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Introduction

Dengue is an infectious tropical disease caused by the dengue virus. It is also known
as breakbone fever due to the sensation the disease produces. The symptoms include
fever, headache, muscle and joint pains, and a skin rash that is similar to measles
which last from three to seven days. In very few cases the disease leads to a life-
threatening type of dengue called dengue hemorrhagic fever, which causes internal
bleeding. Also, the dengue shock syndrome is another manifestation of the dengue
disease where low blood pressure occurs which places the patient in a danger which
can lead to death [53].

Dengue is transmitted by two species of mosquitoes, Aedes aegypti type or Aedes
albopictus type. Mosquitoes grow in recipients which gather clean water from rain or
dew. There are four different strains of dengue: DEN-1, DEN-2, DEN-3, and DEN-
4. Once a patient has been infected with one of these strains, he or she acquires
lifetime immunity to that strain but only short-term immunity to others. This sub-
sequent infections with different strains increase the risk of severe complications [53].

Dengue disease affects mainly tropical and subtropical areas like Africa, north of
Australia, and America; although lately Europe and North America have reported
some cases. So far there no vaccine for dengue has been applied, but several preven-
tion measures have been taken to reduce the effective contact of infected mosquitoes
with humans and the elimination of the mosquitoes habitats [53].

Many studies have been made in order to get a better comprehension of Dengue
dynamics, for example, in Mosquera studies [36] they present the dynamics of trans-
mission of one dengue virus serotype by means of an aquatic predator. Mosquera
studies the dynamics of Dengue considering host population with SIR model to
describe their dynamic and vector populations using SI models to describe its dy-
namic. Another example of the studies made on Dengue disease is the model of
Feng-Velasco[17] which we have taken as the starting point for this work and will
be explained lately. In Derouich [10] they consider a SIR model to study a 2-strain
dynamic where the latent stage is not incorporated. Also, in the studies of Favier
[16] on Dengue modelling where they analyze it at different scales (as town, region,
continent) and discuses the work yet to be done in this area. Indeed there is a lot
to be done since this topic is very complex and there is nothing conclusive yet.

For Dengue disease it is known there are four strains of Dengue circulating in
the world, although in Mexico it is known there are two, that is why the model we
present here considers only two strains of the disease. Some models have already
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2 Introducción

been done of this disease, as we mentioned before, but the purpose we are following
is to get a better comprehension of the disease dynamics and we decided to start
this study taking only two strains in consideration for simplicity and we leave the
three and forth strains models to be studied in a latest case.

The purpose of this thesis is to get a better comprehension of the dengue dy-
namics with the intention of developing a tool which would allow the study of the
evolution of the disease in the future. We present a model which considers two
strains to study the dynamics of dengue in Mexico which includes a latency stage.
We want to understand the dynamics of this new model and we want to know if
it can be applied in the analysis of a real situation in a Mexican community where
dengue already exist.

We will study the proposed model by making use of mathematical and computa-
tional resources. By analyzing the model for equilibrium points and the parameters
involved in the search of bifurcations we pretend to study the space of parameters
and to see if we can reduce it. With algebra methods we will calculate the basic
reproductive number which is determinant to understand the impact of the disease
in a population. Also, we will make use of numerical analysis to obtain the solutions
of the model and to run simulations. And finally, we will implement wavelets to see
if the model fits real data and can be used to study a real situation.

What distinguishes the model we will introduce here is that it takes into account
the dynamics among mosquitoes as well as the dynamics among host with a more
complex model which considers a latency stage before the host becomes infected.
Also we want to see the importance of considering seasonal periodicity in the model,
thus we will simulate and compare the results of the model with and without annual
forced periodicity.

This study has the following order: In Chapter 1 we introduce the new model
and describe the parameters. In Chapter 2, we present the calculations for the Basic
Reproductive Number and we made an analysis of the more significant parameters
involved in the expression we obtained of R0. In Chapter 3 we show some results
and simulations we obtained from the model. Finally, in Chapter 4 we make use of
wavelets as a tool to compare the data we got from the simulations of the model
with real data from Mexican databases.



Chapter 1

Two strains model

This thesis is limited to the situation where only two strains co-circulate in a human
population. We will present first a model that has been taken as starting point to
this text and which was developed by Feng and Velasco [17] and involves two strains
of the Dengue disease. The stages are Susceptible, Infected (first by one strain and
then by the other), Temporally immune (after the first infection) and at last Recov-
ered. Later, we will introduce a new model, and we will refer to it as ”the model”,
where we describe the Dynamics of Dengue considering a new stage named Latency
stage, where we will have all humans that are infected with the disease but they do
not show any symptoms (and probably never will). Also in the model we will take
into consideration the dynamics of mosquitoes as they interact with humans.

1.1 The Feng-Velasco Model

The present model was developed and studied by Feng and Velasco [17].

The letter S represents the susceptible individuals which are exposed to infection
by any strain, λ is the recruitment rate and µ the mortality rate by natural causes
other than the disease.

Infection in humans is acquired through the bitting of infected mosquitoes with
either of the two strains (and mosquitoes get infected when biting an infected human
by any strain, too). The primary infection produces two types of infected human
hosts identified by the strain that was transmitted as I1 and I2 respectively; infec-
tion occurs at rates B1S and B2S which are the forces of infection of each strain.
The primary infection stage lasts 1/γi days (with i = 1, 2).

After they recovered, we assume that individuals become temporarily protected
against both strains, so E1 and E2 represent individuals with temporal immunity
acquired through interaction with strains 1 and 2, respectively. After a time 1/ηi
these individuals lose the immunity to the strain to which they have not yet been
contaminated and become susceptible to it. Let T1 and T2 represent the susceptible
individuals already permanently immune to strain 1 and 2, respectively.

3



4 Two strains model

Infection by the other strain in each case can occur but possibly with a lower
force of infection σiBi, i = 1, 2, 0 ≤ σi ≤ 1, due to partial cross immunity. Here Y1
represents a secondary dengue infection due to strain 1; while Y2 represents a sec-
ondary infection due to strain 2. After a time 1/γi individuals become permanently
immune to both strains of virus. The equations of this model are:

d
dtS = λ− (B1 +B2)S − µS
d
dtI1 = B1S − (µ+ γ1) I1
d
dtI2 = B2S − (µ+ γ2) I2
d
dtE1 = γ1I1 − (µ+ η1)E1
d
dtE2 = γ2I2 − (µ+ η2)E2
d
dtT1 = η1E1 − (σ2B2 + µ)T1
d
dtT2 = η2E2 − (σ1B1 + µ)T2
d
dtY1 = σ1B1T2 − (γ1 + µ+m1)Y1
d
dtY2 = σ2B2T2 − (γ2 + µ+m2)Y2
d
dtR = γ1Y1 + γ2Y2 − µR

(1.1)

Here the total host population is given by the expression

N = S + I1 + I2 + E1 + E2 + T1 + T2 + Y1 + Y2 +R

The following equations for mosquito populations are given to complete the
model:

d
dtV0 = q(t)− (A1 +A2)V0 − δV0
d
dtV1 = A1V0 − δV1
d
dtV2 = A2V0 − δV2

(1.2)

where q(t) is the rate at which the mosquito population is increasing (q(t) > 0 for
all values of t), it depends on time due the nature of mosquitoes cycle which de-
pends on climate conditions and the year season among others. A1, A2 represent
the force of infection of strain 1 and 2, respectively, among mosquitoes. δ is the rate
at which mosquitoes die. The total mosquito population is given byM = V0+V1+V2.

At this point, there are different hypothesis about the dynamics of mosquitoes
and we will discuss two in the following cases.

Case I:

If V0 represents the susceptible mosquitoes not yet infected, and V1 and V2 the
number of mosquitoes infected with strain 1 and 2 respectively, then taken

Bi = βiVi/M

with i = 1, 2, as the force of infection means to assume that it is determined by the
proportion of infected mosquitoes among the entire human population.
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Define

Ai = αi (Ii + Yi) /N

with i = 1, 2, as the force of infection among mosquitoes. It’s given by the pro-
portion of infected human host in the entire human population which implies that
there’s a direct relation among infected humans and infected mosquitoes.

Case II:

If V0 represents the the susceptible mosquitoes not yet infected, and V1 and
V2 the number of mosquitoes infected with strain 1 and 2 respectively, then taken
Bi = βiVi/ (c+ ωhN) , i = 1, 2 leads to conclude that the force of infection in hu-
mans depends on the total of infected mosquitoes among a constant c plus a fraction
of the total human population.

For this case the force of infection among mosquitoes is given by

Ai = αi (Ii + Yi) / (c+ ωiN)

and it is shown that again the force of infection among mosquitoes depends complete
in the total of infected humans.

1.2 A New Model

Now we will introduce a new model which considers a stage between both suscepti-
ble and infected. This is the latency stage where the human host has the infection
but is not yet capable of transmission, and perhaps is not even showing any signs
or symptoms. We will represent this new stage in the model with the letters C and T.

As before, we will use S to represent the susceptible individuals, with λ as its
recruitment rate and mortality rate µ for natural cases other than dengue disease.
Infection is acquired through the biting of infected mosquitoes with either of those
two strains (denoted by V1 and V2); this primary infection produces two types of
infected but not infectious human hosts (meaning that they are not contagious)
identified by the strain that was transmitted (C1 and C2); infection occurs at rates
B1S and B2S which are the forces of infection of each strain. This stage of latency
lasts 1/φ1 (or 1/φ2) days.

After this stage the host becomes capable of transmission of the disease to other
humans in the infectious stage (I1 and I2) which lasts 1/γi days. Then, comes a stage
where individuals become temporarily protected against both strains, so E1 and E2

represent individuals with temporal immunity (to both strains) acquired through
interaction with strains 1 and 2 respectively. After a time 1/ηi these individuals lose
immunity to the strain to which they have not been exposed and become susceptible



6 Two strains model

to it.

T1 and T2 represent the susceptible individuals already permanently immune to
strain 1 and 2 respectively. Infection by the other strain in each case can occur but
possibly with a lower force of infection σiBi, with 0 ≤ σi ≤ 1 for i = 1, 2, due to
partial-cross-immunity.

Here Z1 represents a secondary dengue infection (in the period of incubation,
where the human host is not contagious) due to strain 1; while Z2 represents a
secondary infection to strain 2; this stage lasts 1/y days. Then the host becomes
contagious for a period of 1/γi during the stage Y1 or Y2, respectively for strains 1
and 2. After this, individuals become permanently immune to both strains of virus
in R stage. In the case of mosquitoes, V0 represents the susceptible vectors. A1, A2

represent the forces of infection at which mosquitoes get infected when they get in
contact with an infected human.

At the second infection stages Yi, i = 1, 2, the term miYi appears to represent
those cases where the host dies due to the disease, as it is known that Dengue can
be fatal in some cases.

The equations for the model are:

d
dtS = λ− (B1 +B2)S − µS
d
dtC1 = B1S − (φ1 + µ)C1
d
dtC2 = B2S − (φ2 + µ)C2
d
dtI1 = φ1C1 − (µ+ γ1) I1
d
dtI2 = φ2C2 − (µ+ γ2) I2
d
dtE1 = γ1I1 − (µ+ η1)E1
d
dtE2 = γ2I2 − (µ+ η2)E2
d
dtT1 = η1E1 − (σ2B2 + µ)T1
d
dtT2 = η2E2 − (σ1B1 + µ)T2
d
dtZ1 = σ1B1T2 − (φ1 + µ)Z1
d
dtZ2 = σ2B2T1 − (φ2 + µ)Z2
d
dtY1 = φ1Z1 − (γ1 + µ+m1)Y1
d
dtY2 = φ2Z2 − (γ2 + µ+m2)Y2
d
dtR = γ1Y1 + γ2Y2 − µR

d
dtV0 = q(t)− (A1 +A2)V0 − δV0
d
dtV1 = A1V0 − δV1
d
dtV2 = A2V0 − δV2

(1.3)

The first fourteen equations describe the dynamic of the disease among humans
while the last three describe it among mosquitoes. The total host population is
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given by the expression

N = S + C1 + C2 + I1 + I2 + E1 + E2 + T1 + T2 + Z1 + Z2 + Y1 + Y2 +R

and the total vector population is M = V0 + V1 + V2.

With the use of the expression q(t) as the incoming mosquitoes in the equation
for susceptible mosquitoes, d

dtV0 defined as:

q (t) = q0 (1 + kcos (2πt/365))

we can set q(t) as a constant incoming (taking k = 0) or we can force annual peri-
odicity into the model (by taking k = 1).

The forces of infection human to mosquito is determined by:

Ai =
αi (Ii + Yi)

N
(1.4)

i = 1, 2, where αi is the effective contact rate of infected humans with uninfected
mosquitoes. The forces of infection mosquito to human is given by the expression

Bi =
βiVi
M

(1.5)

i = 1, 2, where βi is the effective contact rate of infected mosquitoes with susceptible
humans.

Ai, i = 1, 2 is the force of infection given by the product of the effective contact
rate human to mosquito (αi) with the proportion of infected humans that are in
the human population. When a healthy mosquito is in contact with an infected
human the probability for it to be contaminated (effective contact) is given by the
rate αi. If αi = 1, the probability for a mosquito to get effectively contaminated will
depend entirely in the number of infected humans in the population, that is with
the probability of getting in contact with the infected humans in the population .

With Bi we have the same case as with Ai, but in this case it refers to the
force of infection related to humans given by the product of the effective contact
rate mosquito to human (βi) with the proportion of infected mosquitoes that are in
the mosquito population. When a healthy human gets in contact with an infected
mosquito, the probability for it to be infected (effective contact) is given by the rate
βi. βi is a probability which measures the chances of a human to get infected when
in contact with contaminated mosquitoes. If βi = 1 the probability for a human to
get effectively contaminated will depend completely in its chances to find an infected
mosquito.
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1.3 Parameters of the Model

Table 1.1: Description of Parameters

Parameter Description Chosen Values

1/µ Life expectance for humans around 70 years (25550 days)
λ Incoming human population 0.391389432

1/φi Incubation period 4 to 7 days
1/γi Duration of disease 7 to 15 days
1/δ Life expectance of mosquitoes estimated 14 to 21 days as an adult
1/ηi Duration of Crossed immunity estimated 15 to 180 days
σi Reinfection rate undetermined**
αi Effective contact rate human-mosquito undetermined*
βi Effective contact rate mosquito-human undetermined*
mi Rate of death caused by disease undetermined**
q Incoming mosquito population undetermined**

The table (1.1) gives the description for some of the used parameters. Some of its
values can be easily determined due to their definition and others are yet imprecisely
unknown due to lack of information on the disease. The values for parameters shown
in table (1.1) were taken from Velasco-Feng studies [17]. The values which appear
as ”undetermined” in table have not yet been estimated. Some of them, like the
duration of immunity, can vary from one individual to other.

*In this work, we want to focus in those parameters where can have some influ-
ence by the use of prevention actions in the population, like the prevention campaigns
in a community. It is possible to reduce the effective contact rates of mosquito to
human and human to mosquito (αi and βi, respectively, i = 1, 2) by taking fumiga-
tion, or simply by having mosquito nets in windows, doors or around the bed, etc.

**Since the parameters are too many, and to aboard the study of the model in
a simple way, we will set some parameters to have null effect. That is to say, we
take σi, i = 1, 2 to be equal to 1, meaning that the size of the impact of getting
the disease for the second time will be exactly the same as it was the first time.
Also, parameters mi, i = 1, 2 will be equal to 0, which means that nobody dies by
the disease. And parameter q(t) that, as was introduced before, will be a constant
number for some simulations and will vary its value periodically for others in order
to see which one adjust better to reality.



Chapter 2

Basic Reproductive Number

2.1 Introduction

Defined as a threshold quantity denoted by R0 that determines whether there is
an epidemic or not [2]; this number represents the number of secondary infections
caused by a single infective introduced into a wholly susceptible population during
his infectious period [4]. An expression for R0 typically involve products of infection
rates and durations of infection [49] R0 is a threshold parameter for the model, such
that if R0 < 1 then the Disease Free Equilibrium is locally asymptotically stable and
the disease cannot invade the population (eventually the infection dies out), but if
R0 > 1, then the Disease Free Equilibrium is unstable and invasion is possible (there
can be an epidemic) [48].

The basic reproduction number is defined [17] as the number of secondary in-
fections that a single infectious individual produces in a population where all host
are susceptible. It provides an invasive criterion for the initial spread of the virus in
a susceptible population. In order to find this important number for the model we
needed to find the eigenvalues of the Next Generation Matrix.

2.2 Equilibrium Points

Consider ω = (S,C1, C2, I1, I2, E1, E2, T1, T2, Z1, Z2, Y1, Y2, R, V0, V1, V2) as the set
bounded by the total host and vector population, that is 0 ≤ Ci, Ii, Ei, Ti, Zi, Yi, R, Vi
for i = 1, 2, and 0 ≤ S ≤ N , 0 ≤ V0 ≤M .

9



10 Basic Reproductive Number

The equilibrium points of the system (1.3) must satisfy the following:

λ− (B1 +B2)S − µS = 0
B1S − (φ1 + µ)C1 = 0 B2S − (φ2 + µ)C2 = 0
φ1C1 − (µ+ γ1) I1 = 0 φ2C2 − (µ+ γ2) I2 = 0
γ1I1 − (µ+ η1)E1 = 0 γ2I2 − (µ+ η2)E2 = 0
η1E1 − (σ2B2 + µ)T1 = 0 η2E2 − (σ1B1 + µ)T2 = 0
σ1B1T2 − (φ1 + µ)Z1 = 0 σ2B2T1 − (φ2 + µ)Z2 = 0
φ1Z1 − (γ1 + µ+m1)Y1 = 0 φ2Z2 − (γ2 + µ+m2)Y2 = 0
γ1Y1 + γ2Y2 − µR = 0 q(t)− (A1 +A2)V0 − δV0 = 0
A1V0 − δV1 = 0 A2V0 − δV2 = 0

(2.1)

Solving this system we obtained the following equilibrium points:
Equilibrium point 1: (S1 = λ

µ , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, V
1
0 = q

δ , 0, 0). This is
the disease free equilibrium point.

Equilibrium point 2: (S2, C2
1 , 0, I

2
1 , 0, E

2
1 , 0, T

2
1 , 0, 0, 0, 0, 0, 0, V

2
0 , V

2
1 , 0), where only

strain 1 is present. We have:

S2 =
λ (δ (φ1 + µ) (γ1 + µ) + φ1α1µ)

µφ1 (µ+ β1)α1

C2
1 =

−λ (δ (φ1 + µ) (γ1 + µ)− α1β1φ1)
α1φ1 (β1 + µ) (φ1 + µ)

I21 =
−λ (δ (φ1 + µ) (γ1 + µ)− α1β1φ1)
α1 (β1 + µ) (γ1 + µ) (φ1 + µ)

E2
1 =

−γ1λ (δ (φ1 + µ) (γ1 + µ)− α1β1φ1)
α1 (β1 + µ) (γ1 + µ) (φ1 + µ) (η1 + µ)

T 2
1 =

−η1γ1λ (δ (φ1 + µ) (γ1 + µ)− α1β1φ1)
α1µ (β1 + µ) (γ1 + µ) (φ1 + µ) (η1 + µ)

V 2
0 =

q (β1 + µ) (γ1 + µ) (φ1 + µ)
β1 (δ (φ1 + µ) (γ1 + µ) + φ1α1µ)

V 2
1 =

−qµ (δ (φ1 + µ) (γ1 + µ)− α1β1φ1)
δβ1 (δ (φ1 + µ) (γ1 + µ) + φ1α1µ)

Equilibrium point 3: (S3, C3
1 , 0, I

3
1 , 0, E

3
1 , 0, T

3
1 , 0, Z

3
1 , 0, Y

3
1 , 0, R

3, V 3
0 , V

3
1 , 0), which

is another case where only strain 1 exist. We have:
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S3 = σ1λ
µ (σ1 − 1)

C3
1 = −λ

(σ1 − 1) (φ+ µ)

I31 =
−λφ1

(γ1 + µ) (φ1 − µ) (σ1 − 1)

E3
1 =

−λγ1φ1
(γ1 + µ) (φ1 − µ) (σ1 − 1) (η1 + µ)

T 3
1 =

−ν1λγ1φ1
µ (γ1 + µ) (φ1 − µ) (σ1 − 1) (η1 + µ)

T 3
2 =

λ (γ1 + µ+m1) (δ (σ1 − 1) (γ1 + µ) (φ1 + µ)− α1φ1 (β1σ1 + µ))
φ1µ (γ1 + µ) (σ1 − 1) (δm1 − α1β1σ1 − α1µ)

Z3
1 =

λ (γ1 + µ+m1) (δ (σ1 − 1) (γ1 + µ) (φ1 + µ)− α1φ1 (β1σ1 + µ))
φ1 (γ1 + µ) (γ1 + µ) (σ1 − 1) (δm1 − α1β1σ1 − α1µ)

Y 3
1 =

λ (δ (σ1 − 1) (γ1 + µ) (φ1 + µ)− α1φ1 (β1σ1 + µ))
(γ1 + µ) (γ1 + µ) (σ1 − 1) (δm1 − α1β1σ1 − α1µ)

R3 =
γ1λ (δ (σ1 − 1) (γ1 + µ) (φ1 + µ)− α1φ1 (β1σ1 + µ))
µ (γ1 + µ) (γ1 + µ) (σ1 − 1) (δm1 − α1β1σ1 − α1µ)

V 3
0 =

q (β1σ1 + µ)
(δβ1σ1)

V 3
1 =

−qµ
δβ1σ1

(2.2)

The Equilibrium Point 1 has always positive valued coordinates and is biologi-
cally acceptable. It represents the ideal case where no human and no mosquito are
infected. A population where everyone is healthy and susceptible. The Equilibrium
Point 1 is the Disease Free Equilibrium Point.

We have to determine the biological feasibility of Equilibrium Point 2. Regard-
ing S2 we can say that it is always positive, so is always valid. The same will be
concluded for V 2

0 .

For C2
1 , I21 , E2

1 , T 2
1 and V 2

1 we must analyze in what case their values would be
positive and therefore biologically acceptable. We begin the analysis with C2

1 . If we
want C2

1 to be no negative it must happen that

−λ (δ (φ1 + µ) (γ1 + µ)− α1β1φ1)

α1φ1 (β1 + µ) (φ1 + µ)
≥ 0

or, simply

−λ (δ (φ1 + µ) (γ1 + µ)− α1β1φ1) ≥ 0

this happens if and only if

δ (φ1 + µ) (γ1 + µ)− α1β1φ1 ≤ 0
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if only if
α1β1φ1

δ (φ1 + µ) (γ1 + µ)
≥ 1

We will get to the same restriction when examining I21 , E2
1 , T 2

1 and V 2
1 . So, the

Equilibrium Point 2 is biologically accepted in the case when

α1β1φ1
δ (φ1 + µ) (γ1 + µ)

≥ 1

This point represents the case where only Strain 1 subsist in the population and
Strain 2 has disappeared. The Equilibrium point 2 is where only strain 1 is present.

As for the equilibrium Point 3, V 3
0 is always positive. Regarding S3 we can say

that will never take zero value, but we must restrict it to be positive. So we have

σ1λ

µ (σ1 − 1)
> 0

which will happen if and only if σ1−1 > 0, and this will happen if and only if σ1 > 1.
But from the beginning we had already set σ1 ≤ 1 (refer to section 1.2). σi is the
reinfection rate for humans. Therefore, accepting that σi > 1 would imply that if a
host had already been infected once, he or she is more exposed to get Dengue for
the second time which it is not the case for Dengue disease. So, the Equilibrium
Point 3 is not biologically valid and will be rejected for further analysis.

Additionally, an equilibrium point where both strains coexist has been found
numerically. However, it was not possible to determine the algebraic expression
and therefore is not included in this text. Numerically, six equilibrium points were
found for the system. Always the disease free equilibrium point is one of them. Then
there are two equilibrium where only one strain survives (either strain 1 or strain 2).
The other three equilibrium points correspond to cases where both strains coexist
simultaneously but, numerically can be seen, that only one of them is biologically
acceptable. We know, then, that there are 4 equilibrium points for this model.

2.3 Calculation of the Basic Reproductive Number

The Basic Reproductive Number is the most important quantity in every epidemi-
ological study of an infectious disease. It help us to determine in what conditions
we may have an epidemiological outbreak or not. If R0 < 1, then on average an
infected individual produces less than one new infected individual over the course
of its infectious period, and the infection cannot grow. Conversely, if R0 > 1, then
each infected individual produces, on average, more than one new infection, and the
disease can invade the population [48].
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R0 can also be used to foretell the effects of an effort that can be made to control
the disease. For example, when trying to reduce the mosquito population we can
take a look to the influence this effect may have into the R0 value and see if it works
or not. Also, R0 has been defined as the average number of secondary infections
produced by an infected individual when in contact with a susceptible population
[13].

In order to find an expression for R0 we define a matrix that relates the numbers
of newly infected individuals in each of the categories in consecutive generations[13].
This is called the Next Generation Matrix [11] and it is known to have R0 as its
dominant eigenvalue [13]. We present here two different ways of finding an expres-
sion for R0 for the system problem (1.3). Both methods are directly related with
the concept of New Generation Matrix.

2.3.1 First Calculation

R0 is defined as the average number of new cases of an infection caused by one
typical infected individual, in a population consisting of susceptibles only. R0 is
mathematically characterized by regarding infection transmission as a demographic
process, where producing offspring is not seen as giving birth in the demographic
sense, but as causing a new infection through transmission (this is called an ”epi-
demiological birth”). In a natural way this leads to viewing the infection process
in terms of consecutive generations of infected individuals, in complete analogy to
demographic generations. Subsequent generations growing in size indicate a grow-
ing population (i.e. an epidemic), and growth factor per generation indicates the
potential for growth. In a natural way this growth factor is then the mathematical
characterization of R0 [13].

In the model 1.3 we have the population divided into a finite number of discrete
categories. One can define a matrix that relates the numbers of newly infected in-
dividuals in the various categories in consecutive generations. This matrix is called
the Next Generation Matrix (NGM) and was introduced by Diekmann et al. [11].

In the model 1.3 we can associate the subpopulation of individuals who are in
a particular state at a given time. It is very common to use the same symbol used
as a label for a state and to denote the corresponding subpopulation size, either as
a fraction or as a number. The dynamics are generated by a system of nonlinear
ordinary differential equations (ODE) that describes the change with time for all
subpopulation sizes. For the computation of R0, we only regard the states that
apply to infected individuals [13].

The Next Generation Matrix is defined as the matrix formed by taking the de-
rived matrix of the system of equations (1.3) and decomposing it as f − v, where f
is the transmission part that describes the production of new infections, and v is the
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transition part that describe the changes in the state including the removal by death
or the acquisition of immunity [13]. We find the Jacobian of f and we assign it to
F , and the Jacobian of v to V . Thus we can calculate R0 by finding the spectral
radius ρ

(
FV −1

)
[12].

The matrix FV −1 is the expected lifetime number of type i individuals produced
by an individual of type j [27]. That is why FV −1 is called the Next Generation
Matrix.

To calculate R0 we take the infected subsystem from the original ODE of the
model 1.3. The infected subsystem are those equations of the ODE system that
describe the production of new infections and changes in state among infected indi-
viduals. First step is to linearize the infected subsystem of nonlinear ODE around
the infection-free steady state [13].

For the system (1.3) we have f , the vector formed by the new infections in states
C1, C2, I1, I2, Z1, Z2, Y 1, Y 2, V 1, V 2:

f =
(
B1S B2S 0 0 σ1B1T2 σ2B2T1 0 0 A1V0 A2V0

)t
(2.3)

Thus, we have that F is given by the Jacobian of f :

F =



0 0 0 0 0 0 0 0 F1 0
0 0 0 0 0 0 0 0 0 F2

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 F3 0
0 0 0 0 0 0 0 0 0 F4

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 F5 0 0 0 F6 0 0 0
0 0 0 0 F7 0 0 F8 0 0


(2.4)

where:
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F1 =
β1S
V0

F5 = α1V0
S + E1 + E2 + T1 + T2 +R

F2 =
β2S
V0

F6 = α1V0
S + E1 + E2 + T1 + T2 +R

F3 =
σ1β1T2
V0

F7 = α2V0
S + E1 + E2 + T1 + T2 +R

F4 =
σ2β2T1
V0

F8 = α2V0
S + E1 + E2 + T1 + T2 +R

(2.5)

The ijth entry of F is the rate at which an individual in infected state j produces
individuals with infected state i [13].

v is the vector formed by all the movements between the different classes in states
C1, C2, I1, I2, Z1, Z2, Y 1, Y 2, V 1, V 2:

v =



(φ1 + µ)C1

(φ2 + µ)C2

−φ1C1 + (γ1 + µ) I1
−φ2C2 + (γ2 + µ) I2

(φ1 + µ)Z1

(φ2 + µ)Z2

−φ1Z1 + (γ1 + µ+m1)Y1
−φ2Z2 + (γ2 + µ+m2)Y2

δV1
δV2


(2.6)

Now V , given by the Jacobian of v, is:

V =



u1 0 0 0 0 0 0 0 0 0
0 u2 0 0 0 0 0 0 0 0
u3 0 u4 0 0 0 0 0 0 0
0 u5 0 u6 0 0 0 0 0 0
0 0 0 0 u7 0 0 0 0 0
0 0 0 0 0 u8 0 0 0 0
0 0 0 0 u9 0 u10 0 0 0
0 0 0 0 0 u11 0 u12 0 0
0 0 0 0 0 0 0 0 u13 0
0 0 0 0 0 0 0 0 0 u14


(2.7)

where
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u1 = φ1 + µ u2 = φ2 + µ
u3 = −φ1 u4 = µ+ γ1
u5 = −φ2 u6 = µ+ γ2
u7 = φ1 + µ u8 = φ2 + µ
u9 = −φ1 u10 = γ1 + µ+m1

u11 = −φ2 u12 = γ2 + µ+m2

u13 = δ u14 = δ

(2.8)

The product G = FV −1 evaluated in the disease-free equilibrium point give us
the Next Generation Matrix G:

G =



0 0 0 0 0 0 0 0 g1 0
0 0 0 0 0 0 0 0 0 g2
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
g3 0 g4 0 g5 0 g6 0 0 0
0 g7 0 g8 0 g9 0 g10 0 0


(2.9)

where:

g1 =
β1S
V0δ

g2 =
β2S
V0δ

g3 =
α1V0φ1

S (φ1 + µ) (µ+ γ1)
g4 = α1V0

S (µ+ γ1)

g5 =
α1V0φ1

S (φ1 + µ) (µ+ γ1 +m1)
g6 = α1V0

S (µ+ γ1 +m1)

g7 =
α2V0φ2

S (φ2 + µ) (µ+ γ2)
g8 = α2V0

S (µ+ γ2)

g9 =
α2V0φ2

S (φ2 + µ) (µ+ γ2 +m2)
g10 = α2V0

S (µ+ γ2 +m2)

(2.10)

The element Gij is the expected number of new cases with state-at-infection i,
generated by one individual who has just been born (epidemiologically speaking) in
state-at-infection j [13].

The eigenvalues of the next generation operator are:
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0
0
0
0
0
0√

φ2β2α2

δ (γ2 + µ) (φ2 + µ)

−
√

φ2β2α2

δ (γ2 + µ) (φ2 + µ)√
φ1β1α1

δ (γ1 + µ) (φ1 + µ)

−
√

φ1β1α1

δ (γ1 + µ) (φ1 + µ)



(2.11)

We will name

R1
0 =

∣∣∣∣√ φ1β1α1

δ (γ1 + µ) (φ1 + µ)

∣∣∣∣
R2

0 =

∣∣∣∣√ φ2β2α2

δ (γ2 + µ) (φ2 + µ)

∣∣∣∣ (2.12)

R1
0 is the basic reproductive number where only strain 1 is involved and strain 2

has no influence in it while R2
0 is the opposite with no influence of strain 1 in it.

The Basic Reproductive Number is the spectral radius of the Next Generation
Matrix G.

R0 = max

{∣∣∣∣∣
√

φ1β1α1

δ (γ1 + µ) (φ1 + µ)

∣∣∣∣∣ ,
∣∣∣∣∣
√

φ2β2α2

δ (γ2 + µ) (φ2 + µ)

∣∣∣∣∣
}

2.3.2 Second Calculation

First we will find the value for R0 following the steps used by Velasco and Feng [17].
We identify the disease-free steady state for the system to be

(S0 =
λ

µ
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, V 0

0 =
q

δ
, 0, 0)
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We equate the model (1.3) to zero and obtain

λ− (B1 +B2)S − µS = 0
B1S − (φ1 + µ)C1 = 0
B2S − (φ2 + µ)C2 = 0
φ1C1 − (µ+ γ1) I1 = 0
φ2C2 − (µ+ γ2) I2 = 0
γ1I1 − (µ+ η1)E1 = 0
γ2I2 − (µ+ η2)E2 = 0
η1E1 − (σ2B2 + µ)T1 = 0
η2E2 − (σ1B1 + µ)T2 = 0
σ1B1T2 − (φ1 + µ)Z1 = 0
σ2B2T1 − (φ2 + µ)Z2 = 0
φ1Z1 − (γ1 + µ+m1)Y1 = 0
φ2Z2 − (γ2 + µ+m2)Y2 = 0
γ1Y1 + γ2Y2 − µR = 0
q(t)− (A1 +A2)V0 − δV0 = 0
A1V0 − δV1 = 0
A2V0 − δV2 = 0

(2.13)

and, by taking only the two right parts of it, rewrite it as follows:

S = λ
B1 +B2 + µ

C1 = B1S
φ1 + µ

C2 = B2S
φ2 + µ

I1 =
φ1C1
µ+ γ1

I2 =
φ2C2
µ+ γ2

E1 =
γ1I1
µ+ η1

E2 =
γ2I2
µ+ η2

T1 =
η1E1

σ2B2 + µ T2 =
η2E2

σ1B1 + µ

Z1 = σ1B1T1
φ1 + µ

Z2 = σ2B2T2
φ2 + µ

Y1 =
φ1Z1

γ1 +m1 + µ Y2 =
φ2Z2

γ2 +m2 + µ

R =
γ1Y1 + γ2Y2

µ

V0 =
q

A1 +A2 + δ

V1 = A1V0
δ

V2 = A2V0
δ

(2.14)

We substitute the expressions in 2.14 and

N = S + C1 + C2 + I1 + I2 + E1 + E2 + T1 + T2 + Z1 + Z2 + Y1 + Y2 +R

M = V0 + V1 + V2
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in the forces of infection as they appear in chapter 1, equations 1.4 and 1.5.

Let K = (A1, A2, B1, B2)
′ then we substitute the expressions given above (2.14)

into the definitions of Ai and Bi to obtain a new system of four equations in terms
of Ai and Bi.

From

A1 =
α1 (I1 + Y1)

N

Ai =
α2 (I2 + Y2)

N

Bi =
β1V1
M

Bi =
β2V2
M

We obtain the system K = φ (K) (see appendix). The equation K = φ (K)
allows the computation of the Next Generation Operator. We will obtain this op-
erator by calculating the Jacobian of φ at the disease-free equilibrium point. The
operator will look as follows:


0 0 α1φ1

(φ1+µ)(γ1+µ)
0

0 0 0 α2φ2
(φ2+µ)(γ2+µ)

β1
δ 0 0 0

0 β2
δ 0 0

 (2.15)

The eigenvalues of next generation operator are:



√
φ2β2α2

δ (γ2 + µ) (φ2 + µ)

−
√

φ2β2α2

δ (γ2 + µ) (φ2 + µ)√
φ1β1α1

δ (γ1 + µ) (φ1 + µ)

−
√

φ1β1α1

δ (γ1 + µ) (φ1 + µ)


(2.16)

We will name
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R1
0 =

∣∣∣∣√ φ1β1α1

δ (γ1 + µ) (φ1 + µ)

∣∣∣∣
R2

0 =

∣∣∣∣√ φ2β2α2

δ (γ2 + µ) (φ2 + µ)

∣∣∣∣ (2.17)

R1
0 is the basic reproductive number where only strain 1 is involved and strain 2

has no influence in it while R2
0 is the opposite with no influence of strain 1 in it.

The Basic Reproductive Number is the spectral radius of the Next Generation
Operator (2.3.2).

R0 = max

{∣∣∣∣∣
√

φ1β1α1

δ (γ1 + µ) (φ1 + µ)

∣∣∣∣∣ ,
∣∣∣∣∣
√

φ2β2α2

δ (γ2 + µ) (φ2 + µ)

∣∣∣∣∣
}

2.4 Some Conclusions on the Basic Reproductive Num-
ber

Now we have the estimation for the basic reproductive number R0. R0 is given by
an expression of the form:

√
φiβiαi

δ (γi + µ) (φi + µ)
(2.18)

for i = 1, 2.

We observe in the expression the product of three quantities inside the square
root.

Commonly in the basic reproductive number we have involved the infection rate
in the numerator while the denominator contains the healing rate and for this case
it is no exception to that, R0 involves the product of three parameters in the nu-
merator: one is the rate of effective contact mosquito to human (β), the second is
the other rate of effective contact, this time human to mosquito (α), and the third
involved in the numerator is the inverse of the duration of the incubation period
(φ). The three parameters are strongly related to the infection rate. β and α will
determine the speed of the contagium in the model.

In the denominator we have the product of also three quantities: one is the in-
verse of life expectance for mosquitoes (δ); other factor is the sum of the inverse
of the duration of the incubation period (φ) and the inverse of life expectance for
humans (µ); and the last factor is the sum of the inverses of the duration of the
disease (γ) and life expectance for humans (µ).



2.4 Some Conclusions on the Basic Reproductive Number 21

Thus the expression we obtained for R0 give us a value which will allow us to
categorize the impact of the disease in the population. It is the square root of the
product of the following three main quantities:(

βi
δ

)(
αi

γi + µ

)(
φi

φi + µ

)
They can be interpreted as follows. βi

δ , represents the number of effective con-
tacts mosquito-to-human during the life time of mosquito. αi

γi+µ
, represents the

number of effective contact human-to-mosquito during the infectious period of hu-
man. And, φi

φi+µ
represents the fraction of time a human remains in the incubation

period of the disease.

Finally, we have an expression for R0, the threshold parameter for the model,
such that if R0 < 1 the disease cannot invade the population (eventually the infec-
tion dies out), but if R0 > 1, then the Disease will invade the population. In the
next chapter, we will explore the space of parameters.
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Chapter 3

Numerical Studies

In the previous chapter we have calculated the expression for R0. This important
number helps us to identify in what cases there will be an epidemic outbreak in the
population we are studying. The value R0 takes depends on other parameters so
now we want to study those parameters.

We have to deal with 17 parameters in the system we are studying (1.3), this
makes the study very complex to do it fully. For simplicity, we will take into consid-
eration that these parameters are known to be in a range of determined values. Also,
in this chapter we will study βi through a bifurcation analysis by setting the rest
of parameters to acceptable numeric values in their range of definition. βi (i=1,2)
is the effective contact rate mosquito-to-human. From the human point of view βi
is the most important parameter involved in the model because it is the one that
measures the appearance of new infections among humans. With the results of the
graphical bifurcation analysis of βi we will define four regions of interest to study
the model (1.3).

Based in the results of these analysis (of R0 and the bifurcation of βi) we will
proceed to present, in this chapter, some simulations of the model (1.3) by solving it
and presenting the time series obtained at each region of interest. These simulations
will be used in the analysis of data with the use of wavelets in chapter 4.

3.1 Bifurcation Analysis for βi

This type of analysis will provide information on the dependence of the parameters.

Figure 3.1A shows a transcritical bifurcation for parameters β1 and β2 using the
case I of the model (1.3). They were obtained with the use of tool Auto of software
XPPAUT [54].

The transcritical bifurcation only happens when the system has an equilibrium
that exists regardless of the values of the parameters and cannot be destroyed in
a neighborhood. When this equilibrium collides with another equilibrium, the two
equilibria exchange their stability properties, but continue to exist both before and

23
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after the collision. Hence, the two equilibria pass through each other. [41].

Figure 3.1: Figure A: Transcritical Bifurcation β1. Figure B: Transcritical Bifurca-
tion for β2.

Notice that the parameters of strain 1 does not influence in any way to strain 2
and viceversa. This can easily be seen in the expression we have obtained for R0 in
Chapter 2.

The bifurcation point can be found by equating the model 1.3 to zero, and solving
for all the variables of interest. With the help of software we found three different
solutions. As we are interested in those having biological sense, we will take into
considerations only two:

(
S∗1, C∗11 , C

∗1
2 , I

∗1
1 , I

∗1
2 , E

∗1
1 , E

∗1
2 , T

∗1
1 , T ∗12 , Z∗11 , Z

∗1
2 , Y

∗1
1 , Y ∗12 , R∗1, V ∗10 , V ∗11 , V ∗12

)

=

(
λ

µ
, 0, ..., 0,

q

δ
, 0, 0

)

and

(
S∗2, C∗21 , C

∗2
2 , I

∗2
1 , I

∗2
2 , E

∗2
1 , E

∗2
2 , T

∗2
1 , T ∗22 , Z∗21 , Z

∗2
2 , Y

∗2
1 , Y ∗22 , R∗2, V ∗20 , V ∗21 , V ∗22

)
where
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S∗2 =
λ
(
δγ1φ1 + α1µφ1 + δµ2 + δµφ1

)
µφ1α1 (µ+ β1)

C∗21 =
−λ (δ (γ1 + µ) (φ1 + µ)− β1φ1α1)
φ1α1

(
β1φ1 + β1µ+ µ2 + µφ1

)
I∗21 =

−λ (δ (γ1 + µ) (φ1 + µ)− β1φ1α1)
α1

(
β1γ1φ1 + β1µ

2 + β1γ1µ+ φ1µβ1 + µ2γ1 + µ2φ1 + µµφ1γ1 + µ3
)

E∗21 = −γ1λ (δ (γ1 + µ) (φ1 + µ)− β1φ1α1)α
−1
1 ...(

φ1γ1η1µ+ µγ1η1β1 + γ1µφ1β1 + µ3β1 + µ2η1φ1 + γ1η1µ
2 + µ3φ1 + µ3η1 + ...

µ3γ1 + µ2γ1φ1 + µ2φ1β1 + µ2η1β1 + µ2γ1β1 + µη1φ1β1 + γ1φ1η1β1 + µ4
)−1

T ∗21 = −η1γ1λ (δ (γ1 + µ) (φ1 + µ)− β1φ1α1)α
−1
1 ...(

φ1γ1η1µ+ µγ1η1β1 + γ1µφ1β1 + µ3β1 + µ2η1φ1 + γ1η1µ
2 + µ3φ1 + µ3η1 + ...

µ3γ1 + µ2γ1φ1 + µ2φ1β1 + µ2η1β1 + µ2γ1β1 + µη1φ1β1 + γ1φ1η1β1 + µ4
)−1

and the rest are zero.

Table 3.1: Parameters used to calculate the value of bifurcation in β1.

Parameter Description Values

δ−1 life expectance of mosquitoes 21 days

γ−11 Duration of disease strain 1 7 days

φ−11 Incubation period strain 1 7 days
α1 Rate of effective contact host to vector 0.02
µ−1 Human life expectance 0.0000391389
λ Incoming population 0.391389432

To find an expression of the bifurcation point for β1 in terms of the rest of
parameters, we equate S∗1 = S∗2 and we solve for β1. We obtain:

βi =
δ (γ1 + µ) (φ1 + µ)

φ1α1
(3.1)

Note that any other entry of the solutions can be used as they all would lead
to the same expression for β1. For example, we can use C∗11 = C∗21 , I∗11 = I∗21 ,
E∗11 = E∗21 , or T ∗11 = T ∗21 .

3.1.1 Analysis of the bifurcation value for βi in terms of R0

Using the expression obtained in previous for β1 (3.1) and with the values of the pa-
rameters in table (3.1) we obtain β1 = 0.3402 as the bifurcation point. This means
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that the value β1 = 0.3402 is a threshold and we want to see what happens with R0

when β1 is below its threshold or up it.

The expression for R0 is given by

R0 = max
{∣∣R1

0

∣∣ , ∣∣R2
0

∣∣}
(refer to calculations on chapter 2, results in 2.3.2).

Changing the parameters for the known values shown in table (3.1), we obtain the
following expression for R1

0:

R1
0 = 1.432356037β

1
2

From this last expression we can easily observe the effects that the variation of the
value of β1 has in the value of R0, as we show in the table (3.2).

Table 3.2: Effect of variations in β1 using parameters given in table (3.1).

Value of β1 Description Value of R1
0

0.1 below the threshold 0.6648407789 (less than 1)
0.3 below the threshold 0.9588663277 (less than 1)

0.3402887023 threshold 1.000000368
0.35 up the threshold 1.009424089 (greater than 1)
0.6 up the threshold 1.208095870 (greater than 1)

As we can see the value of β1 will directly influence on R0 and this is the
value that will determine if the system will reach an equilibrium state or not. This
shows that there is a change of stability when passing through the bifurcation point
β1 = 0.3402.

Since the same analysis can be made around β2 to find another transcritical bi-
furcation and from that getting the conclusion that β2 will influence on R2

0, then we
can conclude that both values, β1 and β2, are determinant for R0, as it will depend
on them.

3.2 Regions

3.2.1 Parameters

The parameters used in the simulations were set with the values shown in table
(3.3). The values were chosen from Velasco-Feng studies [17] and [51].



3.2 Regions 27

Table 3.3: Chosen values of parameters.

Parameter Description Values
1
µ Life expectance for humans 25500 days

λ Incoming population 0.391389432
1
φ1

Incubation period 7 days
1
φ2

Incubation period 4 days
1
γ1

Duration of disease 7 days
1
γ2

Duration of disease 15 days
1
δ Life expectance of mosquitoes 21 days
1
η1

Duration of Crossed immunity 20 days
1
η2

Duration of Crossed immunity 20 days

σi Reinfection rate 1
α1 Rate of effective contact human to mosquito 0.02
α2 Rate of effective contact human to mosquito 0.03

3.2.2 Regions

Four regions are of interest since they refer to cases where R0 > 1 and there could
be an epidemic.

Since R1
0 represents the value of the basic reproductive number where only strain

1 is involved as calculated in the previous chapter, and R2
0 is the value where only

strain 2 is involved as we calculated before (see 2.3.2); we can separate the four
regions as shown in table (3.4):

Table 3.4: Regions of study for the model (1.3) to be analyzed in the following
section.

Regions Case of study Values of βi R0 obtained

Region I: R2
0 < 1 < R1

0 = R0 β1 = 3, β2 = 0.05 R0 = 2.969183
Region II: R1

0 < 1 < R2
0 = R0 β1 = 0.06, β2 = 1.5 R0 = 3.76434

Region III: 1 < R2
0 < R1

0 = R0 β1 = 3, β2 = 0.7 R0 = 2.96918
Region IV: 1 < R1

0 < R2
0 = R0 β1 = 2.5, β2 = 1.3 R0 = 3.504412

These regions represent the four cases of interest in which we want to simulate
the model (1.3). We have used the values of parameters as given in table (3.3). In
all of them we have 1 ≤ R0 which implies the appearance of an epidemic.

Region I represents the case where only strain 1 exists in the population while
Region II represents the case where only strain 2 exists in the population. These
regions place one of the reproductive numbers below one and the other above. Both
cases represent an endemic equilibrium for the system (1.3). In the first region we
have R0 determined by R1

0, which gives a significant advantage to strain 1 over strain
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2 (whose R2
0 < 1). The second region is the opposite to the first, here R0 = R2

0 and
it is greater than one, while R1

0 is below one.

Region III represents the case where both strains coexist in the endemic equilib-
rium being strain 1 stronger than strain 2 as pointed by the given values of R0 in
table (3.4). The region III shows the case where R1

0, R
2
0 are both greater than 1; also

in this case we gave preference to strain 1 over strain, this time R0 coincides with R2
0.

Region IV represents another case where both strains coexist but strain 2 is
stronger than strain 1 (see table (3.4)). Region IV shows a case which differs form
region III in that it gives preference to strain 2 over strain 1 that we can notice when
we see that R0 coincides this time with R2

0.

We have selected this four regions based in the biological interest they offer.
From a mathematical point of view some cases may look repetitive but they are
not the same from a biological point of view since we are dealing with two different
strains of a disease. In the following sections we will analyze what happens in each
region based on the simulations done.

3.2.3 Initial Conditions

The initial conditions we choose for populations are shown in the table (3.5) and
they will provide the scenario for the simulations.

Table 3.5: Initial Values that took to run the Simulations.
Human Host Values

S 10 000
C1, C2, I1, I2, E1, E2, T1, T2, Z1, Z2, Y1, Y2, R 0

Mosquitoes Values

V0 300
V1 55
V2 15

3.3 Simulations

We present the simulations we have done in the four regions we have defined.
Each region is separated in two cases depending on the value of q(t), the incoming
mosquitoes into the susceptible population of mosquitoes: one for the autonomous
model (making q(t) = 1), where we assume that the dynamics of the disease is
independent of the environment; and the other for the seasonality case (making
q (t) = 1 + cos (2πt/365), where we consider the effects of a one year longed cycle in
the dynamics of dengue. We present first the autonomous cases and after each of
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them its seasonality case for the region.

3.3.1 Region I - Autonomous Case

Region I represents the case where only strain 1 exists in the population. It is the
case where R0 = R1

0 > 1 > R2
0, β1 = 3, β2 = 0.05, R0 = 2.969183.

Figure 3.2: Y-axis: the number of humans. X-axis: time from 0 to 70 days. Red: Human
Susceptible to either strain. Green: First time infected humans with strain 1 (stage I1). Dark
blue: First time infected humans with strain 2 (stage I2). Figure A: Shows how the number of
susceptibles decreases while the number of first time infected is increasing. Infected with strain 1
gains in number while those infected with strain 2 grow a bit to later disappear. Figure B: A more
detailed view to the behavior of strain 2.

In the first 70 days, the simulations show that both strains are present but only a
very short time. Then, strain 2 disappears totally under the effect caused by strain
1 (see figures (3.2) and (3.3)). Notice that since we have R2

0 < 1 it implies that
there is a bigger number of infected humans with strain 1 than with strain 2. Also,
we observe that both strains coexist in the lapse of time.

We are interested in seeing what happens in bigger lapses of time so, we contin-
ued the simulation for 68 years (25000 days), and we obtained figure 3.3. In this
figure we can see that the number of humans infected with strain 1 (stage I1) oscil-
lates between 0 and 92 for the time observed among 15000 to 25000 days. Figures
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Figure 3.3: Y-axis: the total amount of humans. X-axis: time from 5000 (13 years) to 25000 (68
years). Figure A: The green curve represents the number of infected humans with strain 1 and the
dark blue curve the number of humans infected with strain 2. Figure B: The red curve of susceptible
humans oscillates. The orange curve represents the number of humans in the recovered stage

3.3A and 3.3B show stages S, I1, I2 and R, in red, green, dark blue and orange color
respectively. Notice that susceptibles are also oscillating which was not evident in
figure 3.2. From figure 3.3B we can see that oscillations of stage S of susceptibles
are damped and the number of individuals in the R stage of recovered humans is
decreasing. When we continue the simulation for a larger lapse of time we observe
that the curve for the number of recovered humans, R, converges asymptotically to
a positive value different from zero.

The curve representing humans that are first time infected and get strain 1 (stage
I1) oscillates (see green curve in figure 3.3A). The amplitude of the oscillations for
I1 is very small in comparison with the red curve of susceptibles (see figure 3.3B)
which has a wider oscillation. The humans that get the disease for the first time and
are infected with strain 2 (stage I2) get reduced to zero very quickly and remains
there for all future time (see the dark blue curve in figure 3.3B).

To get a better understanding of what causes the oscillations, we present the
dynamics of mosquitoes for the same time intervals in figures 3.4 and 3.5.
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Figure 3.4: Y-axis: number of individuals. X-axis: Time in days from 5000 (13 years) to 25000
(68 years). Figure A: The green curve represents the number of humans infected with strain 1 at
a time t. The light blue curve of susceptible mosquitoes seems to be at equilibrium with 21.084
mosquitoes. Figure B: The light blue curve of susceptible mosquitoes also oscillates at the same
time as the curve for infected humans that is shown in green.

When we observe the stage for susceptible mosquitoes, with V0 as the light blue
curve it looks like a straight line due to the scale 3.4A). But when we make zoom
around y = 21 (see figure 3.4B), we have oscillations for stage V0. In figure 3.5B, we
also observe oscillations for stage V1 (red curve). For V2 nothing interesting happens
since it dies almost from the beginning, as strain 1 is the only that survives.

The light blue curve for V0 (see figure 3.4) represents the number of susceptible
mosquitoes present in the population at a given time. We can see that the number of
susceptible mosquitoes remain mostly stable at y = 21.0084 except for the moments
when the curve goes down, each time mosquitoes get infected by strain 1. After
the number of susceptible mosquitoes increases, the curve reaches back the value
y = 21.0084.

In figure 3.5B, the red curve for V1 is very similar to the green curve for I1 but in
a smaller scale. We can see in figure 3.5B that each time the number of infected hu-
mans increases it is followed by an increment of the number of infected mosquitoes.
Mosquitoes grow in number in a lower scale than humans but seems that both reach
their highest point at the same time. Then both, mosquitoes and humans, begin to
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Figure 3.5: Y-axis: number of individuals. X-axis: Time in days from 0 to 25000 (68 years).
Figure A: Stages I1 for infected humans (green) and V1 for infected mosquitoes (red). Figure B:
Close up view from figure A.

decrease their number of infected. Mosquitoes start to decrease and are followed by
humans.

Resuming, initially, there are 55 mosquitoes infected with strain 1, and 35
mosquitoes infected with strain 2. As they get in contact with the population,
the number of susceptible humans decreases and the number of first time infected
increases. R1

0 = 2.9 which indicates that in average each individual infected will
pass the disease strain 1 to about 3 other individuals in the course of one genera-
tion. Meanwhile, R2

0 = 0.6 < 1 tells us that the strain 2 of the disease will eventually
disappear from the population.

In the first 10 days (figure 3.2), humans are getting infected with strain 1 very
fast. After the 10th day, many in the population will be already infected with strain
1 and this will make it hard for mosquitoes to find ”clean individuals” to infect.
Then, the number of new infections reduces. Several humans in the population will
soon be immune to strain 1 and there will be an interval of time where strain 1
remains very ”quiet”. Later, susceptibles increase due to new incoming individuals,
and there will be enough susceptible humans again for the disease to spread among
the population. The number of infected individuals will increase once more until
the population is saturated with infected humans of strain 1. This behavior causes
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the oscillations we observed in the figures 3.2 - 3.5. Because the population still
alive is gaining immunity and the number of humans in the population must remain
constant at all times, the oscillations are damped.

3.3.2 Region I - Seasonality Case

Region I represents the case where only strain 1 exists in the population. It is the
case where R0 = R1

0 > 1 > R2
0, β1 = 3, β2 = 0.05, R0 = 2.969183. This is the

simulation for the seasonality case.

Figure 3.6: Y-axis: the number of humans. X-axis: time from 0 to 70 days. Red: Human
Susceptible to either strain. Green: First time infected humans with strain 1 (stage I1). Dark
blue: First time infected humans with strain 2 (stage I2). Figure A: Shows how the number of
susceptibles decreases while the number of first time infected is increasing. Infected with strain 1
gains in number while those infected with strain 2 grow a bit to later disappear. Figure B: A more
detailed view to the behavior of strain 2.

Figure 3.6 shows that in the beginning the behavior of the seasonality case does
not differ very much from the autonomous case. We can see in it that in the first 70
days susceptible humans are decreasing as the number of infected increases. Also,
we note that both strains coexist in this period of 70, but strain 2 infects less humans
and it disappears soon after this period of 70 days.

Even oscillations for I1 and V1 are present in this seasonal case as in the au-
tonomous case, we observe differences in the oscillations of the curves as many
peaks appear now in between the high outbreaks (figure 3.7). To explain this we
must first see the curve for the stage of susceptible mosquitoes (V0) in figure 3.8.
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Figure 3.7: Y-axis: the number of humans. X-axis: time from 0 to 25000 days (68 years). Green:
First time infected humans with strain 1 (stage I1). Red: Mosquitoes infected with strain 1 (stage
V1). The figure shows the oscillations of stages I1 and V1, both occurring at same instants of time
but at different magnitudes.

Figure 3.8: Y-axis: the number of humans. X-axis: time from 0 to 25000 days (68 years). Green:
First time infected humans with strain 1 (stage I1). Dark blue: First time infected humans with
strain 2 (stage I2). Light blue: Susceptible mosquitoes (stage V0). Figure shows the behavior of
susceptible stage of mosquitoes when new mosquitoes arrive not in constantly but in a quantity
given by q (t) = 1 + cos (2πt/365).
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This time the curve for stage V0 decreases in the beginning until it establishes in
a perpetual oscillation in a band among the values of y = 0 and y = 50 (see light dark
blue curve in figure 3.8). As we said before, the difference between the seasonality
and the autonomous case is the value for the incoming individuals into the mosquito
population. For the seasonality case, we have set the entrance of mosquitoes as
q (t) = 1 + cos (2πt/365). This produces the oscillation in the number of susceptible
mosquitoes that we see in figure 3.8.

We show a closer graph of one of the outbreaks in figure 3.9A where we observe
better the many peaks in one outbreak of figure 3.3. At t = 11400, mosquitoes are
decreasing each time slower, while infected humans (in stage I1) are increasing each
time faster. By the time mosquitoes reach their lowest, infected humans reach a
maximum and start to decrease (because although conditions are good, there are
not enough mosquitoes to get the disease and spread it). Then, the season of growing
arrives for mosquitoes and there are each time more mosquitoes in the population.
Then the infected human begin to increase again. As this happens, we observe the
stage of susceptible humans (S), shown in figure 3.9B, that is decreasing as humans
get infected.

Figure 3.9: Y-axis: the number of humans. X-axis: time from 11200 (30 years) to 12200 days
(33 years). Red: Human Susceptible to either strain (stage S). Green: First time infected humans
with strain 1 (stage I1). Light blue: Susceptible mosquitoes to either strain (stage V0). Figure A:
Detailed view from figure 3.8. Susceptible mosquitoes oscillate while the number of human infected
shows a two-peaked outbreak. Figure B: Shows how the number of susceptibles decreases while the
number of first time infected is increasing.

3.3.3 Region II - Autonomous Case

Region II represents the case where only strain 2 exist in the population. In this
case we have R1

0 < 1 < R2
0 = R0, β1 = 0.06, β2 = 1.5 and R0 = 3.76434. This case
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is the analogous for region I, but here strain 2 is stronger and it is the one that
oscillates, while strain 1 disappears.

Figure 3.10: Y-axis: number of humans. Figure A: behavior of stages S, I1, and I2 in the first
100 days. Figure B: Zoom out view of Figure A from day 0 to 25000 (68 years).

Initially, we can observe in figure 3.10 that the number of susceptibles is decreas-
ing while the number of infected grows. We see that, with R2

0 = 3.76, strain 2 can
infected more than 3 humans in one generation, while strain 1, with R1

0 = 0.41 < 1
soon disappears from population as it was expected.

In the beginning, humans get infected with either strain causing the number of
humans at stage S of susceptibles to decrease. Since R2

0 = 3.76, stage I2 grows very
fast infecting humans, while stage I1 for strain 1 also increases but it causes fewer
infections. In figure 3.11, we can notice that as the number of humans infected
with strain 2 grows there are less susceptible to infect and, although it is easier
for mosquitos to get infected with strain 2 (R2

0 > 1), it becomes more difficult for
mosquitoes to pass it to a human, as most humans are already infected!

This situation force to a reduction in the number of humans infected with strain
2 and causes a ”pause” where the disease seems to have almost disappear. But this
pause will only last till the incubation time and the duration of the disease for strain
1 in humans have passed, and new susceptibles had arrive into the population. This
will create one more time the scenario for another increment in the number of in-
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Figure 3.11: Y-axis: number of humans. X-axis: time for day 0 to 25000 (68 years). Figure A:
behavior of stages I2, and V2. Figure B: Zoom out view of Figure A showing the oscillations of I2.

fected of strain 2 in the population. And the events repeat themselves again causing
the oscillations we see in the figures. Note that oscillations are decreasing each time.

3.3.4 Region II - Seasonality Case

Region II represents the case where only strain 2 exist in the population. In this
case we have R1

0 < 1 < R2
0 = R0, β1 = 0.06, β2 = 1.5 and R0 = 3.76434. This

case is the analogous for region I, only here strain 2 is stronger than strain 1 and
it is the one that oscillates, while strain 1 disappears. This is the seasonality case
were we assumed that new mosquitoes arrive to the susceptible population at a rate
q (t) = 1 + cos (2πt/365) which depends on time.



38 Numerical Studies

Figure 3.12: Y-axis: the number of humans. X-axis: time of the first 100 days of the disease.
Red: Human Susceptible to either strain (stage S). Green: First time infected humans with strain
1 (stage I1). Dark blue: First time infected humans with strain 2 (stage I2). Figure A: The number
of susceptible humans, S, decreases as the number of infected, I1 and I2, increases. Figure B:
Shows how the number of susceptibles oscillates while the number of first time infected with strain
2 oscillates. Strain 1 has disappeared from the population.

Figure 3.12A shows the first 100 days of the simulation. We have that both
strains coexist, stages I1 and I2, show both an outbreak that causes the number of
susceptible to decrease, stage S. While in figure 3.12B we have a larger point of view
where we notice that strain 1 has disappeared from the population and only strain
2 remains causing the stage I2 to oscillate together with the number of susceptible
humans yet in the population, S.

We notice again in the oscillations of stage I2 in figure 3.12B that they present
many peaks in each outbreak caused again by the alterations in the entrance of new
healthy mosquitoes, that in this case is not constant. From figure 3.13A we observe
that the dynamics can be explained as in the case of region 1 for the seasonality
case, only this time we are dealing with strain 2 instead of strain 1.

At t = 11100, mosquitoes are decreasing each time slower, while infected humans
(in stage I2) are increasing each time faster. By the time mosquitoes reach their
lowest, infected humans reach a maximum and start to decrease (because although
conditions are good, there are not enough mosquitoes). Then, the season of growing
arrives for mosquitoes and there are each time more mosquitoes in the population.
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Figure 3.13: Y-axis: the number of humans. X-axis: time from 10900 (30 years) to 11700 days
(32 years). Red: Human Susceptible to either strain (stage S). Dark blue: First time infected
humans with strain 1 (stage I2). Light blue: Susceptible mosquitoes to either strain (stage V0).
Figure A: Susceptible mosquitoes oscillate while the number of human infected shows a two-peaked
outbreak. Figure B: Shows how the number of susceptibles decreases while the number of first time
infected is increasing.

Then the infected human begin to increase again. As this happens, we observe the
stage of susceptible humans (S), shown in figure 3.13B, that is decreasing as humans
get infected.

3.3.5 Region III - Autonomous Case

Region III represents the case where both strains coexist being strain 1 stronger
than strain 2 with R0 = R1

0 > R2
0 > 1, R1 = R0 = 2.96918 and R2 = 2.57.

Initially, all humans are susceptibles in the population, and by introducing in-
fected mosquitoes, some with strain 1 and some with strain 2, we make the sus-
ceptible population decrease and the infected stages, I1 and I2, increase. In figure
3.14 we can see this behavior and we can also notice that humans get infected faster
with strain 1 than with strain 2. Also, it is strain 1 which causes more damage
into the human population by infecting more humans than strain 2 because we have
R1

0 > R2
0 > 1 in this region.

To understand better how each strain is affecting the population, in figure 3.15B
are shown the total of infection of each strain at a given time (I1 + Y1 and I2 + Y2).
The oscillations we observe occur due to the saturation of infected humans caused
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Figure 3.14: Y-axis: number of humans. X-axis: time from 0 to 60 days. The figure shows
behavior of stages S, I1, I2, R for humans and V0 for mosquitoes.

by both strains being strain 1 the stronger (and the one with more infections at the
start).

Notice in the beginning of figure 3.15B that since R1
0 > R2

0 > 1, there are more
humans infected with strain 1 than with strain 2. After a while strain 1 saturates the
population and it has to wait till the favorable conditions reestablish again. At this
moment, strain 2 has the conditions to infect the population because most humans
are yet susceptible to it (but not to strain 1). Then, there comes an interval where
most of the human population has already had the disease by one of the strains or
maybe by both. At this moment, the disease reduces the number of infections.

In time, new humans arrive into the population of susceptibles to make it grow
in number (see figure 3.15A), and the disease will be in conditions to get spread
in these individuals and those who have had already one of the strains but are yet
susceptible to the other. Strain 1 will infect mostly of the new arrivals causing an
outbreak small than it was in the beginning, and small than the outbreak that strain
2 will cause after it. Again, this difference in magnitude of the outbreaks of both
strains is due to the strength that strain 1 had at the beginning of the simulation,
most of the population had already had the disease cause by strain 1 and they are
now susceptible only to strain 2. So, it is normal to wait that strain 2 infects more
individuals in the second outbreak that strain 1.
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Figure 3.15: Y-axis: number of humans. Figure A: oscillations of total infections, I1 + Y1 and
X2 + Y2, for each strain from day 0 to 25000 (68 years). Figure B: A detailed view of the stages in
the first 100 days.

As time passes, the situation is more difficult for strain 1 than for strain 2, and
though both are decreasing, strain 1 decreases faster than strain 2.

Oscillations in these stages, I1 + Y1 and I2 + Y2, are due to the movement of
individuals from stage I1 to Y2 and from stage I2 to Y1 and the entrance of new
susceptibles.

Oscillations for strain 1 are more frequent than oscillations for strain 2, but they
are weaker in the case of strain 1. This is caused by the election of values for the
parameters assign to each strain (see table 3.3).

3.3.6 Region III - Seasonality Case

Region III represents the case where both strains coexist being strain 1 stronger
than strain 2 with R0 = R1

0 > R2
0 > 1, R1 = R0 = 2.96918 and R2 = 2.57. In the

seasonality case new mosquitoes arrive to the susceptible stage (V0) at a variable
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rate q (t) = 1 + cos (2πt/365) which depends on time. The first simulation for the
seasonality case is presented next with the figure 3.16A where the first 70 days are
shown.

Figure 3.16: Y-axis: the number of humans. X-axis: time from 0 to 70 days. Red: Human
Susceptible to either strain (stage S). Green: First time infected humans with strain 1 (stage I1).
Dark blue: First time infected humans with strain 2 (stage I2). Figure A: Susceptible mosquitoes
decrease while the number of infected humans increases, both strains. Figure B: Shows a wider look
of the oscillations of S, I1 and I2.

It is shown on 3.16A we can see that both strains coexist on the first 70 days.
In figure 3.16B we can see that both strain continue to be in the population and
that they both oscillate. In figure 3.17 the outbreaks produced by strain 1 are more
frequent than those produced by strain 2. In the same figure the outbreaks for
strain 2 seems to be infecting sometimes more humans and sometimes less. When
continuing the simulation we noticed that the number of infected by strain 2 is at
the end decreasing (figure 3.18).
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Figure 3.17: Y-axis: the number of humans. X-axis: time from 5000 (13 years) to 25000 days (68
years). Red: Human Susceptible to either strain (stage S). Green: First time infected humans with
strain 1 (stage I1). Dark blue: First time infected humans with strain 2 (stage I2). Both strains
coexist at all time shown in the simulation, and stages I1 and I2 oscillate.

Figure 3.18: Y-axis: the number of humans. X-axis: time from 25000 (68 years) to 45000 days
(123 years). Dark blue: First time infected humans with strain 2 (stage I2). Figure shows the
oscillation of I2 is slowly decreasing.

Figure 3.19 allows a closer view of oscillations of stages I1 and I2 due to the
oscillation of V0. At time t = 22100, I2 starts to increase, but since V0 is being
reduced, there are less mosquitoes to infect in the population, so infection by strain
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1 is momentary stopped. Later, the number of susceptible mosquitoes increase and
there is room for the infection to spread through the human population. We observe
that at time t = 22500 we have the maximal for stages I1 and I2, and it is observed
to happen after the minimal for the population of susceptible mosquitoes. This is
because the disease has infected most of mosquitoes and they spread the disease
into the human population. Strain 2 is the one with the highest number of infected
humans due to the cross immunity of the disease. Once the infected mosquitoes die
and new mosquitoes enter in the population, number of individuals at stages I1 and
I2 start to decrease.

After time t = 22900, there is an outbreak again, this time strain 1 infects more
individuals than strain 2, nevertheless it is less than half than it was the previous
outbreak of strain 1. Since that in this case we have R1

0 > R3
0, this implies that strain

1 is stronger although it is not seeing yet in the simulations. When we continue the
simulation to see what happens with strain 1 we noticed that it presents the same
type of oscillations as we discuss for strain 2, only it goes slower, that means the
disease strain 1 will remain longer in the population before disappearing.

Figure 3.19: Y-axis: the number of humans. X-axis: time from 21900 (60 years) to 24000 days
(65 years). Green: First time infected humans with strain 1 (stage I1). Dark blue: First time
infected humans with strain 2 (stage I2). Light blue: Susceptible mosquitoes to either strain (stage
V0). The oscillation of stages I1 and I2 is due to the oscillation of V0.
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3.3.7 Region IV - Autonomous Case

Region IV represents another case where both strains coexist but strain 2 is stronger
than strain 1. For this case, 1 < R1

0 < R2
0 = R0, R1 = 2.71, R2 = R0 = 3.5 .

Figure 3.20: Y-axis: number of humans. Figure A: shows oscillations of I1 and I2 from day 0 to
25000 (68 years). Figure B: Shows stages S, I1, I2, R, for humans and V0 for mosquitoes from day
0 to 60.

As in region III, initially, all humans are susceptibles in the population, and by
introducing infected mosquitoes, some with strain 1 and some with strain 2, we make
the susceptible population decrease and the infected stages, I1 and I2, increase. In
figure 3.20B we can see this behavior and we can also notice that humans get in-
fected faster with strain 2 than with strain 1.

Although we have chosen different values of parameters for strain 1 than for
strain 2, we observe a very similar behavior in region IV than the one we observed
in region III. In region IV we observe that oscillations for strain 2 are more frequent
than for strain 1, but this time strain 1 gets reduced faster.
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3.3.8 Region IV - Seasonality Case

Region IV represents another case where both strains coexist but strain 2 is stronger
than strain 1 with 1 < R1

0 < R2
0 = R0, R1 = 2.71, R2 = R0 = 3.5 . In the season-

ality case, the new susceptible mosquitoes enter the population at a variable rate
q (t) = 1 + cos (2πt/365) which depends on time t.

The figure 3.21A shows how is the dynamic of the stages S, I1, I2, of the disease
in a lapse of 80 days in the beginning of the simulation.

Figure 3.21: Y-axis: the number of humans. X-axis: time from 0 to 80 days. Red: Human
Susceptible to either strain (stage S). Green: First time infected humans with strain 1 (stage I1).
Dark blue: First time infected humans with strain 2 (stage I2). Figure A: Susceptible mosquitoes
decrease while the number of human infected increase. Both strains coexist in the population.
Figure B: Shows how the number of susceptibles oscillates while the number of first time infected
humans for each strain also oscillates.

Figure 3.22 shows that both strains continue to exist in the population and os-
cillate. Strain 2 presents outbreaks more frequently than strain 1. When continued,
the simulation shows that both strains are slowly decreasing and strain 2 stays longer
in the population than strain 1.
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Figure 3.22: Y-axis: the number of humans. X-axis: time from 10000 (27 years) to 25000 days (33
years). Green: First time infected humans with strain 1 (stage I1). Dark blue: First time infected
humans with strain 2 (stage I2). The oscillations of each strain seems to be irregular. Outbreaks
for strain 2 are more frequent than those for strain 1.

3.3.9 Observations

Although we could have expected differently, there were oscillations presented in
the autonomous model, which implies that the disease ”comes and goes” and comes
back again. This is actually always observed in the behavior of Dengue dynamics
in real life. What is more remarkable is the fact that this happens even without
introducing the effects of seasonality in the model though, in any case, the disease
finally extinguishes.

Considering the effects we observed from the curves with forced annual period-
icity, we can see that they cause more damage, in terms of the amount of people
that gets infected, and this happens especially when its annual seasonal periodicity
(taking q (t) = 1 + cos (2πt/365)).
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Chapter 4

Wavelets

We will make use of Wavelet Transform (WT) as a tool with the objective of vali-
date the effectiveness and confidence of the model (1.3) and also to see if it is good
to describe and analyze real cases. In this chapter we will introduce the WT by
giving a brief introduction to wavelet theory and we will make clear which type of
wavelet we will be using in a later section. We show the basic concepts of wavelets,
continue wavelets and discrete wavelets, and how a wavelet is done. Later, we give
the definitions of cross wavelet transform (XWT) and wavelet transform coherence
(WTC) which will help us to compare the observations obtained from real data with
the solutions of the model (1.3).

4.1 An Introduction to Wavelets

For years scientists have applied mathematical transformations to signals to obtain
further information from them that cannot be read in the raw signal. A raw signal
is the one obtained in time domain, while the processed signal is obtained from the
application of a mathematical transformation into a signal, i.e., a processed signal
is a transformed signal [43].

There are many mathematical transformations in use. Examples of these are:
Hilbert transformation, Wigner transformation, Radon transformation, short-time
Fourier transformation, Fourier transformation and Wavelet transformation. The
most famous transform is Fourier, proposed by Joseph Fourier in early 1800’s, where
the idea of approximation is done using superposition of functions sine and cosine.
When applied we obtain a Frequency Spectrum and, with this, the Fourier transfor-
mation tell us what frequencies exist in the signal. So, if the purpose is finding the
frequency content of a signal then we use Fourier Transform (FT) [20].

However, FT is not a convenient technique for this study since we are dealing
with a problem where frequency varies with time, which produces a non-stationary
signal. By applying FT we would only obtain the information of what spectral fre-
quency components exist but we will not be able to know when. This is why FT
is not of use with biological signals, since they all are non-stationary and we are
interested in knowing not only which frequencies are involved, but also at what time
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they appear [9, 43].

We need to know when in time the spectral components are located, to do that
we need a transform that can give us a time-frequency representation of the sig-
nal. This could be done using the Windowed Fourier transform (WFT), the wavelet
transform (WT), and others, too. While using WFT we can get to know all the fre-
quency components involved in the signal and the time where they are located. But
there is an important reason why we do not choose WFT to study the model (1.3)
and it has to do with the resolution problem. The resolution problem consist in the
fact that we can only know the time intervals in which certain band of frequencies
exist.

With FT there is no resolution problem in frequency domain because we know
exactly what frequencies exist in the signal, and we know the exact value of the
signal at every instant of time. In the case of WFT the signal is divided into small
enough segments where the signal can be assumed to be stationary. The width of
these segments or windows is known as the support of the window. In WFT, the
window is of finite length and it only covers a portion of the signal, therefore we
get a poor frequency resolution, we do not know what exact frequencies appear but
we know only a band of frequencies that exist in an interval of time. To obtain the
stationarity we must have a short enough window in which the signal is stationary.
The narrower we make the window, the better the time resolution but poorer fre-
quency resolution. On the contrary, if we take a wider window we can get better
frequency resolution but poor time resolution.

For this study we have chosen the Wavelet Transform since it has variable res-
olution in advantage to WFT which has fixed resolution. The resolution indicates
what spectral components exist at any given interval of time. The problem with
the WFT is the width of the window function that is used which is fixed from the
beginning and that does not allow us to get good resolution.

Using wavelets we can vary the width and that permit us to obtain quality in-
formation from the signal. With the wavelet transform (WT) higher frequencies are
better resolved in time and lower frequencies are better resolved in frequency. Thus
we have that a high frequency component can be better located in an interval of
time than a low frequency component [43].

The Continuous Wavelet Transform (CWT) uses an alternative approach to over-
come the resolution problem: the Multi Resolution Analysis (MRA). The MRA ana-
lyzes different frequencies with different time resolutions. The procedure to wavelet
analysis is to choose a wavelet prototype function (called mother wavelet). Then we
procede to calculate the CWT for all values of the scale s.

There are many types of mother wavelet, such as Meyer, Morlet, Mexican hat,
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Daubechies, Haar, to mention some. Wavelets can be separated in discrete and con-
tinuous, and also among the continuous there are real-valued and complex-valued
wavelets [20]. For this study we have chosen the Morlet wavelet, which is a complex-
valued one.

Some important definitions and information that we will use in this chapter and
we should have in mind are given. The translation is related to the location of the
window as it is shifted through the signal. The scale is defined as 1/frequency. High
scales correspond to non-detailed global view of the signal, low scales correspond to
a detailed view. Scaling, as a mathematical operation, either dilates or compresses
a signal. Larger scales correspond to dilated signals. Small scales correspond to
compressed signals. Low frequencies correspond to a global information of a signal,
whereas high frequencies correspond to a detailed information of a hidden pattern
in the signal period.

The CWT is a powerful mathematical instrument that transforms a time series
to a time-scale domain [34]. The procedure to transform a signal into a wavelet in
the time frequency space is:

Once the mother wavelet has been selected computation starts with a fixed value
of the scale s and the CWT is computed for all values of s, smaller and greater than
the starting value. As scale increases, wavelet will dilate. The wavelet is placed at
the beginning of the signal corresponding with time t = 0. The wavelet function
at each value for the scale is multiplied by the signal and then integrated over all
times. The result of the integration is multiplied then by the constant number 1√

s

(to normalize the process so that the transformed signal will have the same energy
at every scale. The result is the value of the CWT at time t = 0, s = 1 in the time-
scale plane. Then the wavelet at scale 1 is shift to the right by τ units to time t = τ
and we compute to get the transform value at t = τ , s = 1 in the time-frequency
plane. This process is repeated until the wavelet reaches the end of the signal. Then
one row of points on time-scale plane for the scale s = 1 is now completed. Then
s is increased by a small value and all the procedure is repeated for every value of
s. When the process is completed for all desired values of s, the CWT of the signal
has been calculated.

Before starting the analysis we considered presenting some basic definitions on
wavelets and the selected Morlet wavelet.

To be called a wavelet, the analyzing function should be admissible, which means
the average of the integrable function should be zero [15], this is called the ”admis-
sibility condition”. The ”similarity condition” which is another requirement to have
a wavelet is that the scale decomposition should be obtained by the translation and
dilation of only one ”mother function” [15]. And finally, there should be one recon-
struction formula to recover the original signal from its wavelet coeficients, this is
the invertibility condition and it is due to that the inverse wavelet transform can
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exist.

The Morlet wavelet is an example of a function with zero mean which satis-
fies all the conditions and that can be localized in both time and frequency space
[47]. Assuming that we have has a time series, xn, with equal time spacing δt and
n = 1, ..., N − 1. Also, consider ψ0 (η), that depends on a nondimensional ”time”
parameter η. Wavelets are defined as

ψs,η (t) =
1√
s
ψ

(
t− η
s

)
The Morlet wavelet consist of a plane wave modulated by a Gaussian:

ψ0 (η) = π−1/4eiω0ηe−η
2/2

where ω0 is the non-dimensional frequency, taken to be 6 to satisfy the admissibility
condition [47].

The wavelet transform of a time series xn with respect to a chosen mother wavelet
is performed as follows:

Wn (s, η) =
1√
s

∫ ∞
−∞

x (t)ψ∗
(
t− η
s

)
dt

where the asterisk denotes the complex conjugate form [5].

The wavelet coefficient Wn (s, η) represents the contribution of the scale s to the
signal when time is at different position η. The computation of the wavelet trans-
form is done along the signal x (t) by increasing the parameter η over a range of
scales s until all coherent structures within the signal can be identified.

The continuous Wavelet Transform of a discrete sequence xn is defined as the
convolution of xn with a scaled and translated version of ψ0 (η):

Wn (s) =
N−1∑
n′=0

xn′ψ∗
[

(n′ − n) δt

s

]
where ψ∗ denotes the complex conjugate [47].

When we vary the wavelet scale s and translate it along the localized time index
n, we can construct a picture showing both the amplitude of any features versus the
scale and how this amplitude varies with time.

Since the wavelet function ψ (η) is complex, its wavelet transform Wn (s) is also
complex and can be divide into real part (amplitude) and imaginary part (phase).
We define the Wavelet Power as |Wn (s) |2 [47]. And the complex argument of Wn (s)
can be interpreted as the local phase [21].



4.1 An Introduction to Wavelets 53

Errors in the transformation will occur at the beginning and end of the Wavelet
Power Spectrum because we are dealing with a finite-length time series. One way
to reduce the error is to pad the end of the time series with zeroes before doing the
Wavelet Transform and then remove them afterward. Thus, the cone of influence
(COI) is formed.

The COI (which appears in the wavelet as a blurry region) is where edge effects
become important [47]. The cone of influence helps us to identify the region of the
wavelet where we can trust in the information from that part which is not completely
reliable due to the fact that at the beginning and end of the wavelet, at the moment
of doing the convolution, there are parts where the signal is not enough big for the
Morlet to cover it. So the program will fill ”emptiness of the signal” with zeros just
to be able to calculate the convolution. In this study we took the COI area in which
the wavelet power caused by a discontinuity at the edge has dropped to e−2 of the
value at the edge [21].

It is assumed that the time series has a mean power spectrum; if a peak in the
Wavelet Power Spectrum is significantly above this background spectrum, then it
can be assumed to be a true feature with a certain percent confidence. As a def-
inition, ”significant at the 5% level” is equivalent to ”the 95% confidence level”,
and implies a test against a certain background level. While the ”95% confidence
interval” refers to the range of confidence about a given value [47]. The confidence
interval is defined as the probability that the true wavelet power at a certain time
and scale lies within a certain interval about the estimated wavelet power [47].

When comparing two signals, the Cross Wavelet Transform (XWT) is useful as
it finds regions in time frequency space where both time series show high power at
same time. The Cross Spectrum Denotes the co-varying power of two processes,
that is, the predictive information between each other. Sometimes, a superimposed
independent variance only appears in the single spectra but not in the cross spectra;
this also implies that the cross spectrum vanishes for two independent processes [34].

Given two time series X and Y, with wavelet transforms WX
n (s) and W Y

n (s), we
can define the Cross-Wavelet Spectrum as

WXY
n (s) = WX

n (s)W Y
n (s)

The cross-wavelet Spectrum is a complex number [47], and therefore we can define
the Cross-Wavelet Power as the argument of a complex number, that is

|WXY
n (s) |

The complex argument of WXY
n (s) can be interpreted as the local relative phase

between X and Y in time frequency space [21]. The relative phase relationship is
shown as arrows in the XWT with in-phase pointing right, anti-phase pointing left
[21].
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Another tool at hand to compare signals with wavelet analysis is the Wavelet
Transform Coherence (WTC) which is defined as the square of the Cross-Spectrum
normalized by the individual power spectra. This gives a quantity between zero
and one, and measures the Cross-Correlation between two time series as a function
of frequency [47]. The Wavelet Coherence (WTC) finds regions in time frequency
space where the two time series co-vary (but does not necessarily have high power).
The coherence (or coherency) is defined as the modulus of the cross spectrum, nor-
malized to the single spectra. Exhibiting values between zero and one, it quantifies
the linear relationship between two processes. In general, one rarely finds perfect
linear dependence [34].

We can define the WTC of two series as

W 2
n =

|WXY
n |2

|WX
n |2|W Y

n |2

Notice that this definition is very similar to that of the traditional correlation coef-
ficient. It can be useful to think of the WTC as the localized correlation coefficient
in time frequency space [21].

In this chapter we will show how we have used wavelets as a tool to help us com-
pare data from simulations of the model (1.3) with data from real databases. To get
data from the model we used XPPAUT and we run simulations for the model using
parameters in an established region (see chapter 3, table 3.4). We have counted the
number of infected humans, sometimes we made a count by days and in other case
we count them by weeks (depending on the database we have to be compared with
the data from the solution of the model).

We obtained files describing information (like date of begin of the disease, gen-
der, age, location, etc.) of people who had Dengue disease in Mexico during 2002
to 2009. We got data from the city of Cuernavaca which tells us how many people
were sick with Dengue day by day from 2008 to 2009.

Also we made use of data from four Mexican states (Oaxaca, Chiapas, Guerrero
and Veracruz); for this case we added the total of infected people in those four states
each week from 2002 to 2009.

Finally, we made use of the online report of Google Trends in Dengue for Mexico
(from January 12th, 2003, till September 8th, 2012). Google Trends consists of the
statistics that shows how often a particular search-term is entered relative to the
total search-volume across various regions of the world, and in various languages, in
this case we search for ”Dengue” trends in Mexico.
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4.2 Analysis of the Model Using Wavelets

We have found the solutions of the model to obtain data and we have applied the
Morlet wavelet approximation to it using Matlab tools specially created for wavelet
analysis and Grinsted-Moore-Jevrejeva’s code ([21]).

Since in Mexico only one strain dominates each year, we found more appropriate
to begin the study with Region I, where only strain 1 survives in the population. To
explain what we will see in the subsequent figures, we will start with the Continuous
Wavelet Transform (CWT) of the data from the model (1.3) in Region I. The data
of the model was obtained by solving the model (1.3) from time 0 to 15000 although
we only display data from time 5000 to 15000 days. In the bottom of figure 4.1 we
show the histogram done with the sum I1 + I2 + Y1 + Y2 of all infected humans at
each instant of time t and we call this the time series. This graph will be referred
to as the time series of the data that will be used to construct the CWT. The CWT
corresponding to the data of the Model (1.3) Region I for the autonomous case is
shown up in figure 4.1 with its time series below.

Figure 4.1: Top: Continuous Wavelet Transform of data generated with the model (1.3) using
Region I. The vertical left axis indicates period (in days). The horizontal axis indicates time (in
days). The vertical right axis is the color scale used to get a better distinction between the different
contributions which appear in the CWT where red is higher and blue is less. Bottom: Time Series
involving 10000 days for the autonomous model in Region I. On the vertical-axis we have the number
of infected humans that are in the population (the sum I1 + I2 + Y1 + Y2) at each time (horizontal-
axis in days). The vertical axis indicates the proportion of infected humans in the population at
the time given in weeks in the horizontal axis.
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In the top of figure 4.1 we show the corresponding CWT of data from the model
(1.3) using parameters in region I (see table 3.4 in chapter 3). The CWT expands
the time series into time-frequency space or, as in this case, time-period. The verti-
cal left axis represents the period (in days) while the horizontal axis shows time (in
days). To the right there is the color scale used to show the power of the wavelet
at an specific period and time. The red color implies a higher wavelet power and
blue the lowest. In the wavelet graph there is a blurry region below on either end
indicating the ”cone of influence”. The thick black contour designates the 5% sig-
nificance level against red noise.

We can see the signal shows high power larger than 64 as it is shown in the color
scale to the right, and this occurs at times between 6500 and 7600 days coinciding
with the first outbreak shown in the time series.

The power is less than 1/64 for periods below 64 at all times for the signal in
the CWT. This tells us that the signal presents no variations in scales of time of less
than 64 days. This tells us that when working with Dengue it takes more than 64
days for us to be able to observe where is the disease leading to, if it is growing to
an outbreak or if it is being reduce to disappear or equilibrate itself.

In the subsequent sections we present the comparison of the solution of the model
(1.3) with three real cases. The comparison is done through the use of the Cross
Wavelet Transform (XWT) and also the with Wavelet Transform Coherence (WTC)
of the signal obtained with the model (1.3) in different regions and the signal in each
case.

4.3 Comparison with Four Mexican States data

In this section we present an analysis of real data series using Continuous Wavelet
Transform (CWT). We analyzed real data obtained from four mexican states (Chia-
pas, Guerrero, Oaxaca and Veracruz) which is organized by weeks and includes 416
values of data.
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Figure 4.2: Top: Continuous wavelet transform of a real data basis from four Mexican states.
The vertical left axis indicates period (in weeks). The horizontal axis indicates time (in weeks).
The vertical right axis is the color scale used to get a better distinction between the different
contributions which appear in the CWT where red is higher and blue is less. Bottom: its Time
Series. The vertical axis indicates the proportion of infected humans in the population at the time
given in weeks in the horizontal axis.

We can notice in the time series of figure 4.2 that there are more number of
cases around the 135th week since the beginning of the list and from there oscillates
with an amplitude which seems to be decreasing. With this data we obtained the
continuous wavelet transform shown above in the figure 4.2. We can see that power
is concentrated mainly among the 90 to 325 weeks. This coincides also with what
we see in the time series below for it is at the same interval from week 0 to 325 that
there are more infected people.

The thick contours enclose regions of greater than 95% confidence (for a red-
noise process) and the cone of influence (COI) where edge effects might distort the
picture is shown as a lighter shade. The L-shaped contour encloses a region between
periods 6 to 64, but the higher power appears near period 64, meaning that the
signal has variations in scales of time of near 64 weeks. The power near period 64
weeks is 64 as shown in the color bar.

Another smaller contour appears in figure 4.2 between weeks 221 and 261 among
period 16 to 32 but with a weak power of 4.
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Figure 4.3: Top: Continuous wavelet transforms for the model (1.3) Region I with Seasonality.
The vertical left axis indicates period (in weeks). The horizontal axis indicates time (in weeks).
The vertical right axis is the color scale used to get a better distinction between the different
contributions which appear in the CWT where red is higher and blue is less. Bottom: its Time
Series. The vertical axis indicates the number of infected at the time given in weeks in the horizontal
axis.

We want to compare this data with data obtained from the model. To do this
comparison we have selected the region I with Seasonality for two reasons. First
of all, because in Mexican States one strain dominates the disease, and this is the
case for Region I and II, we selected Region I. And the second, we chose seasonality
because this way we simulate the variations of the amount of mosquitoes during
a year. In order to compare we must have same size (number of data) and same
interval length (daily, weekly,etc.) that is why we selected data from the model from
day 10500 to 13405. The CWT and time series obtained from the model (1.3) are
shown in figure 4.3.

We observe in figure 4.3 that the black contour encloses a big part of the CWT
for an interval of time from week 61 to 340. From a period of 64 and up the power is
higher than 8. But the most significant power appears close to period 256 since here
the scale of color indicates 32. The same phenomena happens again near period 512
where the scale of color indicates again 32.

We want to know if there are similarities between both CWT so we compared
them. In figure 4.4 we show both CWT: the one for the four states (on top) and the
one for the model with seasonality (1.3) in region I (bottom).
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Figure 4.4: Display of both continuous wavelet transforms for Four States data (top) and the
model (1.3) Region I with Seasonality (bottom).

In figure 4.4 we show the Continuous wavelet transform from both data series.
We can see that both CWT have high power in the 32 to 64 week band around the
100 week and it is above the 5% level of significance. We proceed to show the Cross
Wavelet Transform which helps us see if there are similarities in the powers for both
series.

The Cross Wavelet Transform (XWT) in figure 4.5 shows that the common fea-
tures we mentioned previously from the individual wavelet transforms stand out as
being significant at the 5% level (95% confidence level) from 100-300 week, meaning
that the signal are very similar between the 100 to 300 week.

In the XWT, the relative phase relationship is shown as arrows with in-phase
pointing right, and anti-phase pointing left. In figure 4.5 with the arrows pointing
in many directions, the XWT does not gives us much information. There is a line
of arrows pointing right between period 32 and 64 but it is not enough for us to
conclude that there is a linear relationship between both signals.
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Figure 4.5: Cross Wavelet Transform of the model (1.3) Region I compared with the Four States
data. The relative phase relationship is shown as arrows (with in-phase pointing right, anti-phase
pointing left.

Figure 4.6: Wavelet Transform Coherence. The thick contours show the 5% significance level
against red noise.

Cross wavelet power reveals areas with high common power, but another useful
measure is how coherent the cross wavelet transform is in time frequency space [21].
We present the Coherence for both series in figure 4.6.

In the Coherence shown in figure 4.6 we can notice several sections in red, but
they are very small. We do not find any correlation in the two signals from real data
and the model.
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Figure 4.7: Top: Continuous wavelet transforms for the model (1.3) Region IV with Seasonality.
The vertical left axis indicates period (in weeks). The horizontal axis indicates time (in weeks).
The vertical right axis is the color scale used to get a better distinction between the different
contributions which appear in the CWT where red is higher and blue is less. Bottom: its Time
Series. The vertical axis indicates the number of infected at the time given in weeks in the horizontal
axis.

For the same data we compared again with data from the model in another
Region. To do this comparison we have selected the region IV, where both strains
coexist, with seasonality because this way we simulate the oscillations of the amount
of mosquitoes during a year. In order to compare we set again same size (number
of data) and same interval length (daily, weekly,etc.) of data and we selected data
from the model from day 12005 to 14910. The CWT and time series obtained from
the model (1.3) are shown in figure 4.7.

We observe in figure 4.7 that the black contour encloses a big part of the CWT
for an interval of time from week 61 to 311. From a period of 16 and up the power is
higher than 8. But the most significant power appears close to period 64 since here
the scale of color indicates 32. The same phenomena happens again near period 128
where the scale of color indicates again 32.

We want to know if there are similarities between both CWT so we compared
them. In figure 4.8 we show both CWT from the model with Forced Periodicity 1.3
in region I (on top) and the one for the four states (below).
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Figure 4.8: Display of both continuous wavelet transforms for (top) the model (1.3) Region IV
with Seasonality and (bottom) Four States data.

In figure 4.8 we show the Continuous wavelet transform from both data series.
We can see that both CWT have high power in the 32 to 64 week band around the
100 week and it is significant at the 5% level (95% confidence level). We continued
the experiment and we proceeded to get the Cross Wavelet Transform to helps us
see if there are similarities in the powers for both series.

The Cross Wavelet Transform in figure 4.9 shows that the common features we
mentioned previously from the individual wavelet transforms stand out as being sig-
nificant at the 5% level (95% confidence level) from 80-280 week, meaning that the
signal are very similar in that interval. There are arrows pointing mostly to the right
inside the region of interest, so we may conclude that there is a linear relationship
between both signals.

Cross wavelet power reveals areas with high common power, but another useful
measure is how coherent the cross wavelet transform is in time frequency space [21].
We present the Coherence for both series in figure 4.10.

In the Coherence shown in figure 4.10 we can notice several sections in red, but
one main involves a big part of the image and contains a darker region inside from
week 75 to 250 around the 24th to 64th period, with the arrows pointing right im-
plying that there is co-variance of data in this region. According to Grinsted et al.
[21], although it is possible for two signals to be perfectly correlated at one specific
scale while the area of significant correlation is much less than 5% (95% confidence
level), the significant region is so extensive that is very unlikely for this to happen
by chance. Concluding that the model fits very well with the data obtain in the case
of Region IV with seasonality with the data from four Mexican states.
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Figure 4.9: Cross Wavelet Transform of the model (1.3) Region IV with Seasonality compared with
the Four States data. The relative phase relationship is shown as arrows (with in-phase pointing
right, anti-phase pointing left and if the four states series leading the model pointing straight down).

Figure 4.10: Squared Wavelet Transform Coherence. The thick contour shows the 5% significance
level against red noise. We can see a significant section showing in-phase behavior.

4.4 Comparison with Cuernavaca Data

In a second experiment we have taken some solutions from the model (1.3) to com-
pare with data from the city of Cuernavaca. Data form Cuernvaca represents the
number of Dengue cases by day from 2008 to 2009. This time we selected region I of
the model (see chapter 3, table (3.4) and we forced periodicity considering that the
reproduction behavior of mosquito varies periodically as the seasons in a year; this
is due to the fact that mosquito spreads easier when the climate is warm and there
is humidity while it spreads hardly when in cold and dry seasons. The Continuous
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Wavelet Transform and time series are shown for both, the model and Cuernavaca
data, in figure 4.11.

In each graph in figures 4.11A and 4.11C the cone of influence (COI) where
edge effects might distort the picture is shown as a lighter shade. For both, the
vertical left axis of the CWT indicates period (in days). Figure B represents the
Time Series of the city of Cuernavaca showing the number of cases per day for
years 2008 to 2009 proportional to the population. Figure D shows the time series
for the model (1.3) with the number of cases per day proportional to the population.

The vertical right axis is the color scale used to get a better distinction between
the different powers which appear in the CWT where red is higher and blue is less.
The horizontal axis indicates time (in days) for both time series and CWT.

The Continuous Wavelet Transform (CWT) for the city of Cuernavaca is shown
up in the figure 4.11A. There is high power at period greater than 64 between time
interval of 120-400 days. The thick contour designates de 5% significance level (95%
confidence level) against red noise and it is found in a band of 2-8 period at days
around 150-300. Also, we observe in the time series (below) a curve that varies very
quickly shaking. If we observe beyond all the little ”shakes” we can distinguish one
high peak near day 180 which reaches 45 infected that day, then it decreases to climb
again by day 450 but reaching only till 33. Finally there is a small peak around day
585 and reaches near 10.

The CWT of the model (1.3) Region I with seasonality is displayed in figure
4.11C. We selected a section of the data to fit the size and interval length of Cuer-
navaca data: we have chosen from day 11300 to 11032. Comparing both CWT in
figure 4.11 we notice that both share same colors (indicating the highest power) at
almost same days. Both have high power at period greater than 128 from day 300-
400. To confirm this we proceed to calculate the Cross Wavelet Transform (XWT)
and it looks as shown in figure 4.12.
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Figure 4.11: Figure A: Continuous wavelet transform of a real data basis from the city of Cuer-
navaca, Morelos and its time series (Figure B) below showing the number of cases per day for years
2008 to 2009. Figure C: continuous wavelet transform of the model (1.3) Region I (see chapter 3,
table (3.4) with Seasonality and its time series (Figure D). Refer to the text for information on the
axis.
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Figure 4.12: Cross Wavelet Transform of the model Region IV with Seasonality and Cuernavaca
city data. The relative phase relationship is shown as arrows (with in-phase pointing right, anti-
phase pointing left).

The XWT shown in figure 4.12 reveals an anti-phase behavior inside the thick
contour of 5% significance level against red noise which implies significant common
power in the 96-128 band from day 150-330. Nevertheless outside the contour but
inside the COI we can see the arrows pointing mostly to the right where there is
high power claiming the signals are in phase, but pointing at every direction at low
periods with very low power.

Figure 4.13: Coherence of the model Region IV with Seasonality and real data from the city of
Cuernavaca.

To proceed and get more this information in this regard we continue to calculate
the Coherence (WTC) for both series in order to see how coherent the XWT is in
time frequency space in figure 4.13.
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By looking at the red sections indicating high power in figure 4.13 we can con-
clude that both series share common high power at certain times and that they are
coherent at this regions since the arrows inside point to the right. The biggest areas
where they share common high power is at period band 24-40 around days 180-300,
and also at period band from 32-64 period around days 450-600. We can notice
some smaller areas between period 4-8 in between 50-500 days.

Coherence in figure 4.13 shows many significant sections inside a thick contour
of 5% significance level against red noise. One of the biggest significant section is
at period 24-40 band during 180-300 days. There we can see arrows are pointing
down-right, but there is no in-phase or anti-phase behavior. Another big significant
section, and more interesting, is at band from 32-64 period around days 450-600.
There we can see in-phase behavior. This implies that there is a linear relation
between both series and the model can be used to study this case.

4.5 Comparison with Google Trends Data

We also analyzed data obtained from Google Trends registered for Mexico (from
January 12th 2003 to September 8th 2012) which is also organized by weeks and
gave us 504 values. The time series is shown on figure 4.14B.

We can see the Continuous Wavelet Transform (CWT) for data from Google
Trends on top of figure 4.14. The power is concentrated among weeks 276 to 408
and between a period of 16 to 64.

In order to compare Google Trends data with data obtained from the solution
of the model (1.3), we selected data in Region IV with Seasonality. We reduced
the database to have the same number of values as we got from Google Trends.
More precisely, we set an interval of time with same data size than Google Trends
database. We took data from day 6160 to 9681 separated by weeks. Thus, we took
same number of data from the model and we kept the distance between each value
that, in this case, was of one week. The CWT and time series we obtained from the
model is presented at the bottom of figure 4.14.

We can compare both CWT in figure 4.14. We can see that there are similari-
ties in the shape, although the mainly concentrated power appears at different weeks.
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Figure 4.14: Figure A: Continuous wavelet transform of real data proportionated by Google
Trends of Dengue in Mexico per week and, Figure B: its Time Series. Figure C: Continuous Wavelet
Transform of data obtained using the model (1.3) in region IV with Seasonality separated by weeks
and, Figure D: its Time Series.

In the top of figure 4.14, with WTC corresponding to Google data, power is
shown to be stronger mainly from 32 to 64 period, although there is some small
dark red that goes from 16 to 64 between weeks 330 to 380. In the bottom of figure
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4.14, WTC which corresponds to the model, we have the power concentrated mainly
at weeks from 250 to 400 with a remarkable moment between period 32 to 64. The
other figure below has its power concentrated from weeks 280 to 400 and stays inside
of the 5% significance contour.

Now we proceed to finding the XWT for both signals as shown in figure 4.15.
In this graph we noted that there is a big red area indicating that there are coinci-
dences in data obtained in Google Trends with the data from the model. The arrows
pointing mostly to the right show that there is linear relation among both signals.

To confirm this conclusions we examine the Coherence between both data series
using the WTC. The coherence can tell us whether the data is related, inverse re-
lated or not related at all.

Figure 4.15: Cross Wavelet Transform of the model with forced periodicity and real data from
Google Trends
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Figure 4.16: Wavelet Coherence of the model with forced periodicity and real data from Google
Trends

In figure 4.16 we can see that is almost directly relate as the arrows point right
from week 300 to 400 near period 64. We observe that there is a relation between
data. Data has coherence. So, we can say that the model adjust also to this situation.

4.6 Conclusions

In this chapter we compared the model with three different Mexican databases taken
from different regions with different sizes (a city, four states, the entire country),
obtained from different sources (Mexican Dengue databases and Google Dengue
Trends), with different length and interval of time. The model seems to adjust in
some cases to what is shown in the real databases in each case, which make us con-
clude that the model is not too far from explaining reality.



Chapter 5

Conclusions

In this study we have presented a new model which describe the dynamics of dengue
disease with two strains and includes a latency stage where humans are infected but
are not yet infectious. Each human in the population can be infected with dengue
twice at most in his lifetime before it gains immunity to the disease.

We have discussed the values of parameters and we calculated the R0 of the
disease. We distinguished that the parameters which determine the dynamics of the
disease are: the force of infection human to mosquito (αi), the force of infection
mosquito to human (βi) and the duration of the latency stage (φi). Based on that,
we found regions in the parameter space such that the solutions of our system of
equations show a behavior which can be compared to those observed in real sit-
uations in Mexico. The single study of the parameters and all the regions where
they can have biological sense is very complicated from a mathematical point of
view in the sense that the space of parameters is huge and it is not feasible to do
a blind search. However, we used the information we had to place the values for
some parameters between some limitations and we reduced our space of search to
concentrate in the values of those parameters that can be somehow manipulated
through the implementation of control strategies in a population and that we know
have more.

Obviously, finding the specifical values of parameters which better approximate
to the know data, like the databases of Mexican states that were studied here, is
a complex problem and can be better studied using optimization methods. Since
this is by itself a problem which deserves special attention and dedication, and that
would take us far from the objective of this study, we decided to keep it as a future
project for now.

We used a computational software to find the algebraic expression for the equi-
librium points but due to the complexity of the model the software failed to give us
all of them. Numerically, we solve to find six of which only four were feasible. The
disease-free equilibrium point, the equilibrium point were only one strain survives
(one for each strain), and the equilibrium point were both strains coexist are these
equilibrium points. When looking for the bifurcation point for βi, we tried to make
use of the Sotomayor Theorem, but we failed due to the complexity of the model
and it is left to future studies. To solve our immediate problem, we found this bi-
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furcation point for βi only with pen and paper.

The selection of parameters in the different regions were taken due to the ob-
served similarity they had with the real data we wanted to study. Simulations where
done to determine if we could obtain some information about the behavior of the
disease and helps us to clarify its dynamics. Simulations presented here show the
dynamics of dengue as expected and seen in real life.

When using wavelets as a tool to verify if this model can be used to describe the
dengue dynamics in a given population by comparing the solution of the model (1.3)
with real data bases, we found that with the use of wavelets we can also evaluate
the quality of the real data. If the database is good and large enough to contain
the information of the development of dengue in a community, the model we present
could adjust well as we have seen in chapter 4. Also, there are many options to
select the interval of time in the solution of the model with which we would compare
with real data and this influences the results of the comparison. In some cases we
presented here, the model simply failed to adjust the real data.

New questions surged from this study which are left for future projects. We know
that some prevention measures have been taken inside the Mexican population by
the sanitary authorities in an effort to get control and reduce the damage that the
disease causes among humans. These control measures must be incorporated in the
model to analyze the effect they are causing in the behavior of the disease, to see,
for example, if any of these measures is having a significant effect in reducing the
damage in the population or if it has any effect at all. In the case of introducing
vaccination in a population where the disease has been acting for years, which would
be the case if inoculation is applied to the population, we could adjust the model
and analyze its effect in the community.



Appendix A

Operator φ (K)

Given

A1 =
α1 (I1 + Y1)

N

Ai =
α2 (I2 + Y2)

N

Bi =
β1V1
M

Bi =
β2V2
M

Let K = (A1, A2, B1, B2)
′ then we substitute the expressions given in the model

(2.14) into the definitions of Ai and Bi to obtain a new system of four equations in
terms of Ai and Bi. We obtain the system K = φ (K), that is

φ (K) =


K1

K2

K3

K4

 (A.1)

where

K1 =
α1φ1B1

(
1

(φ1+µ)(γ1+µ)
+ σ1η2γ2φ2B2

(φ2+µ)(γ2+µ)(η2+µ)(σ1B1+µ)(φ1+µ))(γ1+µ+m1)

)
κ1

K2 =
α2φ2B2

(
1

(φ2+µ)(γ2+µ)
+ σ2η1γ1φ1B1

(φ1+µ)(γ1+µ)(η1+µ)(σ2B2+µ)(φ2+µ))(γ2+µ+m2)

)
κ2

K3 = β1A1

δ+A1+A2

K4 = β2A2

δ+A1+A2

(A.2)

where
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κ1 = 1 + B1
φ1+µ

+ B2
φ2+µ

+ B1φ1
(φ1+µ)(γ1+µ)

+ B2φ2
(φ2+µ)(γ2+µ)

+ B1φ1γ1
(φ1+µ)(γ1+µ)(η1+µ)

+ B2φ2γ2
(φ2+µ)(γ2+µ)(η2+µ)

+ B1φ1γ1η1
(φ1+µ)(γ1+µ)(η1+µ)(σ2B2+µ)

+ B2φ2γ2η2
(φ2+µ)(γ2+µ)(η2+µ)(σ1B1+µ)

+ B1σ1B2φ2γ2η2
(φ2+µ)(γ2+µ)(η2+µ)(σ1B1+µ)(φ1+µ)

+ B2σ2B1φ1γ1η1
(φ1+µ)(γ1+µ)(η1+µ)(σ2B2+µ)(φ2+µ)

+ φ1B1σ1B2φ2γ2η2
(φ2+µ)(γ2+µ)(η2+µ)(σ1B1+µ)(φ1+µ)(γ1+µ+m1)

+ φ2B2σ2B1φ1γ1η1
(φ1+µ)(γ1+µ)(η1+µ)(σ2B2+µ)(φ2+µ)(γ2−µ+m2)

+ γ1φ1φ1B1σ1B2φ2γ2η2
µ(φ2+µ)(γ2+µ)(η2+µ)(σ1B1+µ)(φ1+µ)(γ1+µ+m1)

+ γ2φ2B2σ2B1φ1γ1η1
µ(φ1+µ)(γ1+µ)(η1+µ)(σ2B2+µ)(φ2+µ)(γ2−µ+m2)

κ2 = 1 + B2
φ2+µ

+ B1
φ1+µ

+ B2φ2
(φ2+µ)(γ2+µ)

+ B1φ1
(φ1+µ)(γ1+µ)

+ B2φ2γ2
(φ2+µ)(γ2+µ)(η2+µ)

+ B1φ1γ1
(φ1+µ)(γ1+µ)(η1+µ)

+ B2φ2γ2η2
(φ2+µ)(γ2+µ)(η2+µ)(σ1B1+µ)

+ B1φ1γ1η1
(φ1+µ)(γ1+µ)(η1+µ)(σ2B2+µ)

+ B2σ2B1φ1γ1η1
(φ1+µ)(γ1+µ)(η1+µ)(σ2B2+µ)(φ2+µ)

+ B1σ1B2φ2γ2η2
(φ2+µ)(γ2+µ)(η2+µ)(σ1B1+µ)(φ1+µ)

+ φ2B2σ2B1φ1γ1η1
(φ1+µ)(γ1+µ)(η1+µ)(σ2B2+µ)(φ2+µ)(γ2+µ+m2)

+ φ1B1σ1B2φ2γ2η2
(φ2+µ)(γ2+µ)(η2+µ)(σ1B1+µ)(φ1+µ)(γ1−µ+m1)

+ γ2φ2φ2B2σ2B1φ1γ1η1
µ(φ1+µ)(γ1+µ)(η1+µ)(σ2B2+µ)(φ2+µ)(γ2+µ+m2)

+ γ1φ1B1σ1B2φ2γ2η2
µ(φ2+µ)(γ2+µ)(η2+µ)(σ1B1+µ)(φ1+µ)(γ1−µ+m1)

(A.3)
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[42] Pérez-Peraza J., Velasco V. and Kavlakov S. Wavelet Coherence Analysis of
Atlantic Hurricanes and Cosmic Rays. Geof́ısica Internacional 47(3), 231-244
(2008).

[43] Polikar Robi. Rowan University, College of Engineering Web Server:
The Wavelet Tutorial Online. 1999. http://users.rowan.edu/ po-
likar/WAVELETS/WTtutorial.html

[44] Prasad Vadrevu Krishna, Choi Yonghoon. Wavelet Analysis of Airborne CO2

Measurements and Related Metereological Parameters over Heterogeneous
Landscapes. Elsevier Journal, Atmosheric Research 102 (2011) 77-90.

[45] Smith David L., McKenzie F. Ellis, Snow Robert W., Hay Simon I. Revisting
the Basic Reproductive Number for Malaria and its Implications for Malaria
Control. 2007.

[46] Reiner Robert C. Jr., King Aaron A., Emch Michael, Yunus Mohammad, A.
S. G. Faruque and Mercedes Pascual. Highly Localized Sensitivity to Climate
Forcing Drives Endemic Cholera in a Megacity. PNAS February 7, 2012, Vol.
109, no. 6.

[47] Torrence Christopher and Compo Gilbert P. A Practical Guide to Wavelet
Analysis. Bulletin of the American Meteorological Society (1998).

[48] van den Driessche P., Watmough James. Reproduction Numbers and Sub-
threshold Endemic Equilibria for Compartamental Models of Disease Trans-
mission. Mathematical Biosciences 180 (2002) 29-48, Elsevier.

[49] Watmough James. Computaion of the Basic Reproduction Number. MITACS-
PIMS Summer School on Mathematical Modelling of Infectious Disease, Uni-
versity of Alberta. May, 2008.

[50] Velasco-Hernández Jorge X. Noviembre 11, 2009.

[51] Population Dynamics of Dengue: Patterns of Immunity Revisted.

[52] ”Fuente de los datos: Evolución del dengue en Google
(http://www.google.org/denguetrends)”.

[53] Wikipedia (http://en.wikipedia.org/wiki/Dengue fever).

[54] Software XPPAUT http://www.math.pitt.edu/ bard/xpp/xpp.html.

[55] Ge Z. Significance Tests for the Wavelet Power and the Wavelet Power Spec-
trum. Annales Geophysicae 25, 2259-2269, 2007.


