0.

On the other hand, using equations (1.10), (1.17), and (1.11), we get

∂1,0

(
∂1,0(β) + ∂2,−1(Y )

)
= ∂2

1,0(β) + ∂1,0∂2,−1(Y )

= ∂2
1,0(β)− ∂2,−1∂1,0(Y )

= ∂2
1,0(β) + ∂2,−1∂0,1(β) = −∂0,1∂2,−1(β) = 0.

The last equality is clear since ∂2,−1(β) has bidegree (3,−1).
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1.2.5 Morphism ρ

Observe that equation (1.18) means that ∂1,0(β) + ∂2,−1(Y ) ∈ Z2,0
∂0,1

, and equation

(1.19) implies ∂1,0(β) + ∂2,−1(Y ) ∈ Z2
∂1,0

. Therefore, it makes sense to consider the

∂1,0-cohomology class of ∂1,0(β) + ∂2,−1(Y ).

Lemma 1.2.6. For each Y ∈ A, the ∂1,0-cohomology class

[∂1,0(β) + ∂2,−1(Y )] ∈ H2
∂1,0

does not depend on the choice of β in equation (1.17).

Proof. Fix Y ∈ A. If β, β′ ∈ C1,0 satisfy equation (1.17), then ∂1,0(Y ) = −∂0,1(β),
and ∂1,0(Y ) = −∂0,1(β′). Note that [∂1,0(β) + ∂2,−1(Y )] = [∂1,0(β′) + ∂2,−1(Y )] if
and only if ∂1,0(β − β′) ∈ B2

∂1,0
. Since ∂1,0 is the restriction of ∂1,0 to Z1

∂0,1
, it is

sufficient to show that β − β′ ∈ Z1
∂0,1

:

∂0,1(β − β′) = ∂0,1(β)− ∂0,1(β′) = ∂2,−1(Y )− ∂2,−1(Y ) = 0.

Corollary 1.2.7. There exists a canonical morphism ρ : A −→ H2
∂1,0

given by

ρ(Y ) := [∂1,0(βY ) + ∂2,−1(Y )],

where, for a fixed Y ∈ A, βY ∈ C1,0 is arbitrary satisfying equation (1.17).

Note that B1
∂0,1
⊂ ker ρ ⊂ A. Indeed, a typical element in B1

∂0,1
has the form

∂0,1f for some f ∈ C0,0. Also, recall that Y = ∂0,1f and β = ∂1,0f satisfy equation
(1.17). For this choice of β, we have,

ρ(∂0,1f) = [∂1,0(β) + ∂2,−1(Y )] = [∂2
1,0(f) + ∂2,−1(∂0,1f)] = [−∂0,1∂2,−1f ] = [0],

proving that B0,1
∂0,1
⊂ ker ρ.

1.3 Short exact sequences

Here we present a proof of Theorem 1.2.2, which is divided into few steps.

1.3.1 Cocycles

In the previous section, we have defined a canonical morphism ρ : A −→ H2
∂1,0

,

whose kernel contains the ∂0,1-exacts elements. Now, it will be shown the existence
of some short exact sequences which allows us to express the first cohomology space
of ∂ in terms of its bigraded components.
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Proposition 1.3.1. There is a canonical inclusion Z1
∂1,0
⊂ Z1

∂ . Furthermore, there

exists a short exact sequence

0→ Z1
∂1,0

ı
↪→ Z1

∂

p0,1−−→ ker ρ→ 0, (1.20)

where p0,1 = pr0,1|Z1
∂

is the restriction of the projection pr0,1 : C1 −→ C0,1 to Z1
∂ .

Proof. If η ∈ Z1
∂1,0

, then η ∈ Z1,0
∂0,1

and ∂1,0(η) = 0, i.e., η ∈ C1,0, ∂0,1η = 0 and

∂1,0η = 0. Therefore, ∂2,−1η = 0. This proves that

∂η = ∂0,1η + ∂1,0η + ∂2,−1η = 0.

So, Z1
∂1,0
⊂ Z1

∂ . Hence, we have the natural inclusion Z1
∂1,0

ı
↪→ Z1

∂ . Now, take

η ∈ Z1
∂ , where η = β + Y , β ∈ C1,0 and Y ∈ C0,1. Condition ∂η = 0 splits into the

following relations:

∂1,0β + ∂2,−1Y = 0, ∂1,0Y + ∂0,1β = 0, ∂0,1Y = 0.

Since ∂1,0Y = −∂0,1β, we have Y ∈ A. Moreover, since ∂1,0β+∂2,−1Y = 0, it follows
that

ρ(Y ) = [∂1,0(β) + ∂2,−1(Y )] = 0,

and p0,1(η) = Y ∈ ker ρ. This proves that p0,1 : Z1
∂ −→ ker ρ is well-defined.

Moreover, let us show that this map is surjective. Fix Y ∈ ker ρ. Inclusions ker ρ ⊂
A ⊂ Z0,1

∂0,1
, imply that Y ∈ Z0,1

∂0,1
and Y ∈ A. Condition Y ∈ Z0,1

∂0,1
reads ∂0,1Y = 0;

since Y ∈ A, there exists β ∈ C1,0 such that ∂1,0Y + ∂0,1β = 0. Finally, Y ∈ ker ρ
implies that there exists θ ∈ Z1

∂0,1
such that

∂1,0(β) + ∂2,−1(Y ) = ∂1,0θ.

Now, we define η = (β − θ) + Y . Then, pr0,1(η) = Y and

∂η = (∂1,0(β − θ) + ∂2,−1Y ) + (∂0,1(β − θ) + ∂1,0Y ) + ∂0,1Y

= [(∂1,0β + ∂2,−1Y )− ∂1,0θ] + [(∂0,1β + ∂1,0Y )− ∂0,1θ] + 0

= 0.

So, η ∈ Z1
∂ is such that p0,1(η) = Y , which implies that p0,1 : Z1

∂ −→ ker ρ
is surjective. It remains to prove that Im(ı) = ker(p0,1). It is clear that if
η ∈ Z1

∂1,0
⊂ C1,0, then (p0,1 ◦ ı)η = pr0,1η = 0, and Im(ı) ⊆ ker(p0,1). Now, let

η ∈ Z1
∂ be such that p0,1η = 0. Then η ∈ C1,0, ∂1,0η = 0, and ∂0,1η = 0. This simply

means that η ∈ Z1
∂1,0

. Hence Im(ı) ⊇ ker(p0,1), as desired.

This proves (1.12) in Theorem 1.2.2.
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1.3.2 Coboundaries

In a similar fashion, there exists a short exact sequence for coboundary spaces. By
definition, it is easy to see that

B1
∂ = {∂1,0f + ∂0,1f | f ∈ C0}, B1

∂0,1
= {∂0,1f | f ∈ C0}, pr0,1(B1

∂) = B1
∂0,1

.

Moreover, we need the following result.

Lemma 1.3.2. We have the following equality:

B1
∂1,0

= Z1
∂1,0
∩ B1

∂ (1.21)

Proof. Clearly, B1
∂1,0
⊂ Z1

∂1,0
. Now, let us prove that B1

∂1,0
⊂ B1

∂ . Observe that

η ∈ B1
∂1,0

is equivalent to η ∈ Z1,0
∂0,1

and the existence of f ∈ Z0,0
∂0,1

such that η = ∂1,0f .

Hence,

∂f = ∂1,0f + ∂0,1f = ∂1,0f = η,

proving that η ∈ B1
∂ , as desired. Conversely, if η ∈ Z1

∂1,0
∩ B1

∂ , then η ∈ C1,0,

∂1,0η = 0, ∂0,1η = 0, and ∂f = η for some f ∈ C0. The last equation means
η = ∂1,0f + ∂0,1f , but condition η ∈ C1,0 implies ∂0,1f = 0 and η = ∂1,0f . Hence,

f ∈ Z0,0
∂0,1

and η = ∂1,0f , proving that η ∈ B1
∂1,0

. This completes the proof.

Proposition 1.3.3. There is a short exact sequence

0→ B1
∂1,0

ı
↪→ B1

∂

pr0,1−−−→ B1
∂0,1
→ 0

where pr0,1 = pr0,1|B1
∂

is the restriction of the (0, 1)-projection pr0,1 : C1 −→ C0,1.

Proof. It is clear by its definition that pr0,1 : B1
∂ −→ B1

∂0,1
is well-defined. On the

other hand, the existence of the natural inclusion ı : B1
∂1,0

↪→ B1
∂ follows equation

(1.21). Moreover, note that B1
∂1,0
⊂ C0,1 = ker(pr0,1) so Im(ı) ⊂ ker(pr0,1). Finally,

if η ∈ ker(pr0,1), then η ∈ B1
∂ and pr0,1η = 0. Therefore, there exists f ∈ C0 such

that

η = ∂1,0f + ∂0,1f, and ∂0,1f = 0.

Hence, η ∈ Z1
∂1,0
∩B1

∂ , which, in virtue of equation (1.21), means that η ∈ B1
∂1,0

, i.e,

η ∈ Im(ı), as desired.

This result proves (1.13) in Theorem 1.2.2.

1.3.3 First cohomology

The following algebraic facts allow us to construct a short exact sequence for the
first cohomology of ∂.
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Lemma 1.3.4. Let V , W be R-vector spaces, with V ⊂ W . Consider subspaces
V0 ⊂ V , W0 ⊂ W . Then, V0 ⊃ V ∩W0, if an only if there is a natural inclusion
(injective map)

ı :
W0

V0
−→ W

V

such that the diagram

V

��

� � // W

��
V
V0

ı // W
W0

commutes: ı[w]0 = [w].

Proof. Define ı : W0
V0
−→ W

V by ı[w]0 := [w], where [w]0 denotes the class of w in V
V0

and [w] the class of w in W
W0

. Is clear that ı is well-defined. Indeed, for w′ ∈ [w]0,
there exists v0 ∈ V0 such that w = w′ + v0. Because of v0 ∈ V0 ⊂ V , it follows that
[w] = [w′]. So, ı is well-defined. On the other hand, this application is R-linear,

ı([w]0 + α[u]0) = ı[w + αu]0 = [w + αu] = [w] + α[u] = ı[w]0 + αı[u]0.

Also, ı it is injective since

ker(ı) =
{

[w]0 ∈ W0
V0

∣∣ [w] = 0
}

=
{

[w]0 ∈ W0
V0

∣∣ w ∈ V }
⊂
{

[w]0 ∈ W0
V0

∣∣ w ∈ V ∩W0

}
=
{

[w]0 ∈ W0
V0

∣∣ w ∈ V0

}
= {0}.

Lemma 1.3.5. Let V , W be R-vector spaces, with V ⊂ W , and p : W −→ W1 a
linear surjective map. Consider a subspace V1 ⊂ W1 such that p(V ) ⊂ V1. Under
this conditions, there exists a linear surjective map p̃ : W

V −→
W1
V1

such that the
following diagram commutes,

W

��

p // W1

��
W
V

p̃ // W1
V1
,

where the down arrows are the canonical projections, that is, [p(w)]1 = p̃[w].

Proof. Let us show that the quotient map p̃[w] := [p(w)]1 is well-defined. Take
w′ ∈ [w]. Then, there exists v ∈ V such that w = w′ + v. Because of p(V ) ⊂ V1, we
have p(v) ∈ V1; therefore, p(w) = p(w′) + p(v) implies that [p(w)]1 = [p(w′)]1. This
shows that p̃ is well - defined. R-linearity is clear,

p̃([w] + α[u]) = p̃[w + αu] = [p(w + αu)]1 = [p(w)]1 + α[p(u)]1 = p̃[w] + αp̃[u].

Now, take w ∈ W1. Since p is surjective, there exists w′ ∈ W such that p(w′) = w.
Note that p̃[w′] = [p(w′)]1 = [w]1, proving that p̃ is surjective.

Finally, the following short exact sequence is a consequence of our previous
results:
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Proposition 1.3.6. There is a short exact sequence

0→ H1
∂1,0

ı
↪→ H1

∂

p̃0,1−−→ ker ρ

B1
∂0,1

→ 0.

Proof. In the following diagram

0

��

0

��

0

��

0 // B1
∂1,0� _

��

� � ı // B1
∂� _

��

pr0,1 // B1
∂0,1� _

��

// 0

0 // Z1
∂1,0

��

� � ı // Z1
∂

��

p0,1 // ker ρ

��

// 0

0 // H1
∂1,0

��

ı // H1
∂

��

p̃0,1 // ker ρ
B1
∂0,1

��

// 0

0 0 0

every column is a short exact sequence by definition, and alse the first two rows,
by Propositions 1.3.3 and 1.3.1. Furthermore, this is a commutative 3× 3 diagram.
Indeed, it is clear that

B1
∂1,0� _

��

� � ı // B1
∂� _

��
Z1
∂1,0

� � ı // Z1
∂

B1
∂� _

��

pr0,1 // B1
∂0,1� _

��
Z1
∂

p0,1 // ker ρ

commute since the down arrows are natural inclusions and the right arrows are the
restrictions of the same maps: in the left-hand side diagram, the natural inclusion,
and in the right-hand side diagram, the map pr0,1 : C1 −→ C0,1. On the other hand,
the diagram

Z1
∂1,0

��

� � ı // Z1
∂

��
H1
∂1,0

ı // H1
∂

commutes if we take ı : H1
∂1,0
−→ H1

∂ as the quotient map given by Lemma 1.3.4

applied to W = Z1
∂ , W0 = B1

∂ , V = Z1
∂1,0

, V0 = B1
∂1,0

, since Lemma 1.3.2 implies
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V0 = V ∩W0 for this case. In a similar fashion,

Z1
∂

��

p0,1 // ker ρ

��

H1
∂

p̃0,1 // ker ρ
B1
∂0,1

commutes by taking p̃0,1 : H1
∂ −→

ker ρ
B1
∂0,1

as the quotient map in Lemma 1.3.5 applied

to p = p0,1, W = Z1
∂ , V = B1

∂ , W1 = ker ρ, V1 = B1
∂0,1

. This can be done since

p0,1(B1
∂) = B1

∂0,1
. Therefore, our first diagram satisfies all hypothesis of Lemma 3.4

in [17, p. 366]. So, we can conclude that the last row of this diagram is a short
exact sequence, as desired.

This completes the proof of Theorem 1.2.2.

Proof of Corollary 1.2.3. Recall that B1
∂0,1
⊆ ker ρ ⊆ A ⊆ Z1

∂0,1
. If the first

cohomology group of ∂0,1 is trivial, then B1
∂0,1

= Z1
∂0,1

and all the spaces in above

coincide. In particular, ker ρ
B1
∂0,1

= {0}, proving the first part of the Corollary. For

the second part, if ∂0,1 = 0, then Z1,0
∂0,1

= C1,0 and ∂1,0 is precisely ∂0,1. Moreover,

morphism ρ is just given by ρ(Y ) = [∂2,−1Y ]. So, ker ρ = {Y ∈ A | ∂2,−1Y is ∂1,0 −
exact}.



Chapter 2

Graded and Bigraded Operators in Manifolds

In this chapter we review the main tools which allow us to apply the results of
Chapter 1 in the context of Poisson cohomology:

• Graded derivations of the algebra of sections on vector bundles [13];

• Frölicher - Nijenhuis calculus, which includes Frölicher - Nijenhuis
decomposition theorem and Frölicher - Nijenhuis bracket [19, 13];

• differential operators in the Cartan’s algebra [14];

• Schouten - Nijenhuis bracket, presented by using the formalism of differential
operators [14, 20];

• theory of generalized connections, which gives rise to bigraded calculus in
manifolds [13].

We begin with the theory of derivation in graded algebras, specially, we will be
focused on the algebra of sections of vector bundles. In particular, for the tangent
bundle case, we present the Frölicher - Nijenhuis decomposition theorem, which
allows us to define the Frölicher - Nijenhuis bracket of vector-valued differential
forms. Then, we review the theory of differential operators in the Cartan’s algebra,
which we apply in order to present the Schouten - Nijenhuis bracket of multivector
fields. Finally, we present the concept of generalized connection in a manifold. This
is a generalization of Ehresmann connections in foliated manifolds and fiber bundles.
With this tool, we study the bigraded decomposition of the exterior differential, and
find the Frölicher - Nijenhuis decomposition of its bigraded components.

2.1 Derivations of graded algebras

Graded and bigraded algebras. Recall that a graded R-algebra of degree k ∈ Z
is an R-algebra (A, ◦), where A is a Z-graded R-module, with

A =
⊕
n∈Z
An,

and ◦ : A×A −→ A satisfies the following condition for any m,n ∈ Z:

Am ◦ An ⊆ Am+n+k.

19
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Every non-zero element of
⋃
n∈ZAn is called homogeneous, and, for each

homogeneous element a, we denote by |a| the only n ∈ Z such that a ∈ An.

We now present the concepts of graded exterior, Lie and Poisson algebras, for
which we customize the notation of the product.

Definition 2.1.1. A graded R-algebra of degree zero (A,∧) is said to be a
graded exterior algebra if the product ∧ satisfies the following properties for
any homogeneous elements a, b, c ∈ A:

• a ∧ (b ∧ c) = (a ∧ b) ∧ c (associativity);

• a ∧ b = (−1)|a||b|b ∧ a (graded symmetry).

Definition 2.1.2. A graded R-algebra (A, [, ]) of degree k is called a Lie algebra if
[, ] is a Lie bracket, i.e., it satisfies the following properties for any homogeneous
elements a, b, c ∈ A:

• [a, b] = −(−1)(|a|+k)(|b|+k)[b, a] (graded skew-symmetry);

• [a, [b, c]] = [[a, b], c] + (−1)(|a|+k)(|b|+k)[b, [a, c]] (graded Jacobi identity).

We will now define the concept of graded Poisson algebra, which is a Lie algebra
compatible with an associative operation via the graded Leibniz rule.

Definition 2.1.3. The triple (A, ◦, [, ]) is called a graded Poisson algebra of
degree k if the following conditions are satisfied:

• (A, ◦) is an associative graded R-algebra of degree zero,

• (A, [, ]) is a Lie R-algebra of degree k, and

• the graded Leibniz rule, [a, b◦ c] = [a, b]◦ c+ (−1)(|a|+k)|b|b◦ [a, c], hold for any
homogeneous elements a, b, c ∈ A.

Example 2.1.4. For any R-graded algebra A, (End•RA, ◦) is a graded associative
R-algebra, where ◦ is the composition of graded endomorphisms. Moreover, the
commutator of graded endomorphisms [E,F ] = E ◦ F − (−1)|E||F |F ◦ E is a
Lie bracket and (End•RA, ◦, [, ]) is a graded Poisson R-algebra of degree zero.
Furthermore, End•RA is an A-module with the action (a,E) 7→ a ∧ E given by
(a ∧ E)(b) := a ∧ E(b).

Also, recall that a bigradedR-algebraA of degree (k1, k2) ∈ Z×Z is anR-algebra
(A, ◦), where A is a Z× Z-graded R-module

A =
⊕
p,q∈Z

Ap,q

and ◦ : A×A −→ A satisfies the following condition for any (m1,m2), (n1, n2) ∈ Z:

A(m1,m2) ◦ A(n1,n2) ⊆ A(m1+n1+k1,m2+n2+k2).
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Every non-zero element of
⋃
p,q∈ZAp,q is called homogeneous and, for each

homogeneous element a, we denote by |a| the only (p, q) ∈ Z×Z such that a ∈ Ap,q.

Now, consider two graded R-algebras (A1, ◦) of degree k, and (A2, ◦) of degree
l, whose respective gradings are

A1 =
⊕
p∈Z
Ap1, A2 =

⊕
q∈Z
Aq2.

The tensor product A := A1⊗A2 can be naturally turned into a bigraded R-algebra
as follows: The bigrading is given by

A =
⊕
p,q∈Z

Ap,q, (2.1)

where Ap,q := Ap1 ⊗ A
q
2 for each (p, q) ∈ Z × Z, and ◦ : A × A −→ A is defined on

decomposable elements α⊗A, β ⊗B by

(α⊗A) ◦ (β ⊗B) := (−1)(|β|+k)(|A|+l)(α ◦ β)⊗ (A ◦B), (2.2)

and then in the whole A × A by linear extension. Moreover, (A•, ◦) has a graded
algebra structure which is compatible with the bigrading given by

An :=
⊕

(p,q)∈Z×Z
p+q=n

Ap,q.

Proposition 2.1.5. Let (A1,∧) be a graded exterior algebra.

1. If (A2,∧) is a graded exterior algebra, then (A•,∧), defined by (2.1) and (2.2),
is a graded exterior algebra.

2. If (A2, [, ]) is a graded Lie algebra of degree k, then (A•, [, ]), defined by (2.1)
and (2.2), is a graded Lie algebra of degree k.

3. If (A1,∧) is an exterior algebra and (A2,∧, [, ]) is a graded Poisson algebra of
degree k, then (A•,∧, [, ]) is a graded Poisson algebra of degree k, where A• is
defined by (2.1) and ∧ and [, ] are defined as in (2.2).

Observe that, for each of the cases of the last Proposition, equation (2.2) reads

(α⊗A) ∧ (β ⊗B) := (−1)|β||A|(α ∧ β)⊗ (A ∧B),

[α⊗A, β ⊗B] := (−1)|β|(|A|+k)(α ∧ β)⊗ [A,B].

Graded derivations on the algebra of sections on vector bundles. We first
present the concept of graded derivation on graded algebras. Later we develop this
notion on sections of tensor product of vector bundles.
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Definition 2.1.6. Let (A, ◦) be a graded R-algebra of degree k. A graded
derivation of degree p on (A, ◦) is an endomorphism D ∈ EndpRA such that, for
any homogeneous elements a, b ∈ A,

D(a ◦ b) = D(a) ◦ b+ (−1)(|a|+k)pa ◦D(b).

The set of all graded derivations of degree p on (A, ◦) is denoted by DerpR(A, ◦),
or simply DerpRA. If we define

Der•RA :=
⊕
p∈Z

DerpRA,

then it can be shown that Der•RA is a Lie R-subalgebra of (End•RA, [, ]).

Example 2.1.7. If (A, [, ]) is a Lie R-algebra of degree k and a0 ∈ A is an
homogeneous element, then its adjoint operator ada0 : A −→ A, defined by
ada0(a) := [a0, a], is a graded derivation, due to the Jacobi identity: ada0 ∈
Der

|a0|+k
R (A, [, ]). Moreover, if (A, ◦, [, ]) is a graded Poisson R-algebra of degree

k, then ada0 ∈ Der
|a0|+k
R (A, ◦), because of the Leibniz rule.

Example 2.1.8. If (A,∧) is a graded exterior algebra, then Der•R(A,∧) is a left
graded A-module with the action (a,D) 7→ a ∧D, where (a ∧D)(b) := a ∧D(b).

Now, consider a vector bundle (E, π,M). Recall that

Γ
∧
E =

⊕
n∈Z

Γ

n∧
E

is a graded exterior C∞M -module, and, in particular, is an R-vector space. We will
study the space of its graded R-derivations, Der•RΓ

∧
E. The first important property

of these derivations is locality. Roughly speaking, local operators are natural with
respect to restrictions to open subsets.

Definition 2.1.9. A graded endomorphism D ∈ EndRΓ
∧
E is called local if, for

each A ∈ Γ
∧
E and U ⊂M such that A|U = 0, then DA|U = 0. More generally, an

R-bilinear map [, ] : Γ
∧
E × Γ

∧
E −→ Γ

∧
E is called local if, for each A ∈ Γ

∧
E

and U ⊂M such that A|U = 0, then [A,B]|U = 0 for all B ∈ Γ
∧
E.

Proposition 2.1.10. If D ∈ Der•RΓ
∧
E is a graded derivation, then D is local.

This property and the fact that Γ
∧
E is a locally-free C∞M -module imply that

graded derivations are determined by its action in C∞M and ΓE. Also, Der•RΓ
∧
E is

a locally free graded left Γ
∧
E-module.

Algebraic Derivations.

Definition 2.1.11. A graded derivation D ∈ Der•RΓ
∧
E is called algebraic if

D(f) = 0 for any f ∈ C∞M .
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Consider the C∞M -module

Γ

( •∧
E ⊗ E∗

)
:=
⊕
k∈Z

Γ

(
k∧
E ⊗ E∗

)
.

It is clear that, for each k ∈ Z, Γ
(∧k E ⊗ E∗

)
is isomorphic to the C∞M -module

consisting of all C∞M -linear alternating applications

K : ΓE∗ × · · · × ΓE∗ −→ ΓE∗,

where ΓE∗ appears k times. In particular, Γ
(∧0E⊗E∗

)
' ΓE∗ and Γ

(∧1E⊗E∗
)
'

End(ΓE∗). Also, Γ
(∧•E ⊗E∗) has a graded left Γ

∧
E-module structure given by

(A,K) 7→ A ∧K, where A ∧K ∈ Γ
(∧p+k E ⊗ E∗

)
, is defined by

(A ∧K)(α1, . . . , αp+k) :=
∑

σ∈S(p,k)

(−1)σA(ασ(1), . . . , ασ(p))K(ασ(p+1), . . . , ασ(p+k))

for any A ∈ Γ
∧pE and K ∈ Γ

(∧k E ⊗ E∗
)
.

Remark 2.1.12. The notation S(p,k) indicates the set of shuffle permutations

S(p,k) = {σ ∈ Sp+k | σ(1) < . . . < σ(p) and σ(p+ 1) < . . . < σ(p+ k)}.

As a first example of algebraic derivation in Γ
∧
E, we present the insertion of

sections to the dual bundle: For each α ∈ ΓE∗, define iα ∈ Der−1
R Γ

∧
E, as iαf := 0

if f ∈ C∞E , and

iαA(α1, . . . , αk) := A(α, α1, . . . , αk), (2.3)

if A ∈ Γ
∧k+1E, k ≥ 0. More generally, the insertion of K ∈ Γ

(∧k+1E⊗E∗
)
, with

k ≥ 0, defines a graded derivation of degree k. Indeed, define iK ∈ DerkRΓ
∧
E as

follows: For f ∈ C∞M , put iKf := 0 and, for A ∈ Γ
∧aE, define

(iKA)(α1, . . . , αk+a) :=
∑

σ∈S(k+1,a−1)

(−1)σA
(
K(ασ(1), . . . , ασ(k+1)), ασ(k+2), . . . , ασ(k+a)

)
.

It is well-known that iK defines an algebraic derivation. Furthermore, any algebraic
derivation is the insertion of an element of

∧
E ⊗ E∗.

Proposition 2.1.13. If D ∈ DerkRΓ
∧
E is algebraic, then there exists a unique

K ∈ Γ
(∧k+1E ⊗ E∗

)
such that D = iK .

A proof of this can be found in [13].
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2.2 Frölicher - Nijenhuis calculus

In this section, some of the previous notions will be considered in the case of
the algebra of graded derivations of the Cartan’s algebra ΩM := Γ

∧
T ∗M . In

other words, we now focus on the case E = T ∗M . We first present the exterior
differential, which is an intrinsic graded derivation in ΩM . Then, we state the
Frölicher - Nijenhuis decomposition theorem, which says that the algebra of graded
derivations splits into the direct sum of two subalgebras: the algebraic derivations
and the derivations which commute with the exterior differential.

Derivations in C∞M and the exterior differential. Here we give a brief review
of vector fields and derivations of C∞M .

Recall that C∞M has a structure of R-algebra with the usual product of real-valued
functions. In this sense, a derivation D ∈ DerRC

∞
M is an R-linear endomorphism

such that

D(f · g) = D(f) · g + f ·D(g).

A way to define derivations of this algebra is using vector fields. Denote by X̄M :=
ΓTM the R-vector space of vector fields. If X ∈ X̄M is a vector field and p ∈ M ,
then Xp ∈ TpM is a tangent vector field, which is a point-wise derivation of C∞M :

Xp(f · g) = Xp(f) · g(p) + f(p) ·Xp(g).

If we define X(f) : M −→ R by X(f)(p) := Xp(f), then X(f) ∈ C∞M , and the
map X : C∞M −→ C∞M , f 7→ X(f) is a derivation of C∞M . Conversely, for any
D ∈ DerRC

∞
M , there exists a unique vector field X such that D = X.

Proposition 2.2.1. We have a C∞M -module isomorphism: X̄M ' DerRC
∞
M .

Since DerRC
∞
M has a Lie R-algebra structure with the commutator [D,E] =

D◦E−E◦D, we can define a Lie bracket of vector fields via the above isomorphism
by [X,Y ](f) := X(Y (f)) − Y (X(f)). The Lie bracket of vector fields allows us to
define the exterior differential in the whole graded algebra ΩM .

Definition 2.2.2. The exterior differential d : ΩM −→ ΩM is the unique graded
derivation d ∈ Der1

RΩM satisfying df(X) := X(f) if f ∈ C∞M , X ∈ X̄M and

dα(X,Y ) := X(α(Y ))− Y (α(X))− α[X,Y ] ∀α ∈ Ω1
M , X, Y ∈ X̄M .

It follows from its definition that, for any α ∈ Ωk
M , we have

dα(X0, . . . , Xk) =

k∑
i=0

(−1)iLXi(α(X0, . . . , X̂i, . . . , Xk))

+
∑
i<j

(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).
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Moreover, because of the Jacobi identity of the Lie bracket of vector fields, the
exterior differential is a coboundary operator: d2 = 0. Thus, the pair (ΩM ,d) is
a cochain complex called de Rham complex. Also, these properties are also
consequence forme the fact that the exterior differential is the differential of a Lie
algebroid in the tangent bundle.

The Lie derivative and Frölicher - Nijenhuis decomposition theorem. In
the previous section we review that every vector - valued differential form induces
an algebraic derivation and conversely. Indeed, if K ∈ Ωk(M ;TM), then iK ∈
Derk−1

R ΩM . Now, we present the notion of the Lie derivative along vector - valued
differential forms. This extends the well - known Cartan’s formula of vector fields.

Definition 2.2.3. For each K ∈ Ωk(M ;TM), the Lie derivative along K, LK , is
defined by LK := [iK , d] ∈ DerkRΩM , where d is the exterior differential.

It follows from the definition of the Lie derivative and the Jacobi identity of
the graded commutator that the exterior differential commutes with any LK , K ∈
Ωk(M ;TM). Note that for k = 0, Ω0(M ;TM) = X̄M . In this particular case, the
identity LX = [iX ,d] = iKd + diK is called the Cartan’s formula. The following are
the Lie derivatives of a q-form β along a vector field X and of a 1-form ω along a
vector-valued 1-form γ:

LXβ(X1, . . . , Xq) = LX(β(X1, . . . , Xq))−
q∑
i=1

β(X1, . . . , [X,Xi], . . . , Xq), (2.4)

Lγω(X,Y ) = γX(ω(Y ))− ω[γX, Y ]− γY (ω(X))− ω[X, γY ] + ω(γ[X,Y ]).

We now review the Frölicher - Nijenhuis decomposition theorem. This result
allows us to parameterize the algebra of graded derivations of ΩM via vector-valued
forms on M . The proof of this theorem can be found, for example, in [19].

Theorem 2.2.4 (Frölicher - Nijenhuis Decomposition). For each D ∈ DerkRΩM ,
there exists unique K ∈ Ωk(M ;TM) and L ∈ Ωk+1(M ;TM) such that D = LK +iL.
This representation for D is called its Frölicher - Nijenhuis decomposition.

From the Frölicher - Nijenhuis decomposition Theorem, one can decide for any
graded derivation D = iL + LK that

• D is algebraic if and only if K = 0;

• D commutes with d if and only if L = 0.

Frölicher - Nijenhuis bracket. If K ∈ Ωk(M ;TM) and L ∈ Ωl(M ;TM) are
vector - valued forms, then LK ∈ DerkRΩM and LL ∈ DerlRΩM are graded derivations
which commute with the exterior differential. It follows from the Jacobi identity
that [LK ,LL] is also a graded derivation commuting with the exterior differential.
Because of the Frölicher - Nijenhuis decomposition theorem, there exists a unique
[K,L] ∈ Ωk+l(M ;TM) such that [LK ,LL] = L[K,L].
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Definition 2.2.5. For each K,L ∈ Ω•(M ;TM) the unique vector valued form
[K,L]FN ∈ Ω•(M ;TM) that satisfies the identity

[LK ,LL] = L[K,L]FN

is called the Frölicher - Nijenhuis bracket of K and L.

As an immediate consequence of definition, the pair (Ω•(M ;TM), [, ]FN ) is a
graded Lie R-algebra. Moreover, if K,L ∈ Ω0(M ;TM) ' X̄M , then the Frölicher
- Nijenhuis bracket [K,L]FN coincides with the Lie bracket [K,L] for vector fields.
In particular, for X,Y ∈ X̄M and K,L ∈ Ω1(M ;TM), we have

[K,X]FN (Y ) =[KY,X] +K[X,Y ],

[K,L]FN (X,Y ) =[KX,LY ]− [KY,LX]− L[KX,Y ] + L[KY,X]

−K[LX, Y ] +K[LY,X] + (LK +KL)[X,Y ]. (2.5)

Below, we find the Frölicher - Nijenhuis decomposition of the exterior differential.

Example 2.2.6. Recall that the exterior differential d is a graded derivation that
commutes with itself ([d,d] = 0). Therefore, there exists K ∈ Ω1(M ;TM) such
that LK = d. Note that the identity IdTM : TM −→ TM induces a vector - valued
1-form IdTM ∈ Ω1(M ;TM) by the identity in X̄M . If ω ∈ Ωk(M), then

iIdTMω(X1, . . . , Xk) =
k∑
i=1

(−1)i−1ω(IdTM (Xi), X1, . . . , Xk) = kω(X1, . . . , Xk).

Therefore, iIdTMω = kω. Furthermore, LIdTMω = [iIdTM , d]ω = iIdTMdω −
diIdTMdω = (k+ 1)dω− kdω = dω, which proves that d = LIdTM . Since the exterior
differential d = LIdTM commutes with any graded derivation of the form LK , we
also have [IdTM ,K]FN = 0 for all K ∈ Ω•(M,TM).

The Lie algebroid differential. The notion of the exterior differential in the
Cartan’s algebra can be generalized to vector bundles via Lie algebroid structures.
Indeed, some of the most important examples of graded derivations in sections of
exterior algebras of vector bundles are coboundary operators. Those are induced by
a Lie algebroid in the dual bundle, and the corresponding coboundary operator is
called Lie algebroid differential.

Definition 2.2.7. A Lie algebroid is a triple (E, ρ, J, K), where E
π−→ M is a

vector bundle, ρ : E −→ TM is a vector bundle morphism, called anchor map, and
(ΓE, J, K) is an R-Lie algebra such that it is satisfied the Leibniz rule

JA, fBK = fJA,BK + Lρ(A)f ·B, ∀A,B ∈ ΓE, f ∈ C∞M .

It can be shown that the anchor map ρ : (ΓE, J, K) −→ (X̄M , [, ]) is a Lie algebra
morphism, where [, ] is the Lie bracket of vector fields: ρJA,BK = [ρ(A), ρ(B)]
∀A,B ∈ ΓE.
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For each x ∈M , ρx(Ex) ⊂ TxM is a subspace of tangent vectors at x. The image
of the anchor map ρ(E) ⊂ TM is a (singular) distribution, which is integrable in
the sense of Stefan-Sussmann (see [7]). Furthermore, a Lie algebroid structure on E
induces a graded derivation on the algebra of sections to

∧
E∗.

Definition 2.2.8. Let (E, ρ, J, K) be a Lie algebroid over M . The Lie algebroid
differential dE : Γ

∧
E∗ −→ Γ

∧
E∗ is defined by

dEα(A0, . . . , Ak) =

k∑
i=0

(−1)iLρ(Ai)(α(A0, . . . , Âi, . . . , Ak))

+
∑
i<j

(−1)i+jα(JAi, AjK, A0, . . . , Âi, . . . , Âj , . . . , Ak).

As consequence of its definition, dE ∈ Der1
RΓ
∧
E∗ and d2

E = 0. Alternatively,
dE is the unique graded derivation in Γ

∧
E∗ satisfying

dEf(A) = Lρ(A)f, dEα(A,B) = Lρ(A)(α(B))− Lρ(B)(β(A))− α(JA,BK).

It is clear that the exterior differential is the differential of the Lie algebroid
(TM, IdTM , [, ]), where IdTM : TM −→ TM is the identity and [, ] : X̄M × X̄M −→
X̄M is the Lie bracket of vector fields. Moreover, for any Lie algebroid (E, ρ, J, K)
with differential dE , the map ρ∗α(A1, . . . , Ak) := α(ρ(A1), . . . , ρ(Ak)) is a cochain
complex morphism ρ∗ : (ΩM , d) −→ (Γ

∧
E∗,dE).

In further sections and chapters, we present examples of Lie algebroid differential.
In foliated manifolds, the leafwise de Rham complex is induced by the differential of
a Lie algebroid defined by the foliation, and the Lichnerowicz - Poisson operator is
the differential of the Lie algebroid induced by the Poisson structure.

2.3 Differential operators on ΩM

In the previous section we studied the algebra Der•RΩM of graded derivations
on the Cartan’s algebra ΩM . It is clear that Der•RΩM is both a graded Poisson
R-subalgebra and an ΩM -submodule of End•RΩM .

In this section, we present the differential operators in ΩM . This subalgebra of
endomorphisms is more general than graded derivations. Our goal is to define the
Schouten - Nijenhuis bracket of multivector fields via differential operators [14].

Example 2.3.1. Any ω ∈ Ωk
M induces a graded endomorphism µω ∈ EndkRΩM by

µω(α) := ω ∧ α. The map µ : (ΩM ,∧) −→ (End•RΩM , ◦) given by ω 7→ µω is an
injective graded algebra morphism. So, we can think of ΩM as a graded R-subalgebra
of (End•RΩM , ◦).

Definition 2.3.2. If D ∈ End•RΩM and r ∈ N ∪ {0}, D is said to be a graded
differential operator of order equal or less than r if, for any α0, . . . , αr ∈ ΩM ,

[. . . [[D,µα0 ], µα1 ], . . . , µαr ] = 0.
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The space of graded differential operators of order equal or less than r is denoted
by Dr(M) for r ≥ 0. Also, define Dr(M) = {0} if r ≤ −1. Alternatively, Dr(M)
can be recursively defined by Dr(M) = {0} for r ≤ −1 and, for r ≥ 0, by

Dr(M) = {D ∈ End•RΩM | [D,µα] ∈ Dr−1(M) ∀α ∈ ΩM}.

Clearly, {0} = D−1(M) ⊂ D0(M) ⊂ · · · ⊂ Dr(M) ⊂ Dr+1(M). For any r, k ∈ Z
denote by Dkr (M) := Dr(M) ∩EndkRΩM the space of differential operators of degree
k and order equal or less than r. Finally, we define the space of graded differential
operators of the Cartan’s algebra ΩM by

D(M) :=
⊕
r∈Z
Dr(M).

Because of the graded symmetry of the exterior product in ΩM , it follows that
[µα0 , µα] = 0 for any α0, α ∈ ΩM , implying that µα0 ∈ D0(M). Conversely,
if D ∈ D0(M), then 0 = [D,µα](1) = D(α) − D(1) ∧ α = D(α) − µD(1)(α)
∀α ∈ ΩM , where 1 ∈ C∞M denotes the constant function. This proves that, for
each D ∈ D0(M), D = µD(1). Therefore, µ : ΩM −→ D0(M) is an isomorphism:
D0(M) ' ΩM .

Every graded derivation in ΩM is a differential operator of order equal or less
than 1; conversely, if D ∈ D1(M), then D −D(1) is a graded derivation. Hence,

D•1(M) = Der•RΩM ⊕ ΩM .

It can be shown that every differential operator in ΩM is of local type. Moreover,
for each nonnegative integer r, Dr(M) is a locally free ΩM -module. The following
result gives an explicit representation of a differential operator in a local chart.

Theorem 2.3.3. Let M be a differential manifold of dimension m and (U,ϕ) a local
chart with coordinate functions xi, 1 ≤ i ≤ m. Then, Dr(U) is a free ΩU -module,
and is generated by{

Lα1
∂1
◦ . . . ◦ Lαm∂m ◦ i∂βd(β)

◦ . . . ◦ i∂β1

}
|α|+d(β)≤r

,

where α, β are multi-indexes such that 1 ≤ β1 < . . . < βd(β) ≤ m. Explicitly, if

D ∈ Dr(U) and denoting β = (βd(β), . . . , β1) for β = (β1, . . . , βd(β)), then

D =

r∑
|α|+d(β)=0

[[D,xα], (dx)β](1)Lα1
∂1
◦ . . . ◦ Lαm∂m ◦ i∂βd(β)

◦ . . . ◦ i∂β1
.

As consequence of the previous theorem, we have:

Proposition 2.3.4. Every differential operator D ∈ Dr(M) is determined by is
action on forms of degree equal or less than r.
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Proof. Consider each coefficient in the local representation of D, [[D,xα], (dx)β](1).
Since d(β) ≤ r, if we expand each coefficient, then the only terms appearing are the
action of D on local differential forms of degree equal or less than r.

Corollary 2.3.5. If D ∈ D−kr , with k > r, then D = 0.

Finally, note that D(M) is a graded Poisson R-subalgebra of (End•RΩM , ◦, [, ])
with the composition and the graded commutator.

Proposition 2.3.6. For all r, s ≥ 0,

1. Dr(M) ◦ Ds(M) ⊂ Dr+s(M),

2. [Dr(M),Ds(M)] ⊂ Dr+s−1(M).

The proof can be done by induction on the sum of the orders r and s, and using
the recursive definition of the space of differential operators Dr(M).

The algebra of multivector fields. The Frölicher - Nijenhuis decomposition
theorem allows us to parameterize the graded derivations in ΩM by vector valued
forms (Theorem 2.2.4). We now consider a class of differential operators, which are
those of order k and degree −k, for each k ∈ Z. We will show that such operators
can be parameterized using the exterior algebra of multivector fields.

The graded exterior C∞M -algebra of multivector fields (χM ,∧) is defined by χM :=

Γ
∧
TM , where ∧ is the exterior product. It is clear that χkM := Γ

∧k TM is
isomorphic to the C∞M -module of all k-linear alternating applications

A : Ω1
M × · · · × Ω1

M −→ C∞M .

In particular, χ0
M ' C∞M and χ1

M ' X̄M .

On the other hand, fix a local chart (U,ϕ). For α ∈ Ωk
M and A ∈ χkM consider

their local expressions α|U = 1
k!αi1...ikdϕi1 ∧ . . . ∧ dϕik and A|U = 1

k!A
j1...jk ∂

∂ϕj1
∧

. . . ∧ ∂
∂ϕjk

. Now, define locally 〈α,A〉 := 1
k!αi1...ikA

i1...ik . It is not difficult to check

that 〈, 〉 : χkM ×Ωk
M −→ C∞M is a well - defined C∞M -linear operation, called pairing.

On decomposable elements,

〈α1 ∧ . . . ∧ αk, X1 ∧ . . . ∧Xk〉 = det[αi(Xj)].

Moreover, the pairing induces a canonical isomorphism from χkM to (Ωk
M )∗ given by

A 7→ 〈·, A〉. Hence, χkM ' (Ωk
M )∗.

Parametrization of differential operators of order k and degree −k. There
exists an insertion operator of multivector fields in ΩM . For a k-vector field A ∈ χkM ,
a n-form α ∈ Ωn

M and p ∈M we define

(iAα)(p) := Aj1...jk(p)

(
i ∂

∂xj1

◦ . . . ◦ i ∂

∂xjk

)
α(p),
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where Aj1...jk ∂
∂xj1

∧ . . . ∧ ∂
∂xjk

is the local representation of A in some chart

(U, x1, . . . , xm) around p. By straightforward calculation, it can be shown that iAα
is a well-defined (n− k)-differential form. Furthermore, we have

(iAα)|U = Aj1...jk i ∂

∂ϕj1

◦ . . . ◦ i ∂

∂ϕjk

(α|U ),

which shows that iA is locally the composition of k insertions of vector fields. By
Proposition 2.3.6, iA ∈ D−kk (M), called insertion of A ∈ χM .

It is clear that A 7→ iA is C∞M -linear. Also, if X ∈ χ1
M = X̄M , then iX coincides

with the insertion of vector fields introduced in Section 2.1. Moreover, iU∧V = iU ◦iV .
Conversely, if the map i : χM −→ D(M) satisfies the properties:

1. if X ∈ χ1
M = X̄M , then iX coincides with the insertion operator defined for

vector fields (see Equation (2.3)),

2. for any U, V ∈ χM , iU∧V = iU ◦ iV ,

then iA is the insertion of A for each A ∈ χM . Indeed, recall that multivector fields
are sum of decomposable elements. By the property 2, the map i is determined on
vector fields. Thus, property 1 determines such map. Moreover,

i : (χM ,∧) −→

(⊕
l∈Z
D−ll (M), ◦

)

given by U 7→ iU is a graded C∞M -algebra morphism.

We now show that the space of differential operators D−kk (M) is parameterized

by k-vector fields. More precisely, for each D ∈ D−kk (M), there exists A ∈ χkM such

that D = iA. Thus, the map χkM 3 A 7→ iA ∈ D−kk (M) is an isomorphism.

Lemma 2.3.7. Every differential operator in D−kk (M) is determined by its action
on the space differential forms Ωk

M .

Proof. Fix D ∈ D−kk (M). By Proposition 2.3.4, D is determined by is action on
Ωp
M , with 0 ≤ p ≤ k. On the other hand, for any α ∈ Ωp

M , with p < k, we have

D(α) ∈ Ωp−k
M = {0}, since p − k is negative. Therefore, D is zero on forms of

degree less than k, proving that D is determined only by its restriction to Ωk
M ,

D|ΩkM : Ωk
M −→ C∞M .

Proposition 2.3.8. The map

i : (χM ,∧) −→

(⊕
k∈Z
D−kk (M), ◦

)

is a graded C∞M -algebra isomorphism.
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Proof. We already proved that the above map is a graded C∞M -algebra morphism.
So, it suffices to prove that each D ∈ D−kk (M) is the insertion of a multivector field.

Note that, if f ∈ C∞M , then [D, f ] ∈ D−kk−1(M) = {0}. Thus, for any α ∈ Ωk
M ,

0 = [D, f ](α) = D(fα)−fD(α), proving that D|ΩkM : Ωk
M −→ C∞M is C∞M -linear. So,

D|ΩkM ∈ (Ωk
M )∗. Therefore, there exists a unique B ∈ χkM such that D(α) = 〈α,B〉

∀α ∈ Ωk
M . Taking A = (−1)

k(k−1)
2 B, we get D(α) = 〈α,B〉 = iAα, ∀α ∈ Ωk

M . This
shows that D and iA are differential operators of degree −k and order k coinciding
in Ωk

M . By Lemma 2.3.7, they coincide on ΩM , as desired.

Remark 2.3.9. Along this work the insertion of multivector fields is defined to have
an algebra isomorphism: iX1∧...∧Xk = iX1 ◦ . . . ◦ iXk . However, it is pretty common
to find the following definition (see, for example, [7, p. 30] [16, p. 254] o [32, p.
9]): iX1∧...∧Xkω = ω(X1, . . . , Xk) ∀ω ∈ Ωk

M (note the difference of the symbols i and
i). Both operators are related by the formula

iA = (−1)
|A|(|A|−1)

2 iA.

The definition presented in this chapter coincides with the given in [14, p. 266].
We prefer to work with it because of its algebraic properties and its relation to the
Schouten - Nijenhuis bracket.

2.4 The Schouten - Nijenhuis bracket

In this part, the notion of Lie derivative along vector fields is extended to multivector
fields, by means of the Cartan’s formula. This notion, and Proposition 2.3.8, will
be used to define the Schouten - Nijenhuis bracket.

Let M be a differential manifold. Recall that the Lie derivative of a tensor field
τ ∈ T rs (M) along a vector field X is defined in terms of its flow FltX by

LXτ :=
d

dt

∣∣∣∣
t=0

(FltX)∗τ.

It turns out that LXτ ∈ T rs (M). Moreover, for Xi ∈ X̄M and αj ∈ Ω1
M ,

LXτ(X1, . . . , Xs;α1, . . . , αr) = LX(τ(X1, . . . , Xs;α1, . . . , αr))

−
∑

τ(X1, . . . ,LXXi, . . . , Xs;α1, . . . , αr)

−
∑

τ(X1, . . . , Xs;α1, . . . ,LXαj , . . . , αr).

In case of functions, vector fields and 1-forms, this is

LXf = X(f), LXY = [X,Y ], (LXα)(Y ) = X(α(Y ))− α[X,Y ].

For differential forms, we get the formula (2.4). So, LX ∈ Der0
RΩM . Also, for

multivector fields, we have LX ∈ Der0
RχM , since

LXA(α1, . . . , αk) = LX(A(α1, . . . , αk))−
k∑
i=1

A(α1, . . . ,LXαi, . . . , αk).
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Now, it is presented the notion of Lie derivative along multivector fields as differential
operators in ΩM , generalizing the Cartan’s formula for vector fields.

Definition 2.4.1. Let A ∈ χkM be a multivector field. The Lie derivative along

A, LA ∈ D−(k−1)
k (M), is defined by

LA := [iA,d] = iAd− (−1)kdiA.

It is easy to see that [LA, d], due to the Jacobi identity. Now, note that if A ∈ χkM
and B ∈ χlM , then LA ∈ D−k+1

k (M), iB ∈ D−ll (M), and [LA, iB] ∈ D−(k+l−1)
k+l−1 (M).

By Proposition 2.3.8, there exists a unique (k + l − 1)-vector field whose insertion
coincides with [LA, iB].

Definition 2.4.2. Let A,B ∈ χM be multivector fields. The unique multivector field
[A,B] ∈ χM such that

i[A,B] = [LA, iB] (2.6)

is called the Schouten - Nijenhuis bracket of A and B.

Because of the Jacobi identity for the graded commutator of differential
operators, the Schouten - Nijenhuis bracket satisfies the following relation, given
in terms of the Lie derivative along multivector fields:

L[A,B] = [LA,LB]. (2.7)

Alternatively, equation (2.7) could have been used as definition of the Schouten
- Nijenhuis bracket, excepting for some low-degree cases.

As an immediate consequence of these definitions, the triple (χM ,∧, [, ]) is a
graded Poisson algebra of degree −1 with the exterior product ∧ and the Schouten
- Nijenhuis bracket [, ] for multivector fields. Explicitly, the Schouten - Nijenhuis
bracket satisfies the following properties:

• [A,B] = −(−1)(|A|−1)(|B|−1)[B,A] (graded skew-symmetry);

• [A, [B,C]] = [[A,B], C] + (−1)(|A|−1)(|B|−1)[B, [A,C]] (graded Jacobi identity);

• [A,B ∧ C] = [A,B] ∧ C + (−1)(|A|−1)|B|B ∧ [A,C] (graded Leibniz rule).

Moreover, because of the Cartan’s formula, the Lie bracket of vector fields
satisfies (2.6), showing that the Schouten - Nijenhuis and the Lie brackets coincide
on vector fields. Therefore, we denote by [, ] both the Schouten - Nijenhuis and Lie
brackets without ambiguity. In other words, (χM ,∧, [, ]) is the natural algebraic
extension of (X̄M , [, ]) to multivector fields. Finally, the Schouten - Nijenhuis
bracket is of local type since differential operators are of local type.

The following are important properties of the Schouten - Nijenhuis bracket.
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Proposition 2.4.3. Let X,X1, . . . , Xk, Y1, . . . , Yl ∈ X̄M , B ∈ χM , and f, g ∈ C∞M .
The Schouten - Nijenhuis bracket satisfies the following properties:

1. [f,B] = −idfB,

2. [X,B] = LXB,

3. [X1 ∧ . . . ∧Xk, B] =
∑k

i=1(−1)(k−i)(|B|−1)X1 ∧ . . . ∧ LXiB ∧ . . . ∧Xk.

4. [X1 ∧ . . . ∧ Xk, Y1 ∧ . . . ∧ Yl] =
∑k

i=1

∑l
j=1(−1)k−i+j−1X1 ∧ . . . X̂i . . . ∧ Xk ∧

[Xi, Yj ] ∧ Y1 ∧ . . . Ŷj . . . ∧ Yl.

5. [X1 ∧ . . . ∧ Xk, Y1 ∧ . . . ∧ Yl] =
∑k

i=1

∑l
j=1(−1)i+j [Xi, Yj ] ∧ X1 ∧ . . . X̂i . . . ∧

Xk ∧ Y1 ∧ . . . Ŷj . . . ∧ Yl.

6. [f,X1 ∧ . . . ∧Xk] =
∑k

i=1(−1)iLXifX1 ∧ . . . X̂i . . . ∧Xk.

Proof. In 1 and 2 suppose that |B| = k.

1. If ω ∈ Ωk−1
M , then

i[f,B]ω = [Lf , iB]ω = [[if , d], iB]ω = [[µf , d], iB]ω = −[µdf , iB]ω

= −µdf iBω + (−1)kiBµdfω = (−1)kiB(df ∧ ω)

= (−1)kidf∧ωB = −iω(idfB) = −iidfBω.

2. Without lost of generality, assume that B = X1 ∧ . . . ∧ Xk. By the Leibniz
rule of the Schouten - Nijenhuis bracket and the exterior product in χM ,

[X,B] =
k∑
i=1

X1 ∧ . . . ∧ [X,Xi] ∧ . . . ∧Xk =
k∑
i=1

X1 ∧ . . . ∧ LXXi ∧ . . . ∧Xk = LXB.

3. It follows from the Leibniz rule and incise 2.

4. Denote B = Y1 ∧ . . . ∧ Yl. Applying incise 3,

[X1 ∧ . . . ∧Xk, Y1 ∧ . . . ∧ Yl] =
k∑
i=1

(−1)k−iX1 ∧ . . . X̂i . . . ∧Xk ∧ LXiB.

Since LXi ∈ Der0
RχM , LXiB =

∑m
j=1(−1)j−1[Xi, Yj ] ∧ Y1 ∧ . . . Ŷj . . . ∧ Yl.

Substituting this equation in the previous one, we get the desired result.

5. By the graded symmetry of the exterior product, it is equivalent to incise 4.

6. It follows from the Leibniz rule and the incise 1.

Recall that the Lie bracket of vector fields is natural respect to pullbacks and,
in particular, to restrictions. Therefore, it follows from incise 4 of Proposition that
the Schouten - Nijenhuis bracket is also natural.
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Remark 2.4.4. There are various ways to introduce the Schouten - Nijenhuis
bracket. Basically, there exist two different Schouten - Nijenhuis brackets of
multivector fields in the literature. The one presented here coincides with the used
in [6], [21], [20] and [18] but it differs to the used in [16] or [32]. The Schouten
- Nijenhuis bracket presented in these books satisfies the graded symmetry of degree
zero, Leibniz rule and a third one, similar to the graded Jacobi identity:

[P,Q]SN = (−1)|P ||Q|[Q,P ]SN ,

[P,Q ∧R]SN = [P,Q]SN ∧R+ (−1)(|P |−1)|Q|Q ∧ [P,R]SN ,∑
(P,Q,R)

(−1)|P |(|R|−1)[P, [Q,R]SN ]SN = 0.

Also, is characterized by the following property

[X1 ∧ . . . ∧Xp, B]SN =

p∑
i=1

(−1)i+1X1 ∧ . . . ∧ X̂i ∧ . . . ∧Xp ∧ LXiB.

Comparing this with Proposition 2.4 incise 3, we deduce the following relation
between this Schouten - Nijenhuis bracket and the one presented in this work:

[P,Q]SN = (−1)|P |−1[P,Q].

2.5 Generalized connections in manifolds

In this section, following [13], we present the concept of generalized connection, i.e.,
a tangent bundle endomorphism over the identity which is a projection of constant
rank. Also, we introduce the concept of bigraded manifold, which is a manifold
equipped with generalized connection. A generalized connection is equivalent to a
splitting of the tangent bundle by two distributions. The notions of curvature and
co-curvature are presented, which are a measure of the integrability of the splitting
distributions.

Generalized connections and bigrading. Let M be a differential manifold. A
generalized connection in M is a vector valued 1-form γ ∈ Ω1(M ;TM) such that
the corresponding vector bundle endomorphism γ : TM −→ TM satisfies γ2 = γ.
If γ has constant rank, then V := Im(γ) is a regular distribution, called vertical
distribution. Also, its kernel H := ker(γ) is a regular distribution satisfying

TM = H⊕ V, (2.8)

called horizontal distribution. Equivalently, each splitting of the form (2.8)
induces a connection γ in M , defined as the projection on the vertical subbundle:
γ := prV.

Remark 2.5.1. For the rest of this work, the term generalized connection will only
refer to a generalized connection of constant rank.
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A vector field X tangent to H, X ∈ ΓH, is called horizontal vector field. A
vector field Y tangent to V, X ∈ ΓV, is called vertical vector field. Note that a
connection in M induces the splitting X̄M = ΓH⊕ΓV for vector fields. We also have
a splitting in the cotangent bundle T ∗M = V0 ⊕H0, where V0 is the annihilator of
V and H0 is the annihilator of H. Moreover, we have the following splittings,

k∧
T ∗M =

⊕
p+q=k

(
p∧
V0 ∧

q∧
H0

)
, Ωk

M =
⊕
p+q=k

Ωp,q
M ,

where Ωp,q
M = Γ

(∧pV0 ∧
∧q H0

)
is identified with the C∞M -module of (p + q)-linear

applications α : X̄M ×· · ·× X̄M −→ C∞M such that, ω(X1, . . . , Xr, Y1, . . . , Ys) = 0 for
all r, s ∈ Z with r 6= p, Xi ∈ ΓH, Yj ∈ ΓV. In the same fashion, we have

k∧
TM =

⊕
p+q=k

(
p∧
H ∧

q∧
V

)
, χkM =

⊕
p+q=k

χp,qM ,

with χp,qM = Γ (
∧pH ∧

∧q V). Therefore, a connection γ in M induces the following
bigrading of the tensor algebras ΩM and χM :

ΩM =
⊕
p,q∈Z

Ωp,q
M , χM =

⊕
p,q∈Z

χp,qM . (2.9)

Those are bigraded algebras with their respective exterior products, and the
homogeneous elements in Ωp,q

M and χp,qM are called differential forms and multivector
fields of bidegree (p, q). Each α ∈ Ωk

M has a decomposition of the form

α =
∑
p+q=k

αp,q, (2.10)

where αp,q ∈ Ωp,q
M . The right-hand side in equation (2.10) is called bigraded

decomposition of α. Similarly, multivector fields have a bigraded decomposition.
Furthermore, Since M is finite dimensional, the sums in (2.9) are finite. So, there is
a bigrading for their graded endomorphisms, derivations, and differential operators

EndkRχM =
⊕
p+q∈Z

Endp,qR χM , EndkRΩM =
⊕
p+q∈Z

Endp,qR ΩM ,

DerkRχM =
⊕
p+q∈Z

Derp,qR χM , DerkRΩM =
⊕
p+q∈Z

Derp,qR ΩM ,

Dkr (M) =
⊕
p+q∈Z

Dp,qr (M).

This motivates the following definition.

Definition 2.5.2. A bigraded manifold is a pair (M,γ), where M is a differential
manifold and γ : TM −→ TM is a generalized connection in M of constant rank.
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Example 2.5.3. Let (M,γ) be a bigraded manifold. Recall that every vector-valued
form induces an algebraic derivation given by its insertion. Fix α ∈ Ωp,q

M ,
X1, . . . , Xp ∈ ΓH and Y1, . . . Yq ∈ ΓV. Note that

iγα(X1, . . . , Xp, Y1, . . . Yq) =
p∑
i=1

α(X1, . . . , γXi, . . . , Xp, Y1, . . . Yq) +

q∑
i=1

α(X1, . . . , Xp, Y1, . . . , γYi, . . . Yq) =

q∑
i=1

α(X1, . . . , Xp, Y1, . . . , Yi, . . . Yq) = qα(X1, . . . , Xp, Y1, . . . Yq),

so iγα = qα, where q is the vertical bidegree of α. Similarly, iIdTM−γα = pα, where
p is the horizontal bidegree of α.

Define the following vector valued 2-forms R,R′ ∈ Ω2(M ;TM) by

R(X,Y ) = γ[(IdTM − γ)X, (IdTM − γ)Y ], (2.11)

R′(X,Y ) = (IdTM − γ)[γ(X), γ(Y )], (2.12)

where R is called the curvature and R′ the co-curvature of γ. Note that V is
involutive if and only if R′ = 0; also, H is involutive if and only if R = 0. A
connection γ in M , is related to its curvature and its co-curvature by [γ, γ]FN =
2R + 2R′, where [, ]FN denotes the Frölicher - Nijenhuis bracket for vector valued
forms (see formula (2.5)). Also, the Bianchi identities

[γ,R+R′]FN = 0, [R, γ]FN = iRR
′ + iR′R (2.13)

are satisfied (see also equation (3.22)).

Remark 2.5.4. A generalized connection γ in M induces a splitting on the space
of tensor fields in bigraded components. In particular, it is easy to verify that R ∈
Ω2,0(M,V) and R′ ∈ Ω0,2(M,H). Hence, the bigraded decomposition of [γ, γ]FN is

[γ, γ]FN = 2R+ 2R′.

A generalized connection γ is called flat if [γ, γ]FN = 0. By a bidegree argument,
this is equivalent to R = 0 and R′ = 0. In this case, the horizontal and vertical
distributions are both integrable, due to Frobenius Theorem. The resulting foliations
F1 and F2 are called a co-foliation, which is TF1 ⊕ TF2 = TM .

Remark 2.5.5. Note that if γ is a connection in M , then IdTM − γ is also a
connection in M . Furthermore, Im(IdTM−γ) = ker(γ), Im(γ) = ker(IdTM−γ).
So, the vertical distribution of γ and the horizontal distribution of (IdTM − γ)
coincide, an conversely. Thus, Rγ = R′IdTM−γ and R′γ = RIdTM−γ.



2.5. GENERALIZED CONNECTIONS IN MANIFOLDS 37

The exterior differential in bigraded manifolds. Let γ be a connection in the
differential manifold M . This induces a bigrading in ΩM by

ΩM =
⊕
p,q∈Z

Ωp,q
M ,

where Ωp,q
M = Γ

(∧pV0 ∧
∧q H0

)
. With this bigrading, ΩM becomes a bigraded

algebra with the exterior product, i.e, Ωp,q
M ∧ Ωr,s

M ⊂ Ωp+r,q+s
M . On the other hand,

every graded operator has a bigraded decomposition. We now show that the exterior
differential d ∈ Der1

RΩM , has a bigraded decomposition of the form

d = d1,0 + d0,1 + d2,−1 + d−1,2, (2.14)

regardless of the connection γ. Moreover, the bigraded components in (2.14) are
graded derivations. Their Frölicher - Nijenhuis decompositions depend on γ, its
curvature R ∈ Ω2(M ;TM) and its co-curvature R′ ∈ Ω2(M ;TM).

Theorem 2.5.6. Let (M,γ) be a bigraded manifold, R the curvature and R′ the
co-curvature of γ. The bigraded components of the exterior differential are graded
derivations whose Frölicher - Nijenhuis decompositions are given by

d1,0 = LIdTM−γ + 2iR − iR′ , d0,1 = Lγ − iR + 2iR′ , d2,−1 = −iR, d−1,2 = −iR′ .

Proof. Let d =
∑

i+j=1 di,j be the bigraded decomposition of the exterior differential.

First, note that if j ≤ −2, then di,j = 0. Indeed, if α ∈ Ωk
M , with k ≤ 1, then

di,jα = 0 because of its negative vertical bidegree. Since di,j is a graded derivation,
this implies that di,j = 0. Similarly, if i ≤ −2, then di,j = 0. Therefore, the only
non-zero bigraded components of d are d1,0, d0,1, d2,−1, d−1,2. To find their Frölicher
- Nijenhuis decompositions, we begin by proving d2,−1 = −iR. Observe that, if
f ∈ C∞M , then d2,−1f = 0, since its vertical bidegree is negative. Hence, d2,−1 is

an algebraic derivation. Now, fix α ∈ Ω1,0
M and µ ∈ Ω0,1

M . Note that d2,−1α = 0
because of its bidegree, and −iRα = 0 since R values on ΓV. On the other hand,
d2,−1µ ∈ Ω2,0. Evaluating in horizontal vector fields X,Y ∈ ΓH, we get

d2,−1µ(X,Y ) = X(µ(Y ))− Y (µ(X))− µ[X,Y ] = −µ[X,Y ],

−iRµ(X,Y ) = −µ(R(X,Y )) = −µ(γ[X,Y ]) = −µ[X,Y ].

So, −iR and d2,−1 coincide on 1-forms, Thus, d2,−1 = −iR. The proof of d−1,2 = −iR′

is completely analogous. Now, it follows from Example 2.5.3 that, for any α ∈ Ωp,q
M ,

Lγα =iγdα− diγα = iγ(d1,0α+ d0,1α+ d2,−1α+ d−1,2α)− qdα
=(qd1,0α+ (q + 1)d0,1α+ (q − 1)d2,−1α+ (q + 2)d−1,2α)

− q(d1,0α+ d0,1α+ d2,−1α+ d−1,2α) = d0,1α− d2,−1α+ 2d−1,2α

=d0,1α+ iRα− 2iR′α.

This proves that d0,1 = Lγ − iR + 2iR′ . Finally, it follows from Example 2.2.6 that

d1,0 = d− d0,1 − d2,−1 − d−1,2 = LIdTM−γ + 2iR − iR′ ,

completing the proof.
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Corollary 2.5.7. Let (M,γ) be a bigraded manifold. If the vertical distribution V
is involutive, then the bigraded components of the exterior differential satisfy

d−1,2 = 0, d1,0 = LIdTM−γ + 2iR, d0,1 = Lγ − iR, d2,−1 = −iR, d2
1,0 = LR.

In particular, H is also an involutive distribution if and only if d1,0 is a coboundary.

Proof. Recall that V is involutive if and only if R′ = 0. By Theorem 2.5.6, it remains
to prove that d2

1,0 = LR. Since d = d1,0 + d0,1 + d2,−1 and d2 = 0, it follows, from
the bigraded equation (1.11), that

d2
1,0 = −(d0,1d2,−1 + d0,1d2,−1) = −[d0,1, d2,−1] = −[d, d2,−1] = [d, iR] = LR.

Thus, d2
1,0 = 0 if and only if R = 0, which is equivalent to the involutivity of H.

Some of the results of Corollary 2.5.7 can be found, for example, in [30].

2.6 Ehresmann connections in fiber bundles

A fiber bundle is a triple (E, π,B), where π : E −→ B is a surjective submersion
between differential manifolds E and B. The manifold E is called the total space,
B is the base space and π is called projection. It is well-known that every fibred
manifold has an intrinsic involutive distribution. Indeed, note that the diagram

TE TB

E B
?

τE

-π∗

?

τB

-
π

commutes. So, π∗ : TE −→ TB is a vector bundle morphism over the surjective
submersion π. Thus, the kernel distribution V, Vp := ker(π∗p), is a subbundle
of TE of codimension dimB, which is called vertical subbundle or vertical
distribution.

On the other hand, each fiber Eb := π−1(b) is a regular submanifold of E,
of codimension dimB. The fibers define a foliation F in E, by F = {Eπ(b)}b∈B,
which is called characteristic foliation of E. It is clear that V = TF , where
TpF = TpEπ(p), i.e., the vertical distribution at each point identifies with the
tangent subspace to the fiber passing at the point. Thus, V is involutive.

The involutivity of the vertical subbundle implies that the space of vertical
vector fields X̄V(E) := ΓV is a Lie subalgebra of vector fields. Moreover, the exterior
algebra of vertical multivector fields χV(E) := Γ

∧
V is a Poisson R-subalgebra

of multivector fields (χM ,∧, [, ]) with the Schouten - Nijenhuis bracket. Also,
the algebra of horizontal differential forms, ΩV0(E) := Γ

∧
V0, where V0 ⊂ T ∗M
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denotes de annihilator of V, is an exterior subalgebra of the Cartan’s algebra
(ΩM ,∧), but it fails to be a sub-complex of the de Rham complex (ΩM ,d).

Projectability properties. Involutive distributions and the fiber bundle
case. It is useful to review the concept of projectable functions, projectable vector
fields and projectable differential forms respect to a regular involutive distribution.

Definition 2.6.1. Let M be a differential manifold, D ⊂ TM a regular and
involutive distribution in M and D0 ⊂ T ∗M the annihilator subbundle.

• A smooth function f ∈ C∞M is called projectable if df ∈ ΓD0.

• A vector field X ∈ X̄M is said to be projectable if [X,ΓD] ⊂ ΓD.

The R-vector spaces of projectable functions and vector fields are respectively denoted
by C∞pr (M,D) and X̄pr(M,D).

Equivalently, f ∈ C∞pr (M,D) if and only if LY f = 0, ∀Y ∈ ΓD. Furthermore,
projectable functions and vector fields satisfy the following properties:

1. X ∈ X̄pr(M,D) if and only if [X,χD(M)] ⊂ χD(M),

2. f ∈ C∞pr (M,D) if and only if [f, χD(M)] = 0,

3. C∞pr (M,D) is a sub-ring of C∞M ,

4. X̄pr(M,D) is a C∞pr (M,D)-submodule of X̄M ,

5. X̄pr(M,D) is a Lie R-subalgebra of
(
X̄M , [, ]

)
,

6. (ΓD, [, ]) is a Lie C∞pr (M,D)-algebra with the usual Lie bracket for vector fields,

7. (χD(M),∧, [, ]) is a Poisson C∞pr (M,D)-algebra of degree −1 with the Schouten
- Nijenhuis bracket.

The proof of 1, 2 and 4 follows from the Leibniz rule of the Schouten - Nijenhuis
bracket of multivector fields; the proof of 3 follows from d(fg) = gdf + fdg;
properties 5 and 6 follow from the Jacobi identity of the Lie bracket; and property 7
follow from the Leibniz rule and Jacobi identity of the Schouten - Nijenhuis bracket.
Also, vector fields are locally generated by projectable vector fields.

Definition 2.6.2. A differential k-form α ∈ Ωk
M is projectable if

iY α = 0, (2.15)

iY dα = 0, (2.16)

for any vector field Y ∈ ΓD. The space of projectable differential k-forms is denoted
by Ωk

pr(M,D). The graded vector space of projectable differential forms is defined by

Ω•pr(M,D) :=
⊕
k∈Z

Ωk
pr(M,D).
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It is clear by equation (2.15) that Ωk
pr(M,D) ⊂ Ωk

D0(M). Moreover, (2.15), (2.16)
are equivalent to iY α = 0 and LY α = 0. Projectable differential forms satisfy:

1. Ω•pr(M,D) is a graded exterior subalgebra of (ΩD0(M),∧).

2. Ω•pr(M,D) is a cochain sub-complex of (ΩM ,d).

3. α ∈ Ωk
D0(M) is projectable if and only if, for any Xi ∈ X̄pr(M,D),

α(X1, . . . , Xk) ∈ C∞pr (M,D).

4. Ω0
pr(M,D) = C∞pr (M,D).

5. Ω•pr(M,D) is a C∞pr (M,D)-submodule of ΩM .

First property follows from the fact that, for any Y ∈ ΓD, iY and LY are graded
derivations of the exterior product. Second property is immediate. Third property
follows from equation (2.4). The last two properties follows from the previous ones.
Moreover, projectable differential forms locally generate horizontal differential forms.

Remark 2.6.3. When the choice of the involutive distribution D in M is clear,
we simplify the notation referring to projectable structures. We respectively denote
C∞pr (M), X̄pr(M) and Ωpr(M) the sets of projectable functions, vector fields and
projectable differential forms.

Now, we review more properties of projectable structures when those are defined
on a fiber bundle, and the involutive distribution is the vertical distribution.

Let (E, π,B) be a fiber bundle, and V its vertical subbundle. It can be shown,
for instance, that a smooth function f ∈ C∞E is projectable if and only if there
exists g ∈ C∞B such that f = g ◦ π, i.e., C∞pr (E) = π∗C∞B . In this case, we denote by
π∗f the unique g ∈ C∞B satisfying f = g ◦ π. It is clear that π∗ : C∞pr (E) −→ C∞B is
a ring isomorphism. Also, X ∈ X̄E is projectable if and only if it is π-related to a
vector field u ∈ X̄B, i.e., π∗ ◦X = u ◦ π.

We will see that projectable differential forms Ωpr(E) actually project to
differential forms in the base space. Before that, we need to review the concepts of
Ehresmann connection and horizontal lift.

Ehresmann connections. An Ehresmann connection in a fiber bundle is a
generalized connection such that its vertical distribution is the vertical subbundle
V = ker(π∗). Equivalently, it is a choice of a complementary distribution to the
vertical subbundle.

Definition 2.6.4. An Ehresmann connection in the fiber bundle (E, π,B) is
a generalized connection γ in E such that its vertical distribution coincides with
the vertical subbundle of (E, π,B). In other words, is a vector bundle morphism
γ : TM −→ TM satisfying γ2 = γ and Im(γ) = V, where V = ker(π∗). Equivalently,
an Ehresmann connection is a distribution H complementary to V: TE = H⊕ V.
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By means of an Ehresmann connection one can define the horizontal lift of
vector fields in the base space to the total space. In particular, this allows us to
project horizontal projectable differential forms. Since V = ker(π∗), the restriction
π∗|H : H −→ TB is a vector bundle isomorphism over π. This induces an
injective morphism of modules on their sections, horγ : (X̄B, C

∞
B ) −→ (ΓH, C∞pr (E)),

called the horizontal lift of vector fields. For each u ∈ X̄B the vector field
horγ(u) ∈ ΓH ⊂ X̄E is said to be the horizontal lift of u ∈ X̄B. Point-wisely, it
is given by

horγ(u)p := (π∗|H)−1(uπ(p)).

Note that horγ(u) and u are π-related. Moreover, horγ(u) is the only horizontal
vector field π-related to u. Therefore, any horizontal projectable vector field is the
horizontal lift of some vector field in the base space: horγ(X̄B) = X̄pr(E)∩ΓH. Since
horγ : X̄B −→ ΓH is a morphism of modules, we have

horγ(gu) = (g ◦ π)horγ(u). (2.17)

Remark 2.6.5. Let D and D̃ be distributions in M , such that D is involutive and
TM = D ⊕ D̃. The R-vector space of projectable vector fields tangent to D̃ is

X̄D̃(M,D) := {X ∈ ΓD̃ | [X,ΓD] ⊂ ΓD} = X̄(M,D) ∩ ΓD̃.

When the choice of the distribution D is clear, we simply denote it by X̄D̃(M).

Recall that Ω•pr(E) and ΩB are modules over C∞pr (E) and C∞B , respectively, and
π∗ : C∞pr (E) −→ C∞B is a ring morphism. For an Ehresmann connection γ, define
πγ∗ : Ω•pr(E) −→ Ω•B by

(πγ∗α)(u1, . . . , uk) := π∗(α(horγu1, . . . ,horγu1)).

First, observe that πγ∗α is well-defined, in virtue of Property 3 of projectable
differential forms in page 40. On the other hand, since α is skew-symmetric, πγ∗α
is also skew-symmetric. Finally, the C∞B -linearity of πγ∗α follows from equation
(2.17), the C∞pr (E)-linearity of α, and the fact that π∗ : C∞pr (E) −→ C∞B is a ring
morphism. Furthermore, the projection πγ∗ : Ω•pr(E) −→ Ω•B is a canonical exterior
algebra isomorphism, i.e., it is bijective and it does not depend on the choice of
the Ehresmann connection γ used to define it. This isomorphism can be naturally
extended by tensor product to

πγ∗ : Ω•pr(E)⊗C∞pr (E) A −→ Ω•B ⊗C∞B A,

where A is any C∞B -module. In particular, it can be extended to horizontal
differential forms ΩV0(E) := Γ

∧
V0 ' Ωpr(E)⊗ C∞E by

πγ∗ : Γ
∧

V0 −→ Ω•B ⊗C∞B C∞E ,

and to vertical-valued horizontal forms K ∈ Ωk,0(E;V) by

πγ∗K(u1, . . . , uk) = K(horγu1, . . . ,horγuk) ∈ ΓV.
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Using the above discussion, we are in position to present the standard interpretation
of curvature in the context an Ehresmann connections on fiber bundles. Recall that
the curvature of a generalized connection is defined as the vertical component of
the Lie bracket of the horizontal components of vector fields (see (2.11)). If γ is an
Ehresmann connection in the fiber bundle (E, π,B), then its curvature R defines
a vertical-valued horizontal 2-form, R ∈ Ω2(E;V), which can be considered as an
element of Ω2

pr(E) ⊗C∞pr (E) ΓV. Now, fix u, v ∈ X̄B. Since horγu is π-related to u,

and horγv is π-related to v, their Lie brackets are also π-related: [horγu,horγv] is
π-related to [u, v]. On the other hand, horγ [u, v] is π-related to [u, v]. Therefore,
[horγu,horγv]− horγ [u, v] ∈ Γ ker(π∗) = ΓV, and

[horγu,horγv]− horγ [u, v] = R(horγu,horγv).

Definition 2.6.6. The curvature of an Ehresmann connection γ, Curvγ ∈
Ω2
B ⊗C∞B ΓV, is defined by

Curvγ(u, v) := R(horγu,horγv) = [horγu,horγv]− horγ [u, v].

Remark 2.6.7. One can derive the transition rules under varying the Ehresmann
connection of the horizontal lift and the curvature. Let γ and γ̃ be two Ehresmann
connections in (E, π,B) and define Θ ∈ Ω1(E;V) by Θ := γ − γ̃. It is clear that
Im(Θ) ⊂ V ⊂ ker(Θ). So, Θ2 = 0. Moreover, it can be shown that

horγ(u)− horγ̃(u) = −Θ(horγ(u)) = −Θ(horγ̃(u)),

R = R̃+ [Θ, γ2]FN + 1
2 [Θ,Θ]FN .

This implies that πγ∗ (Θ) = horγ̃ − horγ.



Chapter 3

Bigrading of the Lichnerowicz - Poisson

Operator

In this chapter we present the concept of coupling Poisson structure in foliated
manifolds. The main goal is, given a coupling Poisson structure in a fiber bundle, to
define a cochain complex isomorphism between its Lichnerowicz - Poisson complex
and a bigraded cochain complex defined by its associated geometric data.

We begin with a review of some basics in Poisson manifolds, specially the notions
of Hamiltonian vector field, infinitesimal Poisson automorphism, Casimir function,
Lichnerowicz - Poisson complex and low - dimensional cohomology groups. Then,
we present the concept of coupling Poisson structure, its relation to geometric
data, and the factorization of the Jacobi identity into four integrability equations.
Finally, we show that integrable geometric data in fiber bundles define a bigraded
cochain complex. Furthermore, if the geometric data correspond to a coupling
Poisson structure, then the induced bigraded cochain complex is isomorphic to the
Lichnerowicz Poisson complex. This main result is presented and proved in Theorem
3.4.2. For various presentations of this result, see also [12, 11, 6, 18].

3.1 Preliminary on Poisson manifolds

A Poisson manifold is a pair (M, {, }), where M is a differential manifold and
{, } : C∞M ×C∞M −→ C∞M is an R-bilinear skew-symmetric operation, called Poisson
bracket, satisfying the Jacobi identity

{f, {g, h}} = {{f, g}, h}+ {g, {f, h}} (3.1)

and the Leibniz rule
{f, g · h} = {f, g} · h+ g · {f, h}. (3.2)

Leibniz rule means that the Poisson bracket is a bi-derivation of C∞M . So, there
exists a bivector field Π ∈ χ2

M defined by Π(df, dg) := {f, g}. Note that

{f, {g, h}} = {{f, g}, h}+ {g, {f, h}} − 1

2
[Π,Π](df,dg,dh),

where [, ] : χM × χM −→ χM is the Schouten - Nijenhuis bracket (see Definition
2.4.2). Therefore, a Poisson bracket {, } in M is equivalent to have a bivector field
Π satisfying

[Π,Π] = 0. (3.3)

43
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Such a bivector field Π is said to be a Poisson structure or a Poisson bivector
field in M . The Poisson manifold is also denoted by (M,Π).

Symplectic foliations on Poisson manifolds. For any bivector field Π ∈ χ2
M ,

there is an induced vector bundle morphism Π] : T ∗M −→ TM defined by

〈β,Π]
p(α)〉 := Πp(α, β) ∀ α, β ∈ T ∗pM,p ∈M. (3.4)

Furthermore, the map ]Π : Γ
∧
T ∗M −→ Γ

∧
TM given by (]Πω)(α1, . . . , αk) :=

ω(Π]α1, . . . ,Π]αk) is an exterior algebra morphism. Note that Π](T ∗M) is a

distribution in M , whose dimension at each point Π]
p(T ∗pM), p ∈ M , may vary.

In the case in which Π is a Poisson structure, one can associate to each f ∈ C∞M a
vector field

Xf := Π](df) = idfΠ = −[f,Π] = −[Π, f ]

called the Hamiltonian vector field of f . The R-vector space of Hamiltonian
vector fields is denoted by Ham(M,Π), and it turns out to be a Lie R-subalgebra
of X̄M since [Xf , Xg] = X{f,g}.

Note that Hamiltonian vector fields generate the distribution DΠ := Π](T ∗M),
which is called characteristic distribution. It is well-known that DΠ is, in
general, integrable in the sense of Stefan - Sussmann [28, 27]. Furthermore, it
can be shown that, for an arbitrary bivector field Π, the distribution Π](T ∗M) is
integrable if and only if Π is a Poisson structure.

Therefore, a Poisson structure Π in M induces a (singular) foliation S given
by TS := DΠ. Moreover, the Poisson structure can be restricted at each leaf S,
determining a non-degenerate Poisson structure at S. In consequence, each leaf S
is endowed with a symplectic structure ωS given by ωS(Xf |S , Xg|S) = Π(df,dg)|S ,
defining a leafwise symplectic structure ω. The pair (S, ω) is called symplectic
foliation. The leaves of S are called symplectic leaves, which are generated by
flows of Hamiltonian vector fields.

A point x ∈ M in the Poisson manifold (M,Π) is called regular if rankΠ is
locally constant at x; in other case, x is said to be singular. A symplectic leaf
S ∈ S is called regular if every x ∈ S is a regular point. Otherwise, S is called
singular. A Poisson manifold (M,Π) is called regular if every x ∈ M is regular;
otherwise, (M,Π) is called singular.

Let (M, {, }) be an m-dimensional Poisson manifold. It is well-known [35] that,
for each x ∈ M of rank 2s and a (m − 2s)-dimensional submanifold N of M , with
x ∈ N , there exists a local system of coordinates (p1, . . . , ps, q1, . . . , qs, z1, . . . , zm−2s)
around x such that the Poisson bracket has the normal form

{f, g} =
m−2s∑
i,j=1

{zi, zj}
∂f

∂zi

∂g

∂zj
+

s∑
i=1

∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi
,
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and the following conditions are satisfied:

(a) pi(Nx) = qi(Nx) = 0, where Nx is a small neighborhood of x in N ,

(b) {zi, zj}(x) = 0.

Observe that {f, g}N :=
∑s

i=1
∂f
∂pi

∂g
∂qi
− ∂f

∂qi
∂g
∂pi

defines a Poisson structures in Nx,
called transverse Poisson structure [4]. In other words, (M,Π) is locally isomorphic
to the direct product of a symplectic manifold (S,

∑s
i=1 dpi ∧ dqi) with a Poisson

manifold (Nx, {, }N ), where {, }N vanishes at x.

For a Poisson manifold (M,Π), the set of regular points N reg = {p ∈ M |
p is regular} is an open dense subset of M . Thus, one can restrict the Poisson
structure to N reg getting the regular Poisson manifold (N reg,ΠNreg). Moreover,
rankΠ is constant on each connected component of N reg.

Poisson cohomology. Note that, if a vector field Z is Hamiltonian, then

LZΠ = 0. (3.5)

In general, a vector field Z satisfying (3.5) is called infinitesimal Poisson
automorphism or Poisson vector field. The R-vector space of Poisson vector
fields is denoted by Poiss(M,Π). A vector field Z is an infinitesimal Poisson
automorphism if and only if its flow FltZ : M −→ M satisfies (FltZ)∗Π = Π.
Equivalently, a vector field Z is an infinitesimal automorphism if and only if
LZ ∈ DerR(C∞M , {, }).

A function K ∈ C∞M is called Casimir for Π if its Hamiltonian vector field is
zero, XK = 0. The R-algebra of Casimir functions is denoted by Casim(M,Π). It
is easy to check that Poisson vector fields preserve the subspace of Casimir functions.

If (M,Π) is a Poisson manifold, then there is an operator δΠ : χM −→ χM
defined as the adjoint of the Poisson bivector Π respect to the Schouten - Nijenhuis
bracket: δΠ(A) := [Π, A]. This is called Lichnerowicz - Poisson operator. In
virtue of the Leibniz rule and the Jacobi identity of the Schouten - Nijenhuis bracket,
the Lichnerowicz - Poisson operator is a graded derivation for the exterior product
and the Schouten - Nijenhuis bracket of multivector fields,

δΠ ∈ Der1
R(χM ,∧, [, ]). (3.6)

Moreover, δΠ is a coboundary operator [16], because of (3.3) and the Jacobi identity
for the Schouten - Nijenhuis bracket. Thus, (χM , δ

Π) is a cochain complex called the
Lichnerowicz-Poisson complex. The cocycles, coboundaries and cohomology
spaces are denoted by ZkLP (M,Π), BkLP (M,Π) and HkLP (M,Π), respectively.

Because of (3.6), it turns out that cocycles

Z•LP (M,Π) :=
⊕
k∈Z
ZkLP (M,Π)
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form a graded Poisson R-subalgebra of (χM ,∧, [, ]). Furthermore, coboundaries

B•LP (M,Π) :=
⊕
k∈Z
BkLP (M,Π)

form an ideal of Z•LP (M,Π), for both operations ∧ and [, ]. Hence, there is a
well-defined product an bracket in

H•LP (M,Π) :=
⊕
k∈Z
HkLP (M,Π)

given by [A] ∧ [B] := [A ∧ B] and
[
[A], [B]

]
:= [[A,B]], which endow H•LP (M,Π)

with a Poisson R-algebra structure of degree −1.

It is also well - known that a Poisson structure Π in the manifold M induces a
Lie algebroid structure on the cotangent bundle T ∗M . Indeed, for α, β ∈ Ω1

M , define
{α, β}Π := LΠ]αβ−LΠ]βα−dΠ(α, β) = iΠ]αdβ−iΠ]βdα+dΠ(α, β). It can be shown

that the triple (T ∗M,Π], {, }Π) is a Lie algebroid. Furthermore, its Lie algebroid
differential is precisely the Lichnerowicz - Poisson complex. In other words, for any
A ∈ χkM and α0, . . . , αk ∈ Ω1

M , we have

(δΠA)(α0, . . . , αk) =
k∑
i=0

(−1)iLΠ](αi)(A(α0, . . . , α̂i, . . . , αk))

+
∑
i<j

(−1)i+jA({αi, αj}Π, α0, . . . , α̂i, . . . , α̂j , . . . , αk).

In consequence, the map ]Π : (ΩM ,d) −→ (χM , δ
Π) is a cochain complex

morphism: ]Πdα = δΠ]Πα. Hence, this induces a cohomology morphism
]∗Π : Hk

dR(M) −→ HkLP (M,Π) by ]∗Π[α] := []Πα]. If Π is a regular Poisson structure,
then the map ]∗Π is a morphism to the tangential Poisson cohomology, which we
present in Chapter 4.

On a Poisson manifold (M,Π), there is an homology operator on the algebra of
differential forms. This is called the Koszul - Brylinski operator and is given by

LΠ : ΩM −→ ΩM , LΠα := [iΠ, d](α) = iΠdα+ diΠα.

It is clear by its definition that LΠ ∈ D−1
2 (M). Furthermore, the Koszul - Brylinski

operator is an homology operator. Indeed, since Π is a Poisson structure, L2
Π =

1
2 [LΠ,LΠ] = 1

2L[Π,Π] = 0. Also, the Koszul - Brylinski operator is a generator of the
bracket {, }Π for 1-forms. Indeed, using the language of differential operators, for
any α, β ∈ Ω1

M we have

[[µα,LΠ], µβ](1)=LΠβ ·α+LΠ(α∧β)−LΠα·β=iΠ]αdβ−iΠ]βdα+dΠ(α, β)={α, β}Π.

Furthermore, for any α, β ∈ ΩM , define {{, }}Π : ΩM × ΩM −→ ΩM by

{{α, β}}Π := [[µα,LΠ], µβ](1) = −(−1)|α|LΠ(α ∧ β) + (−1)|α|LΠα ∧ β + α ∧ LΠβ.
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It is clear that {{, }}Π extends the bracket of 1-forms {, }Π. Moreover, {{, }}Π is a
graded Lie bracket in ΩM and satisfies the Leibniz rule with the exterior product.
In other words, the triple (ΩM ,∧, {{, }}Π) is the graded Poisson algebra of degree
−1, extending the bracket of 1-forms.

Finally, it is clear that d ◦ LΠ + LΠ ◦ d = [d,LΠ] = 0. Hence, (ΩM ,d,LΠ) is a
bi-complex. Furthermore, in some special cases, there exists duality on the Poisson
homology and cohomology groups.

Below, we describe the low-dimensional Poisson cohomology groups.

• If k = 0, H0(M,Π) = Casim(M,Π).

• If k = 1, H1(M,Π) = Poiss(M,Π)
Ham(M,Π) .

• If Λ ∈ Z2
LP (M,Π), then [Π,Λ] = 0. So, Π + εΛ is a Poisson structure up to

terms of degree ε2:

[Π + εΛ,Π + εΛ] = ε2[Λ,Λ] = 0 mod ε2.

Therefore, Π + εΛ is an infinitesimal deformation of the Poisson structure Π.
If Λ ∈ B2

LP (M,Π), there exists X ∈ X̄M such that Λ = [Π, X]. So,

Π + εΛ = Π + ε[Π, X] = (FlεX)∗Π mod ε2.

Hence, the second Poisson cohomology H2
LP (M,Π) is the quotient of all

possible infinitesimal deformations of Π by the space of trivial deformations.

In general, the computation of the Poisson cohomology groups is a hard problem
[38, 39, 32, 8], especially in the case of singular Poisson structures [5, 22, 23, 24, 25].

3.2 Poisson structures on foliated manifolds

In this part, we present the concept of coupling Poisson structure on foliated
manifolds, and describe the Jacobi identity in terms of its associated geometric
data. This concept naturally arises in the study of a Poisson structure around
closed symplectic leaves [37] and in the context of Poisson vector bundles [36], but
it can also be defined for any regular foliated manifold [33]. We show that, in a
foliated manifold (M,F), coupling Poisson structures Π can be parameterized by
triples (γ, σ, P ) consisting on a connection γ with vertical distribution V = TF ,
a horizontally non-degenerate 2-form σ, and bivector field P . Such triples are
called geometric data. The Jacobi identity for Π can be expressed in terms of
four integrability equations for (γ, σ, P ), which arise from bigraded calculus in the
manifold.

In the following sections, we prove that the Lichnerowicz - Poisson complex of a
coupling Poisson structure Π in a fiber bundle (E, π,B) is isomorphic to a bigraded
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cochain complex intrinsically defined by the fiber bundle and the geometric data
(γ, σ, P ) associated to Π. This allows us to study the first cohomology group of
coupling Poisson structures in fiber bundles, which is done in Chapter 4.

3.2.1 Coupling bivector fields and geometric data

Let (M,F) be a foliated manifold. Because of Frobenius Theorem, there is
a correspondence between regular foliations and involutive distributions, i.e.,
V := TF is an involutive distribution. In this section we present the concepts of
coupling Poisson structure and geometric data on pairs (M,V), with V a regular
and involutive distribution in M .

Recall that, for a regular foliation F (or vertical distribution V), a local vector
field X ∈ X̄M is called projectable if its flow FltX takes leaves of F into leaves
of F . In infinitesimal terms, this is equivalent to [X,ΓV] ⊂ ΓV. The sheaf of
local projectable vector fields is denoted by X̄pr(M). Some useful properties on
projectable vector fields can be found in Section 2.6. In the following sections, we
will be focused on the case of coupling Poisson structures on fiber bundles. In that
case, the space of projectable vector fields coincides with the horizontal lifts of
vector fields in the base space.

For the rest of this section, M is a differential manifold and V is a regular
involutive distribution on M .

Definition 3.2.1. A bivector field Π ∈ χ2
M is called a coupling bivector field on

(M,V) if
Π](V0)⊕ V = TM, (3.7)

where V0 ⊂ T ∗M is the annihilator of V. A coupling Poisson structure Π in
(M,V) is a bivector field in M which is both a Poisson structure on M and a coupling
bivector field on (M,V), i.e., equations (3.7) and [Π,Π] = 0 are satisfied.

The notion of coupling Poisson structure associated to an involutive distribution
is deeply related to the one of geometric data. Indeed, coupling bivector fields are
parameterized by geometric data, and the Jacobi identity can be described by the
integrability equations for geometric data.

Recall that a generalized connection γ in M is a vector bundle morphism γ :
TM −→ TM satisfying γ2 = γ. For the rest of this section, we only consider
connections γ in (M,V) such that Im(γ) = V, i.e., the vertical distribution of γ
coincides with the regular involutive distribution V. In this case, the kernel of γ is
also a regular distribution H, called horizontal distribution, satisfying TM = H⊕V.
We denote by X̄H

pr(M) the space of horizontal projectable vector fields: X̄H
pr(M) :=

ΓH ∩ X̄pr(M). Also, the curvature 2-form R ∈ Ω2(M ;V) is given by

R(X,Y ) := γ[(IdTM − γ)X, (IdTM − γ)Y ]

and measures the integrability of H (see Section 2.5).
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Definition 3.2.2. A triple (γ, σ, P ) of geometric data on (M,V) consists on

• a connection γ in M with vertical distribution V,

• a horizontal 2-form σ: σ ∈ Γ
∧2 V0,

• a vertical bivector field P : P ∈ Γ
∧2 V.

Furthermore, the geometric data (γ, σ, P ) are said to be integrable if they satisfy
the following equations:

[P, P ] = 0, (3.8)

LXP = 0, ∀X ∈ X̄H
pr(M), (3.9)

R(X,Y ) = −P ]d[σ(X,Y )], ∀X,Y ∈ X̄H
pr(M), (3.10)

dσ(X,Y, Z) = 0, ∀X,Y, Z ∈ X̄H
pr(M). (3.11)

Equations (3.8)-(3.11) are called integrability equations of (γ, σ, P ).

Note that equation (3.8) simply means that P is a vertical Poisson structure.
In terms of the regular foliation F associated to V, we say that (F , P ) is a Poisson
foliation, i.e., P induces a Poisson structure at each leaf of F . Equation (3.9) means
that γ is a Poisson connection on (F , P ). This is precisely X̄H

pr(M) ⊂ Poiss(M,P ).

It can be shown that if γ is a Poisson connection in (F , P ), then the curvature
of projectable vector fields values on vertical Poisson vector fields:

R(X,Y ) ∈ PoissV(M,P ) ∀X,Y ∈ X̄pr(M).

Indeed, since ΓV ⊂ X̄pr(M), it follows that (IdTM − γ)X̄pr(M) ⊂ X̄pr(M). Taking
in account that X̄pr(M) is a Lie subalgebra of vector fields, we have

(IdTM − γ)[(IdTM − γ)X, (IdTM − γ)Y ] ∈ X̄H
pr(M) ∀X,Y ∈ X̄pr(M).

Since γ is a Poisson connection, this implies that the vector fields

(IdTM − γ)[(IdTM − γ)X, (IdTM − γ)Y ], [(IdTM − γ)X, (IdTM − γ)Y ],

are infinitesimal automorphisms. Their difference is precisely R(X,Y ), which is
clearly a vertical infinitesimal automorphism: R(X,Y ) ∈ PoissV(M,P ).

Thus, the vector fields R(X,Y ), with X,Y ∈ X̄pr(M), are a special family of
vertical Poisson vector fields for P . In this sense, equation (3.10) means that those
are Hamiltonians for P , and the vector field R(X,Y ) has −σ(X,Y ) as Hamiltonian.
Finally, equation (3.11) means that σ is covariantly constant. This is clarified in
Proposition 3.3.3, where we present an equation in terms of the covariant exterior
differential, equivalent integrability equation (3.11) for σ.

Now, we present a generalization of the integrability equations (3.9) and (3.10).
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Lemma 3.2.3. Let γ be a Poisson connection for (F , P ), i.e., equation (3.9) is
satisfied. Then (LZP )0,2 = 0 for any Z ∈ ΓH.

Proof. Since horizontal vector fields are locally generated by horizontal projectable
vector fields, it is suffices to prove that the identity holds for Z = fX, with f ∈ C∞M ,
and X ∈ X̄H

pr(M). Note that LZP = [fX,P ] = f [X,P ] + idfP ∧X. From equation

(3.9), we have [X,P ] = 0. So, LZP = idfP ∧X ∈ χ1,1
M . In particular, the component

of LZP of bidegree (0, 2) is zero: (LZP )0,2 = 0.

Lemma 3.2.4. Let (γ, σ, P ) be geometric data in (M,V) satisfying equation (3.10).
If X ∈ X̄H

pr(M) and Z ∈ ΓH, then

P ]d [σ(Z,X)] + P ]LZ(σ[X) +R(Z,X) = 0.

Proof. It is enough to prove this result for Z = fY , with f ∈ C∞M and Y ∈ X̄H
pr(M).

First, note that, for any α ∈ ΓV0 and W ∈ ΓV,

LY α(W ) = LY (α(W ))− α[Y,W ].

Since Y is projectable, then [Y,W ] is vertical. Therefore, both summands in the
right-hand side are zero, due to the horizontality of α. Ths proves that LY α(W ) = 0
for all W ∈ ΓV. Hence, it follows that P ]LY α = 0, due to P ∈ Γ

∧2 V. In particular,
taking α = σ[X, we have

P ]LY (σ[X) = 0. (3.12)

On the other hand,

LZ(σ[X) = LfY (σ[X) = fLY (σ[X) + (iY σ
[X)df = fLY (σ[X) + σ(X,Y )df,

which implies P ]LZ(σ[X) = fP ]LY (σ[X) + P ][σ(X,Y )df ]. Because of equation
(3.12), we get

P ]LZ(σ[X) = P ][σ(X,Y )df ]. (3.13)

Since the exterior differential d is a graded derivation, it follows that

d [σ(Z,X)] = d [fσ(Y,X)] = σ(Y,X)df + fd [σ(Y,X)] . (3.14)

Using equations (3.14), (3.10), and (3.13), we get

P ]d [σ(Z,X)] = P ][σ(Y,X)df ] + fP ]d (σ(Y,X))

= −P ][σ(X,Y )df ]− fR(Y,X)

= −P ]LZ(σ[X)−R(fY,X)

= −P ]LZ(σ[X)−R(Z,X).
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3.2.2 Jacobi identity and integrability equations

Let V be an involutive distribution in the differential manifold M . Among the triples
of geometric data (γ, σ, P ) in (M,V), some of the most important are those for which
σ satisfy that the map σ[ : TM −→ V0, defined by σ[(X) := iXσ, is surjective.

Definition 3.2.5. A horizontal 2-form σ ∈ Γ
∧2 V0 is said to be horizontally

non-degenerate if the vector bundle morphism σ[ : TM −→ V0 is surjective.

If σ is a horizontally non-degenerate 2-form, then for each horizontal distribution
H, the restriction σ[|H : H −→ V0 is an isomorphism. In this case, the geometric data
(γ, σ, P ) defines a unique coupling bivector field Π in M . Furthermore, according to
[36, 33, 37], we have the following result.

Theorem 3.2.6. Let V be a regular involutive distribution on M . There is a natural
correspondence between coupling Poisson structures Π and integrable geometric data
(γ, σ, P ) in (M,V) such that σ is horizontally non-degenerate.

For completeness, we prove this theorem, based on the following facts.

Lemma 3.2.7. There is a correspondence between coupling bivector fields Π and
geometric data (γ, σ, P ) in (M,V) such that σ is horizontally non-degenerate.

Proof. If Π is a coupling Poisson structure, then TM = Π](V0) ⊕ V. Define
γ : TM −→ TM by γ := prV, i.e., the projection over V along the previous
decomposition. It is clear that γ is a connection in M , which induces a bigrading in
M . The bigraded decomposition of Π is Π = Π2,0+Π0,2 (there is no (1,1)-component:

Π1,1 = 0). The horizontal distribution of γ is H = Π](V0) = Π]
2,0(V0). So,

Π]
2,0 : V0 −→ H is a vector bundle isomorphism. Define the vector bundle morphism

σ[ : TM −→ T ∗M by σ[|V := 0 and by σ[|H := −(Π]
2,0|V0)−1. It is clear that σ[ is

skew-symmetric. Thus, σ(X,Y ) := σ[(X)(Y ) defines a section of
∧2 V0. Finally,

because of bidegrees, P := Π0,2 is a vertical bivector field and (γ, σ, P ) is a triple
of geometric such that σ is horizontally non-degenerate. Conversely, if (γ, σ, P ) are
geometric data such that σ is horizontally non-degenerate, then σ[|H : H −→ V0

is an isomorphism, where H is the horizontal distribution of γ. Now, define
Π]

2,0 : T ∗M −→ TM by Π]
2,0|H0 = 0 and Π]

2,0|V0 := −(σ[|H)−1. Finally, if Π0,2 := P ,

then Π := Π2,0 + Π0,2 is a coupling bivector field, since Π](V0) = Π]
2,0(V0) = H.

As it follows from the proof of Lemma 3.2.7, a coupling bivector field Π in
(M,V) defines intrinsically the horizontal distribution H := Π](V0). This induces
a bigrading in M and a splitting of Π of the form Π = Π2,0 + Π0,2. In terms of
the bigraded decomposition, the characteristic distribution of Π at each x ∈ M
reads DΠ

x = Π](T ∗xM) = Π](V0
x) ⊕ Π](H0

x) = Hx ⊕ Π0,2(H0
x). Since Π2,0 is regular,

the singular points of Π and Π0,2 coincide. Also, notice that H = Π]
2,0(T ∗M).

Therefore, Π2,0 is a Poisson structure if and only if H is integrable.
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On the other hand, by Theorem 2.14 and the involutivity of V, the bigraded
decomposition of the exterior differential has the form d = d1,0 + d0,1 + d2,−1, with
Frölicher - Nijenhuis decompositions d1,0 = LIdTM−γ + 2iR, d0,1 = Lγ − iR, d2,−1 =
−iR. Finally, the following identity is needed, and we can find a proof of it in [33]:

[Π,Ψ](α, β, θ) = LΠ]θΨ(α, β)−dθ(Π]α,Ψ]β) +LΨ]θΠ(α, β)−dθ(Ψ]α,Π]β), (3.15)

with α, β, θ being arbitrary 1-forms and Π,Ψ arbitrary bivector fields.

By using the above bigrading decomposition, the condition for a coupling
bivector field Π to be a Poisson structure is formulated as follows:

Lemma 3.2.8. Let V be an involutive distribution in M . A coupling bivector field
Π in (M,V) is a Poisson structure if and only if the following identities hold for any
α, β, θ ∈ ΓV0, λ, η ∈ ΓH0:

1. Π0,2 is a Poisson structure,

2. L
Π]2,0θ

Π0,2(λ, η) = 0,

3. d2,−1λ(Π]
2,0α,Π

]
2,0β) = L

Π]0,2λ
Π2,0(α, β),

4. d1,0θ(Π
]
2,0α,Π

]
2,0β) = L

Π]2,0θ
Π2,0(α, β).

Proof. Due to the splitting Π = Π2,0 + Π0,2, the Jacobi identity [Π,Π] = 0 is
equivalent to the following bigraded equations:

(i) [Π0,2,Π0,2]0,3 = 0,

(ii) [Π2,0,Π0,2]1,2 = 0,

(iii) [Π2,0,Π2,0]2,1 + 2[Π2,0,Π0,2]2,1 = 0, and

(iv) [Π2,0,Π2,0]3,0 = 0.

We prove that (iii) is equivalent to identity 3 of Lemma 3.2.8. By formula (3.15),

[Π2,0,Π2,0]2,1(α, β, λ) = 2[L
Π]2,0λ

Π2,0(α, β)− dλ(Π]
2,0α,Π

]
2,0β)]

= −2dλ(Π]
2,0α,Π

]
2,0β) = −2d2,−1λ(Π]

2,0α,Π
]
2,0β),

2[Π2,0,Π0,2]2,1(α, β, λ) = 2(L
Π]2,0λ

Π0,2(α, β)− dλ(Π]
2,0α,Π

]
0,2β) + L

Π]0,2λ
Π2,0(α, β)− dλ(Π]

0,2α,Π
]
2,0β))

= 2L
Π]0,2λ

Π2,0(α, β).

Combining these equations, we get

([Π2,0,Π2,0]2,1 + 2[Π2,0,Π0,2]) (α, β, λ) = 2L
Π]0,2λ

Π2,0(α, β)− 2d2,−1λ(Π]
2,0α,Π

]
2,0β),

proving the desired equivalence. The other equivalences are proved similarly.
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Now we are ready to prove Theorem 3.2.6:

Proof of Theorem 3.2.6. Let Π be a coupling bivector field in (M,V), and (γ, σ, P )
its associated geometric data, in the sense of Lemma 3.2.7. We now shown that
each of the four integrability equations (3.8)-(3.11) for (γ, σ, P ) are equivalent to

the identities 1, 2, 3, 4 in Lemma 3.2.8 for Π, respectively. Recall that Π]
2,0|V0 and

−σ[|H are isomorphisms inverse of each other and Π0,2 = P ,

• Equivalence of (3.8) and identity 1 in Lemma 3.2.8 is clear, since P = Π0,2.

• Fix X ∈ X̄H
pr(M). Since P is vertical, it follows that LXP is vertical. So, it

is enough to evaluate it on vertical 1-forms λ, µ. On the other hand, Π]
2,0 :

ΓV0 −→ ΓH is a C∞M -module isomorphism. Hence, there exists θ ∈ ΓV0 such

that X = Π]
2,0θ. Substituting, it follows that LXP (λ, µ) = L

Π]2,0θ
Π0,2(λ, η).

Hence, if L
Π]2,0θ

Π0,2(λ, η) = 0 for each λ, η ∈ Ω0,1
M and θ ∈ ΓV0, then LXP = 0

for all X ∈ X̄H
pr(M). This proves that identity 2 of Lemma 3.2.8 implies

equation (3.9). Conversely, if equation (3.9) is satisfied, then L
Π]2,0θ

Π0,2(λ, η) =

0, λ, η ∈ Ω0,1
M and θ ∈ ΓV0, due to Lemma (3.2.3). This proves the converse.

• Let X,Y ∈ X̄H
pr be projectable vector fields and α, β ∈ ΓV0 such that Π]

2,0α =

X, Π]
2,0β = Y . Note that for any λ ∈ Ω0,1

M ,

−λ(R(X,Y )) = d2,−1λ(Π]
2,0α,Π

]
2,0β),

since d2,−1 = −iR. On the other hand,

λ(P ]d[σ(X,Y )]) =λ(Π]
0,2d[σ(X,Y )]) = −Π0,2(d[σ(X,Y )], λ)− 2L

Π]0,2λ
(σ(X,Y ))

=−Π0,2(d[σ(X,Y )], λ) + L
Π]0,2λ

(α(Y ))− α[Π]
0,2λ, Y ]

− L
Π]0,2λ

(β(X)) + β[Π]
0,2λ,X]

=−Π0,2(d[Π2,0(α, β)], λ) + L
Π]0,2λ

α(Y )− L
Π]0,2λ

β(X)

=L
Π]0,2λ

(Π2,0(α, β))−Π2,0(L
Π]0,2λ

α, β)−Π2,0(α,L
Π]0,2λ

β)

=L
Π]0,2λ

Π2,0(α, β).

Now, assuming that identity 3 of Lemma 3.2.8 holds, these equalities imply
λ(P ]d[σ(X,Y )]) = −λ(R(X,Y )) ∀λ ∈ ΓH0. Since P ]d[σ(X,Y )] and R(X,Y )
are vertical, the integrability equation (3.10) holds. Conversely, if equation
(3.10) holds, then our previous equalities imply that

d2,−1λ(Π]
2,0α,Π

]
2,0β) = L

Π]0,2λ
Π2,0(α, β), (3.16)

if Π]
2,0α,Π

]
2,0β ∈ X̄H

pr(M). Since horizontal projctable vector fields generate
any horizontal vector field and (3.16) is tensorial in α, β, it follows that (3.16)
also holds for any α, β ∈ ΓV0. This proves the converse.
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• If Xi ∈ X̄H
pr(M), then there exists αi ∈ ΓV0 such that Π]

2,0(αi) = Xi, ∀i =

0, 1, 2. Since σ(Π]
2,0(αi),Π

]
2,0(αj)) = −αi(Π]

2,0(αj)) = Π2,0(αi, αj), we get

[Π2,0,Π2,0](α0, α1, α2) = −2
∑

(0,1,2)

Π2,0(α0,dΠ2,0(α1, α2))− α2[Π]
2,0α0,Π

]
2,0α1]

= −2
∑

(0,1,2)

dΠ2,0(α1, α2)(X0)− α2[X0, X1]

= −2
∑

(0,1,2)

LX0 (σ(X1, X2)) + σ(X2, [X0, X1])

= −2dσ(X0, X1, X2),

where the first equality follows from (3.15). If identity 4 of Lemma 3.2.8 holds,
then dσ(X0, X1, X2) = 0, proving that the integrability equation (3.11) holds.
Conversely, if equation (3.11) holds, then [Π2,0,Π2,0](α0, α1, α2) = 0 for any

αi ∈ ΓV0 such that Π]
2,0αi ∈ X̄H

pr(M). Since [Π2,0,Π2,0] is C∞M -linear, it follows
that [Π2,0,Π2,0]3,0 = 0, proving the fourth equivalence.

3.3 Cochain complexes in Poisson fiber bundles

In this Section we construct a cochain complex induced by integrable geometric
data in a fiber bundle. In further sections, we will see that, when the integrable
geometric data is induced by a coupling Poisson structure in the bundle, it turns
out that the corresponding geometric data define a cochain complex isomorphic
to the Lichnerowic - Poisson complex of the coupling structure. Since the cochain
complex induced by the geometric data is a bigraded cochain complex, in the sense
of Definition 1.2.1, we can apply Theorem 1.2.2 to derive a splitting result for the
first Poisson cohomology group.

We begin by introducing the bigraded C∞B module VE of vertical-valued forms in
the base, which is the tensor product of the exterior algebra of differential forms in the
base with the Poisson algebra of vertical multivector fields in the total space, VE =
ΩB ⊗C∞B χV(E). This can be endowed with a Poisson algebra structure of degree
−1. After that, we study two classes of graded derivations in the Poisson algebra
(VE ,∧, [, ]): the adjoint operators, adη : VE −→ VE , η ∈ VE given by adην := [η, ν],
and the covariant exterior differential ∂γ1,0 : VE −→ VE of a connection γ, given
by a Koszul-Cartan-type formula. We then describe the integrability conditions
of the geometric data (γ, σ, P ) in terms of the covariant exterior differential ∂γ1,0
and the curvature Curvγ of the connection γ, the vertical bivector field P and the
projection of the horizontal 2-form πγ∗σ. Finally, we show that the integrability
condition for (γ, σ, P ) implies that the graded operator ∂γ = ∂γ1,0 − adπγ∗σ + adP is
a coboundary in VE . Moreover, if σ is horizontally non-degenerate, then the pair
(VE , ∂γ) is a Poisson bigraded model for the Lichnerowicz - Poisson complex of the
coupling structure associated to (γ, σ, P ).
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3.3.1 The Poisson algebra of vertical-valued forms

Let (E, π,B) be a fiber bundle and V its canonical vertical distribution. Recall that
projectable functions in the total space are precisely the pull-back of base functions,
C∞pr (E) = π∗C∞B . Hence, C∞pr (E) and C∞B are isomorphic R-algebras. Because of the
involutivity of V and the above isomorphism, it follows that the triple (χ•V(E),∧, [, ])
is a Poisson C∞B -algebra of degree −1, where χ•V(E) := Γ

∧
V are vertical multivector

fields, ∧ is the exterior product, and [, ] is the Schouten - Nijenhuis bracket (see
definition and properties of Page 32).

Definition 3.3.1. Let (E, π,B) be a fiber bundle and V its vertical distribution.
Define the space of vertical-valued forms in the base by

VE := ΩB ⊗C∞B χV(E).

Also, for each n, p, q ∈ Z, define

Vp,qE := Ωp
B ⊗C∞B χqV(E),

VnE :=
⊕
p+q=n

Vp,qE .

Here, we put Vp,qE = {0} if p < 0 or if q < 0.

Observe that, in particular, we have:

V0,0
E = C∞E ,

V0,q
E = χqV(E) = {vertical multivector fields},

Vp,0E ' Γ

p∧
V0 = {horizontal forms in the total space}.

Note that we have a natural grading and bigrading in VE , given by

V•E :=
⊕
n∈Z
VnE , V•,•E :=

⊕
n∈Z
Vp,qE .

Moreover, Vp,qE is isomorphic to the C∞B -module of p-linear alternating applications

η := X̄B × · · · × X̄B −→ χqV(E).

From this point of view, we naturally endow VE with a graded Poisson C∞B -algebra
structure of degree −1. Indeed, since ΩB has a graded exterior algebra structure,
and χV(E) is a Poisson algebra of degree −1, we can define a product and a bracket
on decomposable in VE elements by

(α⊗A) ∧ (β ⊗B) := (−1)|β||A|(α ∧ β)⊗ (A ∧B),

[α⊗A, β ⊗B] := (−1)|β|(|A|−1)(α ∧ β)⊗ [A,B].
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This definition coincides with equation (2.2). So, the triple (VE ,∧, [, ]) is in fact a
graded Poisson algebra of degree −1. Equivalently, these operations are given on
homogeneous elements by

(η∧ν)(u1, . . . , up+p′) := (−1)p
′q

∑
σ∈S(p,p′)

(−1)ση(uσ(1), . . . , uσ(p))∧ν(uσ(p+1), . . . , uσ(p+p′)),

[η, ν](u1, . . . , up+p′) := (−1)p
′(q−1)

∑
σ∈S(p,p′)

(−1)σ[η(uσ(1), . . . , uσ(p)), ν(uσ(p+1), . . . , uσ(p+p′))],

(3.17)

where η ∈ Vp,qE , ν ∈ Vp
′,q′

E , and ui ∈ X̄B, i = 1, . . . , p+p′. For p = p′ = 0, the bracket
[η, ν] coincides with the usual Schouten - Nijenhuis bracket for vertical multivector
fields, and for q = q′ = 0, [η, ν] = 0 since the resulting bidegree is (p+ p′,−1).

Adjoint derivations and the covariant exterior differential. Since VE has
graded Poisson algebra structure, it is clear that each η ∈ Vp,qE induces a graded
derivation adη of bidegree (p, q−1) in VE , called adjoint operator, by adη(ν) := [η, ν].
By the Leibniz rule and the Jacobi identity of graded Poisson algebras, we have

adη ∈ Der
(p,q−1)
C∞B

(
VE ,∧, [, ]

)
and [adη, adν ] = ad[η,ν] ∀η, ν ∈ VE . This identity is a

special case of the following general property: for any graded endomorphism D in
VE , D ∈ DerR(VE , [, ]) if and only if

[D, adη] = adDη ∀η ∈ VE . (3.18)

Another important class of operators in VE is represented by the covariant
exterior differentials. Those are bigraded operators of bidegree (1,0) induced by
an Ehresmann connection in (E, π,B).

Definition 3.3.2. Let γ be an Ehresmann connection in (E, π,B). The covariant
exterior differential ∂γ1,0 : VE −→ VE is defined on homogeneous elements by

∂γ1,0η(u0, . . . , up) :=

p∑
i=0

(−1)iLhorγui(η(u0, . . . ûi . . . , up))

+
∑
i<j

(−1)i+jη([ui, uj ], u0, . . . ûi . . . ûj . . . , up).

Note that η(u0, . . . ûi . . . , up) is a vertical multivector field and hor(ui) is
projectable. Therefore, Lhor(ui)(η(u0, . . . ûi . . . , up)) is again a multivector field,
showing that, in fact, ∂γ1,0 is a bigraded operator in VE of bidegree (1, 0).

It follows from Definition 3.3.2 that the covariant exterior differential is a graded
derivation of the exterior product and the bracket in VE : ∂γ1,0 ∈ Der1

R
(
V•E ,∧, [, ]

)
.

Therefore, equation (3.18) implies

[∂γ1,0, adη] = ad∂γ1,0η, ∀η ∈ VE . (3.19)
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The covariant exterior differential ∂γ1,0 is related to the horizontal bigraded
component of the exterior differential d1,0 in E, defined by the bigrading of the

Ehresmann connection γ. Indeed, for each ω ∈ Ωp
V0(E) ' Vp,0E ,

∂γ1,0π
γ
∗ω = πγ∗d1,0ω (3.20)

(recall the isomorphism πγ∗ given in page 41). In particular, Corollary 2.5.7 implies
that (∂γ1,0)2πγ∗ω = πγ∗ (LRω), where R ∈ Ω2(E;V) is the curvature of γ. Thus,

(∂γ1,0)2 = 0 if and only if H is integrable. More generally, if Curvγ ∈ V2,1
E is the

curvature 2-form (as in Definition 2.6.6), then the following identity is satisfied on
the whole algebra VE :

(∂γ1,0)2 = adCurvγ . (3.21)

Also, Bianchi identity for γ (equation (2.13)) can be expressed as

∂γ1,0Curvγ = 0 (3.22)

Finally, observe for any Ehresmann connections γ and γ̃ in (E, π,B), we have
∂γ̃1,0 − ∂

γ
1,0 = adπγ∗Θ, where Θ = γ − γ̃ (see Remark 2.6.7).

3.3.2 Coboundary operators from integrable geometric data

We now show that each triple (γ, σ, P ) of integrable geometric data in the fiber
bundle (E, π,B) defines a coboundary operator in VE . This is a graded derivation
of degree 1 for both of the operations in VE , and it is defined by its bigraded
components. The component of bidegree (1, 0) is the covariant exterior differential
of γ, the (0, 1) component is the adjoint of the vertical bivector field P , and
the (2,−1) component is the adjoint of the projection of the horizontal 2-form
σ. The integrability condition of (γ, σ, P ) results in the fact that ∂γ is a coboundary.

Integrability equations in fiber bundles. Let (E, π,B) be a fiber bundle.
Recall that the vertical subbundle V in E is a regular involutive distribution. For
the rest of this work, a triple (γ, σ, P ) of geometric data on (E, π,B) means a triple
of geometric data on (E,V), and a coupling structure Π in (E, π,B) also means a
coupling structure on (E,V).

Recall that an Ehresmann connection γ induces the covariant exterior differential
∂γ1,0, which is a derivation of bidegree (1, 0) for both operations ∧ and [, ] in the
algebra VE defined in Section 3.3. Also, the curvature of the connection γ is a
vertical-valued 2-form in the base, which measures the integrability of the horizontal
distribution: Curvγ ∈ V2,1

E . Similarly, since P is a vertical bivector field, and σ is a

horizontal 2-form, we naturally have P ∈ V0,2
E and πγ∗σ ∈ V2,0

E , where

πγ∗ : Γ
∧

V0 −→ ΩB ⊗ C∞M

is the projection defined in Page 41.
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The goal of this part is to define an operator by means of geometric data,
and show that the operator is a coboundary if the geometric data defining it are
integrable. To do this, equivalent conditions to the integrability equations are
presented in terms of ∂γ1,0, Curvγ , P and πγ∗σ.

Proposition 3.3.3. Let (γ, σ, P ) be geometric data in the fiber bundle (E, π,B).
The integrability equations (3.8)-(3.11) for (γ, σ, P ) can be written as follows

• [P, P ] = 0,

• ∂γ1,0P = 0,

• Curvγ = [πγ∗σ, P ],

• ∂γ1,0(πγ∗σ) = 0.

Here, [, ] denotes the bracket in VE introduced by equation (3.17) and ∂γ1,0 is the
covariant exterior derivative introduced in Definition 3.3.2.

Proof. Recall that the bracket in VE coincides on vertical multivector fields with the
Schouten - Nijenhuis.

• In virtue of our previous observation, the first equation of this proposition is
precisely the first integrability condition fot the geometric data.

• If X ∈ X̄H
pr(E), then X = horγ(u) for some u ∈ X̄B. Furthermore,

LXP = Lhorγ(u)P = [horγ(u), P ] = (∂γ1,0P )(u),

proving that ∂γ1,0P = 0 if and only if LXP = 0 ∀X ∈ X̄H
pr(E), which is the

second integrability equation of (γ, σ, P ).

• If X,Y ∈ X̄H
pr(E), with X = horγ(u) and Y = horγ(v), then Curvγ(u, v) =

R(X,Y ) and [πγ∗σ, P ](u, v) = [σ
(
horγ(u), horγ(v)

)
, P ] = −P ][σ(X,Y )],

proving that Curvγ = [πγ∗σ, P ] if and only if R(X,Y ) = −P ][σ(X,Y )]
∀X,Y ∈ X̄H

pr(E), which is the third integrability equation of (γ, σ, P ).

• Finally, recall that πγ∗ : Γ
∧k V0 −→ Vk,0E is an isomorphism and ∂γ1,0π

γ
∗σ =

πγ∗d1,0σ. Therefore, ∂γ1,0π
γ
∗σ = 0 if and only if d1,0σ = 0, which is equivalent

to the last integrability equation of (γ, σ, P ).

Let (γ, σ, P ) be geometric data in the fiber bundle (E, π,B). Recall that the
adjoint of an element of the Poisson algebra VE , with respect to the bracket [, ],
is a derivation for both operations in VE . In particular, for the vertical bivector
field P and the horizontal 2-form σ, we have adP ∈ Der0,1

R (VE ,∧, [, ]) and adπγ∗σ ∈
Der2,−1

R (VE ,∧, [, ]). If (γ, σ, P ) are integrable, then both operators, together with
the covariant exterior differential ∂γ1,0, allow to construct a coboundary operator.
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Definition 3.3.4. Let (γ, σ, P ) be geometric data in the fiber bundle (E, π,B). One
can associate to the triple (γ, σ, P ) an operator ∂ ∈ End1

RVE

∂γ := ∂1,0 + ∂0,1 + ∂2,−1

whose bigraded components are defined by

∂1,0 := ∂γ1,0, ∂2,−1 := −adπγ∗σ, ∂0,1 := adP .

Since ∂γ is the sum of bigraded derivations whose total degree is 1, it follows
that ∂γ is a graded derivation of degree 1 for the Poisson algebra (VE ,∧, [, ]).

We are now ready to prove that if ∂γ is defined by integrable geometric data,
then ∂γ is a coboundary operator. So, (VE , ∂γ) is a bigraded cochain complex.

Theorem 3.3.5. Let (γ, σ, P ) be integrable geometric data in the fiber bundle
(E, π,B), and ∂γ = ∂γ1,0 − adπγ∗σ + adP the associated operator in VE. Then,

(∂γ)2 = 0, and hence, (VE , ∂γ) is a bigraded cochain complex associated to (γ, σ, P ).

Proof. As shown in Section 1.2, the coboundary condition for ∂γ splits into the
following equations:

∂2
0,1 = 0,

∂2
2,−1 = 0,

∂1,0∂0,1 + ∂0,1∂1,0 = 0,

∂1,0∂2,−1 + ∂2,−1∂1,0 = 0,

∂2
1,0 + ∂2,−1∂0,1 + ∂0,1∂2,−1 = 0.

Note that ∂2
2,−1 = 1

2 [adπγ∗σ, adπγ∗σ] = 1
2ad[πγ∗σ,π

γ
∗σ] = 0. So, second equation is

always satisfied. The proof of the remaining equations follows from (3.18) and the
integrability equations in Proposition 3.3.3:

∂2
0,1 =

1

2
[adP , adP ] =

1

2
ad[P,P ] = 0,

∂1,0∂0,1 + ∂0,1∂1,0 = [∂γ1,0, adP ] = ad∂γ1,0P = 0,

∂1,0∂2,−1 + ∂2,−1∂1,0 = −[∂γ1,0, adπγ∗σ] = −ad∂γ1,0π
γ
∗σ

= 0,

∂2
1,0 + ∂2,−1∂0,1 + ∂0,1∂2,−1 = (∂γ1,0)2 − [adπγ∗σ, adP ] = adCurvγ − ad[πγ∗σ,P ] = 0.

Corollary 3.3.6. If Π is a coupling Poisson structure in the fiber bundle (E, π,B),
and (γ, σ, P ) are its associated geometric data (in the sense of Theorem 3.2.6), then
∂γ = ∂γ1,0 − adπγ∗σ + adP is a coboundary.

Some versions of Theorem 3.3.5 can also be found in [12, 11, 6, 18].
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3.4 Bigraded cohomological models

Let Π be a coupling Poisson structure in the fiber bundle (E, π,B). The
Lichnerowicz - Poisson operator δΠ : χE −→ χE is a coboundary and a graded
derivation of degree 1 for both the exterior product and the Schouten - Nijenhuis
bracket. On the other hand, if (γ, σ, P ) are the associated geometric data to Π,
then are integrbale (Theorem 3.2.6), and its associated operator ∂γ : VE −→ VE
is a graded derivation a and coboundary (Theorem 3.3.5). Therefore, a coupling
Poisson structure induces two cochain complexes: the Lichnerowicz - Poisson
complex (χE , δ

Π), and the bigraded complex (VE , ∂γ) associated to its geometric
data. However, it turns out that such complexes are isomorphic [6, 18].

In this Section, we give a complete proof of this fact. Moreover, such
isomorphism only depends on the horizontal component of the coupling Poisson
structure. This cochain complex isomorphism allows us to study the Poisson
cohomology by means of the bigraded decomposition of the operator ∂γ .

Recall that each σ ∈ Γ
∧2 V0 defines a C∞E -linear morphism [σ : Γ

∧
TE −→

Γ
∧
T ∗E given by ([σA)(X1, . . . , Xk) := A(σ[X1, . . . , σ

[Xk). If, additionally, σ
is horizontally non-degenerate, then [σ : Γ

∧
H −→ Γ

∧
V0 is an isomorphim.

Furthermore, we can extend this map to an isomorphism from multivector fields
χM to vertical-valued differential forms VE by tensor product.

Definition 3.4.1. For each σ ∈ Γ
∧2 V0, the linear mapping of bigraded

C∞B -modules [σ : χE −→ VE is defined by

([σA)(u1, . . . , up;µ1, . . . , µq) := (−1)pA
(
σ[hor(u1), . . . , σ[hor(up), µ1, . . . , µq

)
,

for any homogeneous element A ∈ χp,qE , ui ∈ X̄B and µj ∈ Ω0,1
E . This definition does

not depend on the choice of the connection used to calculate the horizontal lift.

So, our goal is to prove the following result (see also [6, 18]).

Theorem 3.4.2. Let (E, π,B) be a fiber bundle, Π a coupling Poisson structure
and (γ, σ, P ) its associated geometric data. Let δΠ : χE −→ χE be the Lichnerowicz
- Poisson operator of Π, and ∂γ := ∂γ1,0 − adπγ∗σ + adP , the coboundary operator

associated to (γ, σ, P ). The map [σ : (χE , δ
Π) −→ (VE , ∂γ) is a cochain complex

isomorphism, i.e., the following diagram commutes:

χkE χk+1
E

VkE Vk+1
E

?

[σ

-δΠ

?

[σ

-
∂γ

Thus, (VE , ∂γ) is a bigraded model for the Lichnerowicz - Poisson complex.

To prove this theorem, we need the following result:
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Proposition 3.4.3. Let σ ∈ Γ
∧2 V0 be a horizontally non-degenerate 2-form. The

map [σ : (χE ,∧) −→ (VE ,∧) is an exterior algebra isomorphism.

Proof. By purpose of calculus, fix a horizontal distribution H. Since horizontal lifts
generate at each point the tangent space, and σ[ : H −→ V0 is an isomorphism,
then V0

p = {σ[hor(u)(p) | u ∈ X̄B} ∀p ∈ E.Hence, any A ∈ χp,qE is determined by

its values on the image of projectable vector fields σ[hor(ui) and vertical forms µj .
This proves the injectivity of [σ, and the surjectivity is proved similarly. On the

other hand, if A ∈ χp,qE , B ∈ χp
′,q′

E , u1, . . . , up+p′ ∈ X̄B and µ1, . . . , µq+q′ ∈ Ω0,1
E , then

[σ(A ∧B)(u1, . . . , up+p′ ;µ1, . . . , µq+q′) =

(−1)p+p
′
(A ∧B)

(
σ[hor(u1), . . . , σ[hor(up+p′), µ1, . . . , µq+q′

)
=

(−1)p+p
′+p′q

∑
σ∈S(p,p′),τ∈S(q,q′)

(−1)σ(−1)τA
(
σ[hor(uσ(1)), . . . , σ

[hor(uσ(p)), µτ(1), . . . , µτ(q)

)
B
(
σ[hor(uσ(p+1)), . . . , σ

[hor(uσ(p+p′)), µτ(q+1), . . . , µτ(q+q′)

)
=

(−1)p+p
′+p′q

∑
σ∈S(p,p′),τ∈S(q,q′)

(−1)σ(−1)τ (−1)p[σ(A)
(
uσ(1), . . . , uσ(p);µτ(1), . . . , µτ(q)

)
(−1)p

′
[σ(B)

(
uσ(p+1), . . . , uσ(p+p′);µτ(q+1), . . . , µτ(q+q′)

)
=

[[σ(A) ∧ [σ(B)](u1, . . . , up+p′ ;µ1, . . . , µq+q′).

Since [σ : (χE ,∧) −→ (VE ,∧) is an exterior algebra isomorphism, it induces
an isomorphism of R-derivations [∗σ : DerR(VE ,∧) −→ DerR(χE ,∧) given by
[∗σ(D) := [−1

σ ◦D ◦ [σ. Thus, the proof of Theorem 3.4.2 is reduced to show that δΠ

and [−1
σ ◦ ∂γ ◦ [σ are the same graded derivation in (χE ,∧).

Proof of Theorem 3.4.2. Recall that graded derivations in (χE ,∧) are determined
by their action on functions and vector fields. So it is enough to show that the
identity [σ ◦ δΠ = ∂γ ◦ [σ holds on C∞E , ΓV and ΓH by straightforward calculation.

• If f ∈ C∞E , then (∂γ ◦ [σ)(f) = ∂γf = ∂γ1,0f + adP f = πγ∗d1,0f + [P, f ] and

([σ◦δΠ)(f) = [σ([Π2,0, f ]+[Π0,2, f ]) = [σ[Π2,0, f ]+[P, f ]. To prove the equality
[σ[Π2,0, f ] = πγ∗d1,0f , just evaluate in u ∈ X̄B:

[σ[Π2,0, f ](u) = (idfΠ2,0)σ[hor(u) = Π2,0(df, σ[hor(u))

= −Π2,0(σ[hor(u), d1,0f) = d1,0f(hor(u)) = (πγ∗d1,0f)(u).

• If W ∈ ΓV, then (∂γ ◦ [σ)(W ) = ∂γ(W ) = ∂γ1,0W + adPW − adπγ∗σW . By
bidegrees, we must prove ∂γ1,0W = [σ[Π,W ]1,1, adPW = [σ[Π,W ]0,2, and
−adπγ∗σW = [σ[Π,W ]2,0. The second equality is evident since [Π2,0,W ] has no
vertical part. The remaining equalities are verified as follows:

[σ[Π,W ]1,1(u;λ) =− [Π,W ](σ[hor(u), λ)

=− LW (Π(σ[hor(u), λ))− σ[hor(u)[W,Π]λ] + λ[W,Π]σ[hor(u)]

=λ[hor(u),W ] = λ(∂γ1,0W (u)) = ∂γ1,0W (u;λ),
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[σ[Π,W ]2,0(u, v) =LW (Π(σ[hor(u), σ[hor(v)))

+ σ[hor(u)[W,Π]σ[hor(v)]− σ[hor(v)[W,Π]σ[hor(u)]

=LW (σ(hor(u), hor(v))) = [W,πγ∗σ(u, v)] = −adπγ∗σW (u, v).

• Let X ∈ ΓH be a horizontal vector field. Then (∂γ ◦ [σ)(X) = ∂γ1,0[σ(X) +
adP [σ(X). By bidegrees, must prove

∂γ1,0[σ(X) = [σ[Π, X]2,0, adP [σ(X) = [σ[Π, X]1,1, 0 = [σ[Π, X]0,2. (3.23)

The last equality in (3.23) follows from Lemma 3.2.3. The first identity in
(3.23) is proved as follows,

∂γ1,0[σ(X)(u, v) = Lhor(u)([σ(X)(v))− Lhor(v)([σ(X)(u))− [σ(X)[u, v] =

− Lhor(u)(σ(hor(v), X))− Lhor(v)(σ(X,hor(u))) + σ(hor[u, v], X) =

− Lhor(u)(σ(hor(v), X))− Lhor(v)(σ(X,hor(u))) + σ([hor(u), hor(v)], X) =

LX(σ(hor(u),hor(v)))− σ([hor(v), X], hor(u))− σ([X,hor(u)], hor(v)) =

LX(σ(hor(u),hor(v))) + σ[hor(u)[X,Π]σ[hor(v)]− σ[hor(v)[X,Π]σ[hor(u)] =

[Π, X](σ[hor(u), σ[hor(v)) = [σ[Π, X]2,0(u, v),

where in the third equality it has been used that hor[u, v]− [hor(u),hor(v)] is
vertical, and fourth equality follows from dσ(hor(u), hor(v), X) = 0. Finally,
the second identity in (3.23) is proved as follows,

adP [σ(X)(u;λ) = λ
(
[P, [σ(X)](u)

)
= −λ[P, [σ(X)(u)] = λ[P, σ(hor(u), X)] =

− λ
(
P ]d[σ(hor(u), X)]

)
= λ

(
R(hor(u), X)

)
− λ
(
P ]LXσ[hor(u)

)
=

− λ[X,hor(u)] + LXσ[hor(u)(P ]λ) = LXσ[hor(u)(P ]λ)− λ[X,hor(u)] =

LX(σ[hor(u)(P ]λ))− σ[hor(u)[X,Π]λ] + λ[X,Π]σ[hor(u)] =

− LX(Π(σ[hor(u), λ))− σ[hor(u)[X,Π]λ] + λ[X,Π]σ[hor(u)] =

− [Π, X](σ[hor(u), λ) = [σ[Π, X]1,1(u;λ),

where, in the fifth equality, Lemma 3.2.4 has been applied.

Corollary 3.4.4. Let (E, π,B) be a fiber bundle. Let also Π be a coupling Poisson
structure and (γ, σ, P ) its associated geometric data. If ∂γ is the coboundary operator
defined by (γ, σ, P ) as in Definition 3.3.4, then we have a cohomology isomorphism

([σ)∗ : HkLP (E,Π) −→ Hk∂γ .

This result allows us to reduce the study of Poisson cohomology of coupling
structures in fiber bundles to the cohomology of a bigraded cochain complex, in the
sense of Chapter 1.



Chapter 4

Geometric Splitting of First Poisson

Cohomology

In this chapter we present some splitting-type results for the first cohomology group
of Poisson structures. We begin by the case of regular Poisson manifolds (Theorem
4.1.4). We apply there a global scheme which can be used only for regular Poisson
structures (see also [38, 32, 39]). Since our original results are motivated by the
singular case, we also present a splitting theorem for the first cohomology group of
coupling Poisson structures in fiber bundles (Theorem 4.2.5).

Given a closed symplectic leaf S of the Poisson manifold (M,Ψ), there is
a tubular neighborhood of S diffeomorphic to the normal bundle E over S.
Furthermore, it is well-known [36] that, under such identification, the Poisson
structure Ψ is isomorphic to a coupling structure Π in the bundle E. In other words,
the study of coupling Poisson structures in fiber bundles is related to the semilocal
study of Poisson structures (around symplectic leaves). Therefore, Theorem 4.2.5 is
a first step in the study of the first Poisson cohomology group of singular structures.

The main result of Chapter 3 implies that the cohomology groups of the
Lichnerowicz - Poisson complex (χE , δ

Π) defined by the coupling Poisson structure
are isomorphic to the cohomology groups of the bigraded cochain complex induced
by the geometric data (Theorem 3.4.2). Since this second complex is bigraded, in
the sense of Definition 1.2.1, we can apply the main result of Chapter 1 (Theorem
1.2.2) to obtain a splitting for the first cohomology group of this bigraded cochain
complex. Combining these results, we get the desired splitting for the first
cohomology group of a coupling Poisson structure. Such splitting has a natural
geometric interpretation.

We present geometric conditions that simplify the calculus of the first Poisson
cohomology group. As an application of Corollary 1.2.3, we study the case when
the first vertical Poisson cohomology is trivial. Moreover, we present some examples
in which the first Poisson cohomology group is simpler, which are not attainable
in the general abstract scheme presented in Chapter 1. These examples arise
when the Poisson structure on each fiber does not admit global non-trivial Casimir
functions. We present some examples for which the Poisson structure on the fiber is a
Lie-Poisson structure. The symplectic foliation on the fiber of most of such examples
are open book, which allows to prove that they do not admit Casimir functions.
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4.1 Regular case

In this part we present a geometric splitting for the first cohomology group of a
regular Poisson manifold (M,Π). Since the characteristic distribution is regular
and involutive, the R-space of tangent vector fields is a Lie subalgebra of vector
fields. Moreover, tangent multivector fields form a graded Poisson subalgebra of
multivector fields with the Schouten - Nijenhuis bracket. This implies that tangent
multivector fields form a cochain subcomplex of the Lichnerowicz - Poisson complex,
which is called tangential Poisson complex [8]. Furthermore, the tangential Poisson
complex is isomorphic to the leafwise de Rham complex, which is well understood
in some particular but important cases [32].

On the other hand, we present a bigrading for the Lichnerowicz - Poisson
complex. To do this, we fix a generalized connection γ in the Poisson manifold
(M,Π) such that the horizontal distribution of γ and the characteristic distribution
of Π coincide: H = DΠ. With such bigrading, the the Lichnerowicz - Poisson
complex (χM , δ

Π) is a bigraded cochain complex, in the sense of Definition 1.2.1.

Finally, we derive the following splitting for the first Poisson cohomology group:

H1
LP (M,Π) ' H1

dS
⊕ {Y ∈ X̄V

pr(M,H) | LY ω is dS-exact}.

The first factor is precisely the leafwise de Rham cohomology and corresponds
to the tangential Poisson cohomology. The second factor consists on the trivial
deformations of the leafwise symplectic 2-form ω. This splitting is derived as
consequence of Theorem 1.2.2 of Chapter 1, applied to the Lichnerowicz - Poisson
complex with the bigrading given as explained in above.

4.1.1 Tangential Poisson complex

Let (M,Π) be a regular Poisson manifold with rankΠ = k. In this case, the
characteristic distribution DΠ is a subbundle of TM . So, the symplectic foliation
(S, ω) is a regular foliation. Moreover, since DΠ = TS is an involutive distribution,
the algebra of tangent multivector fields Γ

∧
TS ' Γ

∧
DΠ is a graded Poisson

subalgebra of multivector fields (χM ,∧, [, ]), with the exterior product and the
Schouten - Nijenhuis bracket. In particular, since Π ∈ Γ

∧2DΠ, we get that
tangent multivector fields define a cochain subcomplex of the Lichnerowicz - Poisson
complex:

δΠ
(

Γ
∧
DΠ
)
⊂ Γ

∧
DΠ.

The pair
(
Γ
∧
DΠ, δΠ

)
is called tangential Poisson complex. The spaces of

cocycles, coboundaries and cohomologies are respectively denoted by Zktan(M,Π),
Bktan(M,Π) and Hktan(M,Π).

Recall that, in general, the map ]Π : ΩM −→ χM is a cochain complex morphism,
which induces a cohomology morphism from the de Rham to the Poisson complex
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by ]∗Π[α] := []Πα]. In the regular case, the map ]∗Π : Hk
dR(M) −→ Hktan(M,Π) values

on the tangential Poisson cohomology group.

Also, recall that, associated to each regular foliation on a differential manifold,
there is a cochain complex called leafwise de Rham complex. For the symplectic
foliation (S, ω), the foliated exterior differential dS is a coboundary operator acting
on leafwise differential forms Γ

∧
T ∗S by

dSλ(Y0, . . . , Yp) :=

p∑
i=0

(−1)i(ı∗Yi)(λ(Y0, . . . , Ŷi, . . . , Yp))

+
∑
i<j

(−1)i+jλ([Yi, Yj ], Y1, . . . , Ŷi, . . . , Ŷj , . . . , Yp),

for all Y0, . . . , Yp ∈ Γ(TS). Indeed, it can be shown that the triple (Γ
∧
TS, ı, [, ]) is

a Lie algebroid. So, dS is a Lie algebroid differential, and the pair (Γ
∧
T ∗S, dS) is

the leafwise de Rham complex.

Since Π is a section of
∧2 TS, the maps Π] and ]Π, defined in page 44, can be

naturally defined for leafwise differential forms in the same fashion:

〈β,Π]α〉 := Π(α, β), ]Πλ(α1, . . . , αk) := λ(Π]α1, . . . ,Π
]αk).

On the other hand, the symplectic structure ω is a leafwise differential 2-form, i.e.,
ω ∈ Γ

∧2 T ∗S, which is given by ω(Xf , Xg) := Π(df,dg). Moreover, ω induces the
following maps

ω[ : Γ(TS) −→ Γ(T ∗S), [ω : Γ
∧
TS −→ Γ

∧
T ∗S,

by ω[(X) := −iXω and [ωA(X1, . . . , Xk) := A(ω[X1, . . . , ω
[Xk). It is clear that

(ω[ ◦Π])(α) = −α, (]Π ◦ [ω)(A) = (−1)|A|A,

(Π] ◦ ω[)(X) = −X, ([ω ◦ ]Π)(λ) = (−1)|λ|λ.

Thus, ]Π and [ω are isomorphisms. Furthermore, both are exterior algebra
isomorphisms, which is easy to verify by simple calculation.

Proposition 4.1.1. The map ]Π : (Γ
∧
T ∗S, dS) −→

(
Γ
∧
TS, δΠ

)
is a cochain

complex isomorphism. In particular, there is a cohomology isomorphism (]Π)∗ :
Hk

dS
−→ Hk

tan(M,Π).

Proof. Recall that δΠ and dS are graded derivations of their respective exterior
algebras. So, we just need to prove that δΠ ◦ ]Π = ]Π ◦dS holds on C∞M and Γ(T ∗S).
First note for f ∈ C∞M that (δΠ ◦ ]Π)(f) = [Π, f ] = −Xf = −Π]dSf = ]ΠdSf =
(]Π ◦ dS)(f). On the other hand, Γ(T ∗S) is locally generated by elements of the
form fdSg. Moreover, δΠ ◦ ]Π and ]Π ◦dS are graded derivations coinciding in f and
vanishing in dSg. Therefore, both operators coincide in Γ(T ∗S), as desired.
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4.1.2 The bigraded Lichnerowicz - Poisson complex

By means of a generalized connection, the above isomorphism can be naturally
extended to the whole algebra of multivector fields. Recall that a generalized
connection γ in M is a vector bundle endomorphism γ : TM −→ TM of constant
rank such that γ2 = γ. The kernel and the image of γ are regular distributions,
respectively called horizontal and vertical distributions: H := ker(γ), V := Im(γ).
It turns out that TM := H⊕ V.

Let (M,Π) be a regular Poisson manifold. It turns out that the symplectic
foliation (S, ω) is regular. Now, fix a generalized connection γ in M such that
the horizontal distribution of γ coincides with the characteristic distribution of Π:
H := DΠ. This induces a bigrading in M (see Section 2.5). In particular, multivector
fields become a bigraded algebra with the exterior product. The bigrading in this
case is given by

χ•,•M =
⊕
p,q∈Z

χp,qM ,

where χp,qM := Γ (
∧pH ∧

∧q V). Such bigrading has the following properties:

• The horizontal distribution H is involutive.

• The bivector field Π is a section of
∧2 H.

The first property implies that the curvature of γ is zero: R = 0. Thus, the
bigraded decomposition of the exterior differential is d = d1,0 + d0,1 + d−1,2, and
the components have Frölicher - Nijenhuis decompositions d1,0 = LIdTM−γ − iR′ ,
d0,1 = Lγ + 2iR′ , d−1,2 = −iR′ , due to Theorem 2.5.6. The second property means
that, with this bigrading, Π has bidegree (2, 0).

Observe that the differential operators iΠ and d−1,2 commute with each other.

Indeed, since iΠ ∈ D−2,0
2 (M) and d−1,2 ∈ D−1,2

1 , we have [iΠ, d−1,2] ∈ D−3,2
2 (M).

If the degree of α ∈ ΩM is equal or less than 2, then, in particular, its horizontal
bidegree is at most 2, and the horizontal bidegree of [iΠ, d−1,2](α) is negative.
Hence, [iΠ, d−1,2] is a differential operator of order equal or less than 2 vanishing in
forms of degree equal or less than 2. This implies [iΠ, d−1,2] = 0, due to Proposition
2.3.4.

As consequence of our above discussion, the bigraded decomposition of the
Koszul - Brylinski operator is LΠ = [iΠ, d] = [iΠ,d1,0] + [iΠ,d0,1]. Now, fix Q ∈ χh,kM
(h+k = q) and ϕ ∈ Ωr,s

M (r+s = q+1). By the definition of the Schouten - Nijenhuis
bracket,

〈ϕ, δΠQ〉 = 〈ϕ, [Π, Q]〉 = (−1)
q(q+1)

2 i[Π,Q]ϕ = (−1)
q(q+1)

2 [LΠ, iQ]ϕ

= (−1)
q(q+1)

2 [[iΠ,d0,1], iQ]ϕ+ (−1)
q(q+1)

2 [[iΠ, d1,0], iQ]ϕ.

Observing that each summand in this equation is a bigraded operator in χM , we
arrive at the following result.
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Theorem 4.1.2. Let (M,Π) a regular Poisson manifold with characteristic
distribution DΠ. Fix a connection γ such that its horizontal distribution is DΠ,

H = DΠ, V = Im(γ), TM = H⊕ V. (4.1)

The Lichnerowicz - Poisson operator has the bigraded decomposition δΠ = δΠ
1,0 +

δΠ
2,−1, where δΠ

1,0 and δΠ
2,−1 are graded commutative coboundary operators given by

〈ϕ, δΠ
1,0Q〉 := (−1)

q(q+1)
2 [[iΠ, d0,1], iQ]ϕ,

〈ϕ, δΠ
2,−1Q〉 := (−1)

q(q+1)
2 [[iΠ, d2,−1], iQ]ϕ.

Remark 4.1.3. A version of Theorem 4.1.2 is given in [32]. The idea of the proof
is very similar: to use a bigrading of the Lichnerowicz - Poisson complex associated
to a distribution complementary to the characteristic distribution DΠ. However, the
bigrading in [32] is different to (4.1), since it is chosen the characteristic distribution
as the vertical distribution.

4.1.3 First cohomology of regular Poisson structures

Consider the bigrading in M given by the generalized connection γ induced by
the decomposition (4.1). Let us apply Theorem 1.2.2 to the Lichnerowicz-Poisson
complex in the regular case. For ∂ = δΠ, take ∂1,0 = δΠ

1,0, ∂0,1 = 0, ∂2,−1 = δΠ
2,−1.

Since ∂0,1 = 0, the intrinsic objects defined in Chapter 1 can be easily computed. In
this case, operator ∂1,0 is given by the restriction of δΠ to

C•,0 = χ•,0M = Γ
∧

H = Γ
∧
DΠ,

which are precisely tangent multivector fields. Therefore, the complex (Z•,0∂0,1
, ∂1,0)

is the tangential Poisson complex : (Γ
∧
DΠ, δΠ) (see [32, 8]).

The subspace A is given by transversal vector fields preserving the foliation, or
vertical projectable vector fields

X̄V
pr(M,H) = {X ∈ ΓV | [X,ΓH] ⊂ ΓH}.

Indeed, note that

A = {Y ∈ C0,1 | ∂1,0(Y ) = 0} = {Y ∈ ΓV | δΠ
1,0(Y ) = 0}

= {Y ∈ ΓV | [Π, Y ]1,1 = 0} =
{
Y ∈ ΓV | [Π, Y ] ∈ Γ ∧2 DΠ

}
,

which proves X̄V
pr(M,H) ⊂ A. Conversely, if Y ∈ A, then

[Y,Xf ] = −[Y, [Π, f ]] = −[[Y,Π], f ]− [Π, [Y, f ]] = idf [Y,Π] + iLY fΠ.

The right-hand side summands are sections to DΠ. Thus, [Y,Xf ] ∈ ΓDΠ. Since DΠ

is generated by Hamiltonian vector fields, this implies that Y ∈ X̄V
pr(M,H), proving
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that A ⊂ X̄V
pr(M,H). Thus, A = X̄V

pr(M,H) is the space of transversal vector fields
preserving the foliation. This is not a Lie subalgebra of vector fields excepting the
case in which vertical distribution V is involutive, i.e., if the generalized connection
γ is flat: [γ, γ]FN = 0.

The morphism ρ : A −→ H2
tan(M,Π) is given by ρ(Y ) = [δΠ

2,−1(Y )]. Therefore,

ker ρ = {Y ∈ A | δΠ
2,−1(Y ) is δΠ

1,0-exact} = {Y ∈ A | LY Π is δΠ
1,0-exact}

= {Y ∈ A | LY Π = δΠ(Z), Z ∈ ΓDΠ} = {Y ∈ A | ]Π(LY ω) = δΠ(]Π(α)), α ∈ Ω1
M}

= {Y ∈ A | ]Π(LY ω) = ]Π(dSα), α ∈ Ω1
M} = {Y ∈ A | LY ω = dSα, α ∈ Ω1

M}
= {Y ∈ X̄V

pr(M,H) | LY ω is dS-exact}.

The above discussion allows us to prove the following result.

Theorem 4.1.4. Let Π be a regular Poisson structure in a manifold M with
characteristic distribution DΠ. Fix a distribution V ⊂ TM complementary to the
characteristic distribution H = DΠ. The first Poisson cohomology group splits as

H1
LP (M,Π) ' H1

dS
⊕ {Y ∈ X̄V

pr(M,H) | LY ω is dS-exact}.

Proof. Because of Theorem 4.1.2, the Lichnerowicz - Poisson complex (χM , δ
Π) is a

bigraded cochain complex in the sense of Definition 1.2.1 with the bigrading induced
by γ. Applying Theorem 1.2.2 to the bigraded cochain complex (χM , δ

Π), we arrive
to the following short exact sequence:

0→ H1
∂1,0

↪→ H1
δΠ →

ker ρ

B1
∂0,1

→ 0. (4.2)

Since ∂0,1 = 0, we have B1
∂0,1

= {0}. On the other hand, our previous analysis

shows that H1
∂1,0

is precisely the first tangential Poisson cohomology: H1
tan(M,Π).

Furthermore, Proposition 4.1.1 implies that H1
tan(M,Π) is isomorphic to the first

leafwise de Rham cohomology group of the symplectic foliation S:

H1
tan(M,Π) ' H1

dS
.

Finally, our previous analysis also shows that

ker ρ = {Y ∈ X̄V
pr(M,H) | LY ω is dS-exact}.

Therefore, the sequence in (4.2) is equivalent to the following,

0→ H1
dS
↪→ H1

LP (M,Π)→ {Y ∈ X̄V
pr(M,H) | LY ω is dS-exact} → 0.

Since we are in the category of R-vector spaces, this implies

H1
LP (M,Π) ' H1

dS
⊕ {Y ∈ X̄V

pr(M,H) | LY ω is dS-exact},

as desired.

The following consequence of 4.1.4 can be found, for example, in [38, 31, 32].
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Corollary 4.1.5. Let (S, ω) be a symplectic manifold of finite Betti numbers, and
N any differential manifold with the trivial Poisson structure. Take M = S ×N as
product of Poisson manifolds. Then

H1
LP (M,Π) ' (H1

dR(S)⊗ C∞N )⊕ X̄N

Proof. In this particular case, the leaves of symplectic foliation of M are S × {n},
with n ∈ N , and the leafwise symplectic structure at each leaf is ω in S×{n}. Since
S has finite Betti numbers,

H1
dS
' H1

dR(S)⊗ C∞N .

On the other hand, let σ ∈ Ω2
M be defined by iY σ = 0 if Y ∈ ΓV and by σ(Xf , Xg) =

ω(Xf , Xg). Then,

LY σ = iY dσ + diY σ = 0,

so LY ω = 0. Thus {Y ∈ X̄V
pr(M,H) | LY ω is dS-exact} = X̄V

pr(M,H) ' X̄N .

Notice that the scheme presented in this section only works for regular Poisson
structures. Indeed, the choice of the characteristic distribution as the horizontal
distribution is only possible if the Poisson structure is regular. In the following
sections we apply the results of Chapter 3 to the case of coupling Poisson structures
in fiber bundles whose characteristic distribution may be singular.

4.2 The case of coupling Poisson structures

In this part, we get a splitting-type result for the first cohomology of a coupling
Poisson structure Π in a fiber bundle (E, π,B). To do this, we apply the results of
Chapter 1 to the bigraded cochain complex (VE , ∂γ) defined by the geometric data
(γ, σ, P ) associated to Π.

First of all, we apply the cochain complex isomorphism given in Theorem 3.4.2
to describe the infinitesimal automorphisms of a coupling Poisson structure Π in
terms of the geometric data (γ, σ, P ). Since (VE , ∂γ) is a bigraded cochain complex,
the equations for an infinitesimal automorphism of Π are bigraded equations for two
parameters in VE : a vertical vector field W ∈ ΓV and a horizontal 1-form θ ∈ ΓH.

Also, for the bigraded cochain complex (VE , ∂γ), we give a geometric description
of the objects introduced in Chapter 1. We begin by describing geometrically
the coboundary spaces of ∂0,1 = adP . Then, we show that the subspace Aγ is a
Lie R-subalgebra of vertical infinitesimal automorphisms, and we also describe the
morphism ρ. From this geometric point of view, we are able to present conditions
which simplify the calculus of the first Poisson cohomology group of Π.
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4.2.1 Infinitesimal Poisson automorphisms

Let (E, π,B) a fiber bundle and Π a coupling Poisson structure on E,

Π](V0)⊕ V = TE, V = ker(π∗). (4.3)

Let also (γ, σ, P ) be the integrable geometric data associated to the coupling
structure Π (in the sense of Theorem 3.2.6). The splitting (4.3) induces a bigrading
in M such that the coupling Poisson structure and the exterior differential have
the bigraded decompositions Π = Π2,0 + Π0,2 and d = d1,0 + d0,1 + d2,−1.

On the other hand, the involutivity of V implies that the R-space of vertical
multivector fields χV(E) := Γ

∧
V has a Poisson algebra structure induced by the

exterior product and by the Schouten - Nijenhuis bracket. Taking in account that
ΩB also has exterior algebra structure, the R-space of vertical-valued forms in base
VE = ΩB ⊗C∞B χV(E) can be naturally endowed with a Poisson algebra structure:
(VE ,∧, [, ]). The adjoint operator of η ∈ VE respect to the bracket [, ],

adη : VE −→ VE ,
ν 7−→ adη(ν) := [η, ν],

is a graded derivation of both operations ∧ and [, ]. On the other hand, the
covariant exterior differential ∂γ1,0 associated to an Ehresmann connection γ is also
a graded derivation of both operations ∧ and [, ] (see Definition 3.3.2). Because of
Theorem 3.3.5, the integrable geometric data (γ, σ, P ) define a coboundary operator
∂γ in terms of their bigraded components by ∂γ := ∂γ1,0 − adπγ∗σ + adP . Moreover,
Theorem 3.4.2 says that the given bigraded cochain complex (VE , ∂γ) is isomorphic
to the Lichnerowicz - Poisson complex (χE , δ

Π) induced by the coupling structure
Π. This isomorphism is induced by σ in a natural fashion, and is denoted by [σ.

We now apply Theorem 3.4.2 to get the following immediate consequence.

Lemma 4.2.1. If A ∈ χE, then δΠ(A) = 0 if and only if ∂γ[σ(A) = 0.

Further, this allow us to re-write conditions for a function and a vector field to
be 0 and 1-cocycles of the Lichnerowicz - Poisson complex in terms of the geometric
data (γ, σ, P ).

Lemma 4.2.2. Let Π be a coupling Poisson structure on (E, π,B) and (γ, σ, P ) its
associated geometric data. A smooth function f ∈ C∞E is Casimir for Π if and only
if the following conditions are satisfied:

1. f is d1,0-closed: df ∈ ΓH0.

2. f is a Casimir function for P .

Proof. Due to Lemma 4.2.1, [Π, f ] = 0 if and only if ∂γf = ∂γ
(
[σ(f)

)
= 0. From

the proof of Theorem 3.4.2, this condition is equivalent to πγ∗d1,0f + [P, f ] = 0.
Splitting in bidegrees, and recalling that πγ∗ is an isomorphism, we get d1,0f = 0
and [P, f ] = 0.
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Proposition 4.2.3. Let Π be a coupling Poisson structure on a fiber bundle
(E, π,B) and (γ, σ, P ) its associated geometric data. A vector field Z + W ∈ X̄E,

with W ∈ ΓV and Z = Π]
2,0θ, is an infinitesimal Poisson automorphism for Π if

and only if

1. LWσ = d1,0θ,

2. [X,W ] = P ]d [θ(X)] ∀X ∈ X̄H
pr(M),

3. W is an infinitesimal Poisson automorphism of P , LWP = 0.

Proof. Recall that θ = −σ[Z. It follows from Corollary 4.2.1 that Z + W is an
infinitesimal automorphism for Π if and only if ∂γ[σ(Z +W ) = ∂γ(−πγ∗θ+W ) = 0.
On the other hand, by the bigraded decomposition ∂γ = ∂γ1,0+adP−adπγ∗σ, it follows
that ∂γ(−πγ∗θ +W ) = 0 is equivalent to the following three equations:

∂γ1,0π
γ
∗θ = −[πγ∗σ,W ], (4.4)

∂γ1,0W = [P, πγ∗θ], (4.5)

[P,W ] = 0. (4.6)

Note that the left-hand side of equation (4.4) is ∂γ1,0π
γ
∗θ = πγ∗d1,0θ. Since πγ∗ is an

isomorphism, to prove the equivalence between 1 and (4.4), it suffices to show that
[πγ∗σ,W ] = −πγ∗LWσ. Indeed, if u, v ∈ X̄B, then

[πγ∗σ,W ](u, v) = [πγ∗σ(u, v),W ]

= [σ(hor(u),hor(v)),W ] = −LW
(
σ(hor(u), hor(v))

)
= −(LWσ)(hor(u), hor(v))− σ([W, hor(u)],hor(v))− σ(hor(u), [W, hor(v)])

= −(LWσ)(hor(u), hor(v))

= −(πγ∗LWσ)(u, v),

proving that equation (4.4) is equivalent to LWσ = d1,0θ. Now, let us prove the
equivalence between 2 and equation (4.5). Evaluating u ∈ X̄B on each side of (4.5)
gives

∂γ1,0W (u) = [hor(u),W ],

[P, πγ∗θ](u) = −[P, πγ∗θ(u)] = P ]d[θ(hor(u))].

Since any projectable field is an horizontal lift and conversely, we have that equation
(4.5) is equivalent to

[X,W ] = P ]d[θ(X)] ∀X ∈ X̄H
pr(M),

as desired. Finally, the integrability condition for (γ, σ, P ) implies that P is a Poisson
bivector field. Since W is vertical, [P,W ] in VE equals the Schouten - Nijenhuis
bracket [P,W ] in χE . Therefore, equation (4.6) is precisely the condition for W to
be an infinitesimal automorphism for P .
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4.2.2 First cohomology of coupling Poisson structures

Let Π be a coupling Poisson structure on a fiber bundle (E, π,B) and (γ, σ, P )
its associated geometric data. Define the graded operator ∂γ : VE −→ VE by its
bigraded components

∂1,0 = ∂γ1,0, ∂0,1 = adP , ∂2,−1 = −adπγ∗σ.

Because of Theorem 3.3.5, (VE , ∂γ) is a bigraded cochain complex. Furthermore,
Theorem 3.4.2 implies that the first Poisson cohomology group of Π is isomorphic
to the first cohomology group of the bigraded cochain complex (VE , ∂γ). In order
to apply our results of Chapter 1, we need to study the cocycles of ∂0,1 = adP .

Lemma 4.2.4. For the bigraded cochain complex (VE , ∂γ), the coboundary spaces
of ∂0,1 = adP are Zp,0∂0,1

= Ωp
B ⊗ Casim(E,P ).

Proof. Fix η ∈ Vp,0E . Then,

∂0,1η(u1, . . . , up) = adP η(u1, . . . , up) = [P, η](u1, . . . , up) = (−1)p[P, η(u1, . . . , up)],

where in the right-hand side we have the Schouten = Nijenhuis bracket. Therefore,
η ∈ Zp,0∂0,1

if and only if η(u1, . . . , up) ∈ Casim(E,P ) for all ui ∈ X̄B. This is precisely

η ∈ Ωp
B ⊗ Casim(E,P ), as desired.

The results of Chapter 1 imply that the covariant exterior derivative of γ,
restricted to

∂
γ
1,0 := ∂γ1,0|ΩB⊗Casim(E,P )

is a coboundary operator in ΩB ⊗ Casim(E,P ). This fact can also be verified
directly by equations (3.21) and (3.10).

Now, we need to study the subspace Aγ . By definition of ∂1,0 = ∂γ1,0 and ∂0,1 =
adP , the space Aγ is given by

Aγ = {Y ∈ PoissV(E,P ) | ∃βY ∈ ΩB ⊗ C∞E : [Y, horγu] = P ]βY (u) ∀u ∈ X̄B}.

Note that Aγ is a Lie subalgebra of PoissV(E,P ). Indeed, if Y,Z ∈ Aγ and
u ∈ X̄B, then [Z, horγu] and [Y, horγu] are Hamiltonian. Since Ham(E,P ) is an
ideal in PoissV(E,P ), we have that

[[Y,Z], horγu] = [Y, [Z,horγu]] + [[Y,horγu], Z]

is also a Hamiltonian vector field. Furthermore, the Lie algebra Aγ has Ham(E,P )
as an ideal. Equivalently, a partitions of unity argument shows that Aγ can be
defined by

Aγ = {Y ∈ PoissV(E,P ) | [Y,horγu] ∈ HamV(E,P ) ∀u ∈ X̄B}.
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To describe the morphism ρ, first note that

∂2,−1Y (u, v) = −[πγ∗σ, Y ](u, v) = −[πγ∗σ(u, v), Y ]

= LY (πγ∗σ(u, v)) = LY (σ(horγu,horγv))

= LY σ(horγu,horγv) + σ([Y, horγu],horγv) + σ(horγu, [Y,horγv])

= LY σ(horγu,horγv)

= (πγ∗LY σ)(u, v).

Thus, ρ : Aγ −→ H2
∂
γ
1,0

is defined by ρ(Y ) := [∂γ1,0βY + πγ∗ (LY σ)]. Hence,

ker ρ = {Y ∈ Aγ | ∂γ1,0βY + πγ∗ (LY σ) is ∂
γ
1,0 − exact}.

Theorem 4.2.5. Let Π be a coupling Poisson structure on a fiber bundle (E, π,B).
If (γ, σ, P ) is the geometric data associated to Π, then the first Poisson cohomology
group of Π is isomorphic to

H1
LP (E,Π) ' H1

∂
γ
1,0
⊕ ker ρ

Ham(E,P )
. (4.7)

Proof. Let (VE , ∂γ) be the bigraded cochain complex defined in E by (γ, σ, P ).
Recall that ∂γ has the following bigraded decomposition ∂γ = ∂1,0 + ∂0,1 + ∂2,−1,
where

∂1,0 = ∂γ1,0, ∂0,1 = adP , ∂2,−1 = −adπγ∗σ.

Therefore, we can apply Theorem 1.2.2 to the bigraded cochain complex (VE , ∂γ).
In particular, equation (1.14) reads

0→ H1
∂
γ
1,0
↪→ H1

∂γ →
ker ρ

Ham(E,P )
→ 0.

Since we are in the category of R-vector spaces, this sequence is equivalent to

H1
∂γ ' H1

∂
γ
1,0
⊕ ker ρ

Ham(E,P )
.

Finally, by Corollary 3.4.4 of Theorem 3.4.2, we know that

H1
LP (E,Π) ' H1

∂γ ,

which completes the proof.

Note that, in the right-hand side of splitting (4.7), obtained for the first Poisson
cohomology group, the first factor do depends on the choice of the Ehresmann
connection γ. Indeed, recall that the correspondence between coupling structures
Π and geometric data (γ, σ, P ) is bijective. This means that if we change the
Ehresmann connection γ, then the coupling structure Π is also changed.
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We now consider a situation in which the first factor of H1
LP (E,Π) does not

depend on the choice of the Ehresmann connection γ.

Let (E, π,B;P ) a Poisson fiber bundle and γ a Poisson connection, i.e., such that
horizontal lifts are infinitesimal automorphisms, LhorγuP = 0 ∀u ∈ X̄B. In other
words, the vertical Poisson structure is invariant under parallel transport. Consider
the covariant exterior differential ∂γ1,0 : VE −→ VE of γ, given by

∂γ1,0η(u0, . . . , up) :=

p∑
i=0

(−1)iLhorγui(η(u0, . . . ûi . . . , up))

+
∑
i<j

(−1)i+jη([ui, uj ], u0, . . . ûi . . . ûj . . . , up).

Note that the second summand does not depend on the choice of the connection γ.

Proposition 4.2.6. Let (E, π,B;P ) be a Poisson fiber bundle and γ a Poisson
connection. Assume that PoissV(E,P ) = Ham(E,P ). Then

∂
γ
1,0 : ΩB ⊗ Casim(E,P ) −→ ΩB ⊗ Casim(E,P )

does not depend on the choice of the Poisson connection γ.

Proof. Let γ̃ be another Poisson connection. For each u ∈ X̄B, the horizontal
lifts horγ(u) and horγ̃(u) are Poisson vector fields, which are π-related to u. Thus,
the difference is a vertical Poisson vector field: horγ(u) − horγ̃(u) ∈ PoissV(E,P ).
Furthermore, since PoissV(E,P ) = Ham(E,P ), it follows that horγ(u) − horγ̃(u)
is Hamiltonian. In particular, Lhorγ(u)−horγ̃(u)K = 0 for each K ∈ Casim(E,P ).
Therefore, if η ∈ ΩB ⊗ Casim(E,P ), then

∂γ1,0η(u0, . . . , up) =

p∑
i=0

(−1)iLhorγui(η(u0, . . . ûi . . . , up))

+
∑
i<j

(−1)i+jη([ui, uj ], u0, . . . ûi . . . ûj . . . , up)

=

p∑
i=0

(−1)iLhorγ̃ui
(η(u0, . . . ûi . . . , up))

+
∑
i<j

(−1)i+jη([ui, uj ], u0, . . . ûi . . . ûj . . . , up)

= ∂γ̃1,0η(u0, . . . , up),

proving that ∂
γ
1,0 : ΩB ⊗ Casim(E,P ) −→ ΩB ⊗ Casim(E,P ) does not depend on

the choice of γ.

We conclude that the assertion of Proposition 4.2.6 is also true if Poiss(Eb, Pb) =
Ham(Eb, Pb) for every b ∈ B.
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4.2.3 Regular coupling Poisson structures

In this part we apply Theorem 4.2.5 to a regular coupling structure. More precisely,
if B is a regular symplectic leaf of a Poisson manifold, then there is a tubular
neighborhood of B which is diffeomorphic to the normal bundle E over B, and the
Poisson structure in E is a coupling structure with the following geometric data:

• The horizontal distribution H is the characteristic distribution. Thus, the
Ehresmann connection is flat.

• The vertical Poisson structure is zero: P = 0.

• The horizontal 2-form σ is projectable.

Furthermore, we compare the result obtained here with Theorem 4.1.4.

Recall that, according to [36], coupling Poisson structures arise in the semilocal
study of Poisson structures. Indeed, if S is a closed symplectic leaf in the Poisson
manifold (M,Ψ), then there exists a tubular neighborhood U of S such that U is
diffeomorphic to a vector bundle E over S. Moreover, under such diffeomorphism,
the Poisson structure Ψ is isomorphic to a coupling structure Π in E.

On the other hand, assume that S is regular, i.e., the tubular neighborhood U of
S can be chosen such that the Poisson structure is regular in U . Moreover, a model
for the regular Poisson structure in the tubular neighborhood of S can be given in
the following terms:

• The Poisson structure Ψ can be viewed as a regular coupling structure Π in a
fiber bundle (E, π, S), where S is a regular symplectic leaf.

• The characteristic and the horizontal distributions coincide: H = Π](T ∗E).

• The connection γ is flat: Curvγ = 0.

• The vertical part of Π is zero: P = Π0,2 = 0.

This choice on the geometric data is motivated by the following well-known
fact: any regular Poisson structure around a closed symplectic leaf is isomorphic to
a coupling Poisson structure with the above geometric data [36].

Moreover, on each symplectic leaf, the horizontal Poisson structure Π restricts
to a nondegenerate Poisson structure. Also, we have the nondegenerate Poisson
bivector ΠS ∈ Γ

∧2 TS in the base related to Π:

π∗(ΠS(dBf, dBg)) := Π(dπ∗f, dπ∗g).

Therefore, Π is projectable. So, the horizontally nondegenerate 2-form σ ∈ Γ
∧2 V0

projects to the symplectic form ωB ∈ Ω2
B in the base: πγ∗σ = ωB⊗1. In other words

σ ∈ Ω2
pr(E). Finally, note that

∂γ1,0π
γ
∗σ = πγ∗d1,0σ = dBω ⊗ 1 = 0,
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proving that the fourth integrability equation for (γ, σ, P ) is satisfied. In this special
case, PoissV(E,P ) = ΓV and Aγ = {Y ∈ ΓV | [horγ(u), Y ] = 0 ∀u ∈ X̄B};
equivalently,

Aγ = {Y ∈ ΓV | [Y,ΓH] ⊂ ΓH} = X̄V
pr(E,H),

which is the space of transversal vector fields preserving the foliation. Moreover,
since γ is flat, the bigraded decomposition of the exterior differential in E has
the form d = d1,0 + d0,1, where d1,0 and d0,1 are commutative coboundary
operators. Hence, the horizontal forms ΩV0(E) = Γ

∧
V0 with the horizontal

component d1,0 define a cochain complex which is isomorphic to the leafwise de
Rham complex induced by the symplectic foliation (S, ω) of Π. Taking into account
that the projection of horizontal forms satisfies (3.20), we get a cochain complex
isomorphism, ∂γ1,0π

γ
∗σ = πγ∗d1,0σ. In particular, H2

∂γ1,0
' H2

dS
.

Finally, since P = 0, for any Y ∈ Aγ we can take as choice of βY the zero vector
valued form. Hence, ρ : Aγ −→ H2

d1,0
simply reads ρ(Y ) = [LY σ] ∈ H2

d1,0
. The

cochain complex isomorphism (ΩV0(E),d1,0)→ (Γ
∧

H∗,dS) maps σ to ω, but also
LY σ to LY ω. Taking into account that Ham(E,P ) = {0}, we get the following
consequence of Theorem 4.2.5.

Proposition 4.2.7. Under above assumptions, we have the following isomorphism:

H1
LP (E,Π) ' H1

dS
⊕ {Y ∈ X̄V

pr(E,H) | LY ω is dS − exact}.

Remark 4.2.8. Note that this result, obtained for regular coupling Poisson
structures, follows from Theorem 4.1.4 formulated for any regular Poisson structure.

4.3 Examples

In this part we study the first cohomology of two classes of coupling Poisson
structures in fiber bundles. The first class consists on coupling structures in which
the first cohomology group of its vertical part has trivial cohomology. The coupling
structures of the second class are those for which the only Casimir function of their
vertical part are the projectable functions.

In both families, the splitting - type formula (4.7) for the first Poisson cohomology
group H1

LP (E,Π) simplifies. In the first case, the resulting formula is a direct
consequence of Corollary 1.2.3. On the contrary, the resulting formula for the second
case cannot be obtained in this manner, since the notion of projectable function
cannot be extended to an arbitrary bigraded cochain complex.

Trivial cohomology for the vertical Poisson structure

We study the first Poisson cohomology group of a coupling Poisson structure with
vertical trivial cohomology: PoissV(E,P ) = Ham(E,P ). In this case, the second
factor of splitting (4.7) simplifies, and the first factor do not depend on the choice
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of the connection γ.

Let (γ, σ, P ) be the geometric data associated to a coupling Poisson structure Π
on a fiber bundle (E, π,B). Assume that the first vertical Poisson cohomology is
trivial, that is,

PoissV(E,P ) = Ham(E,P ). (4.8)

Since, in general, we have

Ham(E,P ) ⊂ ker ρ ⊂ Aγ ⊂ PoissV(E,P ),

equation (4.8) implies Ham(E,P ) = ker ρ. So, ker ρ
Ham(E,P ) . As consequence of

Theorem 4.2.5, we get the following result.

Proposition 4.3.1. Let Π be a coupling Poisson structure such that condition (4.8)
holds. Then

H1
LP (E,Π) ' H1

∂
γ
1,0
.

Corollary 4.3.2. Let Π1 and Π2 be two coupling Poisson structures in the fiber
bundle (E, π,B) with geometric data (γ1, σ1, P ) and (γ2, σ2, P ), respectively. If the
vertical first cohomology of P is trivial, i.e., PoissV(E,P ) = Ham(E,P ), then

H1
LP (E,Π1) = H1

LP (E,Π2).

Proof. Because of Proposition 4.3.1, we have

H1
LP (E,Π1) = H1

∂
γ1
1,0
, H1

LP (E,Π2) = H1
∂
γ2
1,0
.

On the other hand, since (γ1, σ1, P ) and (γ2, σ2, P ) are geometric data induced by
coupling Poisson structures, the integrability equations are satisfied; in particular,
γ1 and γ2 are Poisson connections in the Poisson bundle (E, π,B;P ). Finally,
Proposition 4.2.6 implies that ∂

γ1

1,0 = ∂
γ2

1,0. Thus, H1
LP (E,Π1) = H1

LP (E,Π2).

Note that a necessary condition for the property PoissV(E,P ) = Ham(E,P ) is
that on each fiber Eb, b ∈ B, the equality Poiss(Eb, Pb) = Ham(Eb, Pb) holds. The
converse still is an open problem.

Free Casimir function case. Examples

The previous particular case presented is a direct consequence of Corollary 1.2.3,
since the condition (4.8) can be expressed by the bigraded cochain complex.
The following examples cannot be obtained in this manner, since the notion
of projectable function cannot be generalized to the algebraic case without an
additional structure on the bigraded cochain complex.

Let Π be a coupling Poisson structure in the fiber bundle (E, π,B) with integrable
geometric data (γ, σ, P ), such that every Casimir function for P is projectable:

Casim(E,P ) = C∞pr (E). (4.9)



78 4. GEOMETRIC SPLITTING OF FIRST POISSON COHOMOLOGY

In this case, the cochain complex given by the coboundary operator

∂
γ
1,0 : Ωp

B ⊗ C
∞
pr (E) −→ Ωp

B ⊗ C
∞
pr (E)

is isomorphic to the de Rham complex in the base space.

Lemma 4.3.3. If Casim(E,P ) = C∞pr (E), then

π∗ : ΩB ⊗ C∞pr (E) −→ ΩB

defines a cochain complex isomorphism from (ΩB⊗C∞pr (E), ∂
γ
1,0) onto (ΩB, dB), i.e.,

the following diagram commutes

ΩB ⊗ C∞pr (E) ΩB ⊗ C∞pr (E)

ΩB ΩB

?

π∗

-
∂
γ
1,0

?

π∗

-
dB

Proof. This follows from definition of ∂
γ
1,0 and the fact that π∗ : C∞pr (E) −→ C∞B is

an isomorphism.

In particular, ∂
γ
1,0 identifies with the exterior differential dB in the base B by

∂
γ
1,0(θ ⊗ 1) = (dBθ)⊗ 1. Hence, we have Hk

∂
γ
1,0
' Hk

dR(B).

Proposition 4.3.4. If (γ, σ, P ) are the geometric data associated to the coupling
Poisson structure Π in the fiber bundle (E, π,B) such that condition (4.9), i.e., every
Casimir function for P is projectable, then

H1
LP (E,Π) ' H1

dR(B)⊕ ker ρ

Ham(E,P )

In particular, if B is simply connected, then

H1
LP (E,Π) ' ker ρ

Ham(E,P )
.

Moreover, if, in addition, H2
dR(B) = {0}, then

H1
LP (E,Π) ' Aγ

Ham(E,P )
.

The last isomorphism is consequence of the definition of ρ, since ρ values on
H2
∂
γ
1,0
' H2

dR(B).

Remark 4.3.5. Suppose that the following conditions are satisfied:

Casim(E,P ) = π∗C∞B , H1
dR(B) = 0,

PoissV(E,P )

Ham(E,P )
= 0.

As direct consequence of Proposition 4.3.4, we conclude that the first Poisson
cohomology is trivial. It will be interesting to find some examples of singular Poisson
structures in which the above conditions hold, or prove that the above conditions are
not compatible in the singular case.

Below, we give some examples of condition (4.9).
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Open Book foliations.

Consider a vector bundle (E, π,B), with a coupling Poisson structure Π whose
associated geometric data is (γ, σ, P ). Assume that the Poisson fiber bundle (E,P )
is locally trivial, with typical fiber given by the co-algebra g∗ of a Lie algebra g. We
will consider some particular examples of Lie algebras g with the following property:
the symplectic foliation of the Lie-Poisson structure on g∗ is an open book foliation
[29]. In these cases, condition (4.9) is automatically satisfied. So, Corollary 4.3.4
can be applied.

1. Consider the Lie algebra g given by the bracket relations:

[e1, e2] = e2, [e2, e3] = 0, [e3, e1] = −e3.

If (x1, x2, x3) denote the coordinates along the fiber, then the Poisson structure
P on g∗ has the form P = x2

∂
∂x1
∧ ∂
∂x2
−x3

∂
∂x3
∧ ∂
∂x1

. The set of 0-dimensional
symplectic is l := {(r, 0, 0) | r ∈ R}. The complement N = g∗\l of this set
consists on the points of maximal rank, i.e., regular points. The following
Hamiltonian vector fields

Xx1 = x2
∂

∂x2
+ x3

∂

∂x3
, Xx2 = −x2

∂

∂x1
, Xx3 = −x3

∂

∂x1
,

span the subspace {e1, x2e2 + x3e3} ⊂ Txg
∗ at each x ∈ N . Therefore, the

2-dimensional symplectic leaf passing for p = (p1, p2, p3) ∈ N consists of its
image by the flow of ∂

∂x1
and x2

∂
∂x2

+ x3
∂
∂x3

:

Sp = {(p1 + t1, p2e
t2 , p3e

t2) | (t1, t2) ∈ R2}.

On the other hand, if K ∈ Casim(g∗, P ) is a Casimir function, then it is
constant along Sp. Also, note that {(r, p2e

−k, p3e
−k)}k∈N is a sequence of

points in Sp that converges to (r, 0, 0). By the continuity of K, the value of
K on any x ∈ Sp equals to K(r, 0, 0). Since this holds for any p ∈ N and
any r ∈ R, it follows that K must be constant in all g∗. This analysis shows
that any Casimir function for P must be constant along each fiber Eb ' g∗.
Therefore, condition (4.9) follows.
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2. Another example of vector bundle of rank 3 with property (4.9) is when the
typical fiber is the co-algebra of the 3-dimensional Lie algebra:

[e1, e2] = αe2 + e3, [e2, e3] = 0, [e3, e1] = e2 − αe3.

for α > 0. The set of 0-dimensional symplectic leaves is {(r, 0, 0) | r ∈ R}, and
the 2-dimensional symplectic leaves are parameterized by

Sp = {(p1+t1, e
αt2(p2 cos t2+p3 sin t2), eαt2(−p2 sin t2+p3 cos t2)) | (t1, t2) ∈ R2}.

The sequence of points in Sp, {(r, e−αk(p2 cos k − p3 sin k), e−αk(p2 sin k +
p3 cos k))}k∈N converges to (r, 0, 0) and, by the same arguments as above,
condition (4.9) holds.

3. Consider the co-algebra of the Lie algebra

[e1, e2] = e2 + e3, [e2, e3] = 0, [e3, e1] = −e3.

In this case, the set of 0-dimensional symplectic leaves is {(r, 0, 0) | r ∈ R}.
The 2-dimensional symplectic leaves are parameterized by

Sp = {(p1 + t1, (p2 + t2p3)et2 , p3e
t2) | (t1, t2) ∈ R2}.

Also, the sequence in Sp

{(r, (p2 − kp3)e−k, p3e
−k)}k∈N

converges to (r, 0, 0). So, condition (4.9) is satisfied.
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4. The last example of symplectic book foliation in the fiber is given as follows.
If α > 1, then the co-algebra of the Lie algebra

[e1, e2] = αe2 − e3, [e2, e3] = 0, [e3, e1] = e2 − αe3,

has the following properties. The set of 0-dimensional symplectic leaves is
{(r, 0, 0) | r ∈ R}, and the 2-dimensional symplectic leaves are parameterized
by

x1 = p1 + t1,

x2 =
1

2
p2(e(α−1)t2 + e(α+1)t2) +

1

2
p3(e(α−1)t2 − e(α+1)t2),

x3 =
1

2
p2(e(α−1)t2 − e(α+1)t2) +

1

2
p3(e(α−1)t2 + e(α+1)t2).

The sequence (pn)n∈N in Sp, p
n = (xn1 , x

n
2 , x

n
3 ), is given by

xn1 = r,

xn2 = 1
2p2(e−(α−1)n + e−(α+1)n) + 1

2p3(e−(α−1)n − e−(α+1)n),

xn3 = 1
2p2(e−(α−1)n − e−(α+1)n) + 1

2p3(e−(α−1)n + e−(α+1)n).

and converges to (r, 0, 0). Hence, condition (4.9) follows.

One more example

Here we consider an example of a Lie algebra g such that the corresponding
symplectic foliation in the co-algebra g∗ is not an open book foliation, but at the
same time does not admit global non-trivial Casimir function.

If 0 < α < 1 is irrational, a Casimir function of the co-algebra of the Lie algebra

[e1, e2] = αe2 − e3, [e2, e3] = 0, [e3, e1] = e2 − αe3

must satisfy the following equations:

(αx2 − x3)
∂K

∂x2
− (x2 − αx3)

∂K

∂x3
= 0,

∂K

∂x1
= 0.
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By applying the method of the characteristics, we show that K must have the
following form in the regular domain:

K = κ

(
|x2 − x3|α−1

|x2 + x3|α+1

)
.

However, because of the irrationality of α, the numbers α − 1 and α + 1 are
rationally independent. So, K is not of class C∞ if κ is non-constant. Therefore, in
this case, a global Casimir function in the fiber does not exists. So, (4.9) is satisfied.

The set of 0-dimensional symplectic leaves is {(r, 0, 0) | r ∈ R}, and the
2-dimensional symplectic leaves are parameterized by

x1 = p1 + t1,

x2 =
1

2
p2(e(α−1)t2 + e(α+1)t2) +

1

2
p3(e(α−1)t2 − e(α+1)t2),

x3 =
1

2
p2(e(α−1)t2 − e(α+1)t2) +

1

2
p3(e(α−1)t2 + e(α+1)t2).

Proposition 4.3.6 (Uniqueness). Every 3-dimensional Lie-Poisson structure
admitting no global non-trivial Casimir function is isomorphic to one of the
co-algebras given above.

Proof. In [26], the Bianchi classification of 3-dimensional linear Poisson structures
is presented. For most of the 3-dimensional Lie - Poisson structures presented, there
is exhibited a global Casimir function, except for the examples described in above,
which do not admit Casimir functions besides constants. It is left to show that the
co-algebra of

[e1, e2] = αe2 − e3, [e2, e3] = 0, [e3, e1] = e2 − αe3,

when 0 < α = p
q < 1, admits a global Casimir function. Indeed, since p < q,

K(x) = (x2 + x3)p+q(x2 − x3)q−p

is a polynomial which is also a global Casimir function of class C∞.

Therefore, the examples we presented in this section are essentially the only
examples of Lie-Poisson vector bundles (E, π,B;P ) of rank 3 such that condition
(4.9) is satisfied.
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