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INTRODUCTION  

 CELL SURVIVAL  
 

Animal cells are typically 5-20 μm in diameter. Cells are enclosed by a plasma membrane 

that separates the inside of the cell from its environment. The internal component of these 

cells are called organelles and include the nucleus. Ionizing radiation can cause breakage to 

this DNA strand resulting in cell death and mutation. It has been established that DNA and 

chromosome structure is the principal target in biological damage by ionizing radiation.  

The interactions of ionizing radiation with matter, result in the production of secondary 

electrons and free radicals. The free radicals travel to the targets and break the chemical 

bonds of proteins and DNAs. The disruption of the chemical bonds will create new bonding 

and cross linkage between these macromolecules that will affect cells’ vital function. For 

example, the DNA double strand structure can be broken by either single strand breakage or 

double strand breakage. Single strand breakage is usually easily repaired using the template 

from the other unbroken strand and therefore may result in minor biological consequences 

only if the repair is incorrect. Double strand break, however, causes significant effects 

leading to severe biological damage. Double strand breaks are usually irreparable and can be 

wrongly matched even if they undergo repair. This complete disruption leads to cell death, 

carcinogenesis or mutation. (Rahman, 2010) 

The damage by ionizing radiation to biological matter is usually quantified by using cell 

survival curves. Cell survival curves represents the relationship between the radiation dose 

and the proportion of cells that survive irradiation as measured in vitro. The shape of the cell 

survival curves is dependent on factors such as the type of radiation and the cell line. It is 

usually described using a radiobiological model and one of the most common models used 

is the linear quadratic model. 

The damage caused by ionizing radiation to biological materials is highly dependent on 

number of radiation interaction and dose deposited. Interaction of x-rays with high density 

and high Z materials will result into high numbers of free radicals which will cause significant 

damages to the DNA molecules in the cells hence leading to cell death. Therefore, if large 

numbers of such particles are introduced into cells in the target it will enhance radiation 
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effects. One mechanism lately explored for delivering high Z atoms into biological targets is 

nanostructures which has been mainly analyzed in this study.  

 

Why it is needed? 

 

At the level of absorbed doses typical of medical imaging exposures, cell death is manifested 

by the lack of reproductive ability. Hence, the deaths of individual cells or colonies of cells 

due to ionizing radiation can be readily assessed through in vitro assays. The measurement 

of the fraction of cells that survive following in vitro exposure to ionizing radiation is 

fundamental to understanding cellular radiobiology and the environment that can affect the 

radio sensitivity of the cell. (McParland, 2010) 

In vitro measurement of a cell’s response to radiation requires the excision of the tumor or 

tissue of interest, the fragmentation of the sample into individual cells which are then seeded 

into a culture dish with an appropriate growth medium and then incubated. The cell number 

density (number of cells per unit volume of medium) can then be measured using, for 

example, a hemocytometer. As a result, a given number of cells can then be seeded in a 

growth medium, incubated and then viewed, following staining, after a period of about 10 

days. Each individual cell has the potential to be clonogenic (to grow to form a colony). The 

efficiency with which seeded cells eventually form colonies is defined as the plating 

efficiency. 

 

What do they calculate? 
 

In a radiobiology experiment, a number of cell cultures are formed and exposed to ionizing 

radiation. As each colony is the product of a single cell, the SF (surviving fraction), 

accounting for the plating efficiency, represents the fraction of original cells that remain 

viable following irradiation. It is important to recognize that the SF is not only a function of 

the singular absorbed dose, but also of a wide variety of radiation and environmental factors. 
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Hence, the bridging from in vitro experimentation to the prediction of in vivo response must 

account for such factors which can evolve in the in vivo environment. 

A variety of mathematical models of the probability of cell lethality following irradiation 

were developed (the most widely used models are slightly presented in the literature review 

chapter). The LQ model has been extensively used in applications of clinical radiobiology to 

external beam radiotherapy, brachytherapy, and radionuclide therapy; reproducing an 

accurate fitting to the experimental obtained data of cell survival with the theoretical 

predicted ones, therefore we had adopted this model to develop our analysis in cell survival.  

 

What is used to decrease the cell survival fraction? 
 

The goal of radiotherapy is to provide tumor control by killing cancerous cells while 

simultaneously sparing surrounding tissues. This requires delivering high doses to tumor 

volumes while minimizing those to surrounding healthy tissues.   

In current medical practice, this is typically achieved through spatial dose around the tumor 

through the use of multiple modulated radiation fields, such as Intensity Modulated Radiation 

Therapy (IMRT). However, the dose ratio achievable between a tumor and surrounding 

healthy tissues is typically limited by their very similar x-ray absorption characteristics.  

Alternative methods to improve the discrimination between tumours and healthy tissue are 

being considered. The use of heavy atom as contrast agents has received increasing interest 

in recent years. Heavier elements increase the dose delivered to surrounding tissue due to 

their greater mass energy absorption coefficients, and can thus potentially improve the 

contrast between healthy and cancerous cells if they can be preferentially delivered to 

tumours.  To be clinical useful, a radiosensitizer and/or a dose enhancer should significantly 

increase the therapeutic ratio and should be readily available easily used and non-toxic. These 

properties will facilitate the rapid translation of a laboratory effect into a clinical benefit. 

(Herold, Das, Stobbe, Iyer, & Champman, 2000) 
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Comparison of the photon mass energy absorption coefficients for gold and soft tissue. The ratio of the mass 

energy absorption coefficients is shown as a function of photon energy. Image taken from (Karl Butterworth, 

2012) 

 

The use of gold nanoparticles (GNPs) as a radiosensitizing agent represents a novel approach 

to enhance the effectiveness of ionizing radiation. The GNP radiosensitization relies on 

gold’s increased photoelectric absorption cross-section relative to tissue (previous figure). 

When irradiated, this increased local photon absorption resulting in a highly energy 

deposition around the GNPs, due to the localized escaping photoelectrons, Auger electrons 

and characteristic x-rays. A surface conjugated to tumor targeting and gold’s general 

biocompatibility are features of GNPs that give support to the notion of GNP 

radiosensitization as part of a future clinical strategy. (Lechtman, et al., 2011) 

This remarkable properties of gold nanoparticles allow us to consider it in our analyses as a 

radiosensitizer material. Accordingly  to the huge amount of papers that evaluate the viability 

of gold nanoparticle radiation therapy and their promising results, we analyze the cell 

survival effects of embedded gold nanoparticles in in vitro cell cultures, nonetheless the 

analysis here presented can be extended to high Z materials nanoparticles, used as 

radiosensitizers.   

 

 

 



8 
 

 

THESIS AIMS 

 

Nanoparticle-aided therapy is currently being considered for a number of therapeutic 

approaches in cancer medicine, including targeted drug delivery, photodynamic therapy, 

hyperthermic therapy, and radiotherapy. Gold nanoparticles (GNPs) are of particular interest 

in radiotherapy because their established biocompatibility and the high K-edge of gold ( 80.7 

keV) that can lead to the emission of low- energy photoelectrons and Auger electrons upon 

irradiation with photons below 200 keV. Combined also with the tendency of GNPs, when 

administered under specific formulations, to concentrate within tumors, these properties 

make GNPs an attractive area of investigation for improving therapeutic ratios in radiation 

therapy.   

This work aim to deduce analytical expression to describe the dose deposition in a critical 

structure with embedded gold nanoparticles and as an application of the results develop an 

analytical frame for the assessment of  the survival of cell cultures with embedded GNPs as 

dose enhancers. GNPs could be studied and assessed in terms of dose enhancement, 

biological effects and a justification must be made of how the potential benefits of their use 

outweigh any risks before GNPs will be considered for clinical trials. This thesis is just such 

an analytical assessment of the applications of GNPs in cell survival analysis. Moreover, this 

thesis develops an analytical approach to describe the dose deposition in a cell target 

embedded with GNPs, and as an application a form of characterize the response of cell 

cultures with embedded GNPs after irradiation with X-rays, taking as a input the coefficients 

of its response to radiation of the cells (without GNPs) exposed to the same X-rays 

irradiation. Studies are conducted analytically and assessed by numerical evaluation to 

evidence its accuracy in reproduce modifications in the cell survival parameters. The specific 

aims of this thesis are as stated below: 

 To simplify an expression for the dose deposited around a single GNP suspended in 

water-like tissue after irradiation under certain conditions and compare the accuracy 

of the proposed expression.  
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 To develop an analytical description of the dose deposition inside a critical structure 

(cell) for certain cases of GNP distributions (single GNP centered in the cell, GNP 

outside the cell, GNPs inside the cell).   

 

 To compare the calculations of dose deposited in a cell structure from two different 

perspectives; the spatial r-domain and the dose D-domain standing out the potentiality 

of the analysis in each domain and identifying the one who provides a wider 

application at the time of assess in real scenarios.  

 

 To provide an analytical description of the radiobiological effects of GNPs on cells 

using as input the analytical expression for dose deposition proposed. In this study, 

the LEM radiological model will be used to predict the response of a cell culture after 

irradiation when it had embedded gold nanoparticles and the local dose at each point 

of the cell structure is known. To derive the formulas to calculate the linear quadratic 

parameters (alpha (𝛼) and beta (𝛽) ) that reproduce the response of the cell survival 

curve with embedded GNPs.  

 

 To verify the accuracy of the analytically estimated LQ parameters with the in vitro 

experimentally measured ones. And identify possible modifications of the presented 

model to improve the veracity of the analytically estimated values.  
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CHAPTER I. LITERATURE REVIEW. 

1.1 RADIATION DAMAGE IN CELLS. 
 

In radiotherapy, ionizing radiations are targeted to tumours, a category of biological tissue 

and therefore a living organism. The interaction of ionizing radiations with biological 

structures results in cell or tissue damage. If the damage is unrepairable, cell death will occur.  

Animal cells are typically 5 − 20𝜇𝑚 in diameter. Cells are enclosed by a plasma membrane 

that separates the inside of the cell from its environment. The internal components of these 

cells are called organelles and include the nucleus. It contains most of the cell's genetic 

material, organized as multiple long linear DNA molecules in complex with a large variety 

of proteins, to form chromosomes. Ionizing radiation can cause breakage to DNA strand 

resulting in cell death and mutations. It has been established that DNA and chromosome 

structure is the principal target in biological damage by ionizing radiation.  

The interaction of ionizing radiation with water or tissue, results in the production of 

secondary electrons and free radicals. The production of secondary electrons and free radicals 

can be categorized as the result of a direct action or an indirect process. Direct action usually 

involves high linear energy transfer (LET), such as neutrons and alpha particles. In this 

process, the ionizing radiation directly interacts with the targets, causing atoms to become 

ionized and excited. An atom in an ionized and excited state can be considered as a free 

radical that will interact with other atoms and produce a chain of biological effects. Indirect 

action occurs when ionizing radiation interacts with other atoms and molecules, such as water 

and induces the production of free radicals. The free radicals will the travel to the targets and 

break the chemical bounds of proteins and DNAs. For example, the DNA double strand 

structure can be broken by either single strand breakage or double strand breakage. Single 

strand breakage is usually easily repaired using the template from other unbroken strand 

therefore may result in minor biological consequences, the repair system is essential for 

living cells to survive in oxidative circumstances since oxidative DNA damage is constantly 

produced by oxygen radicals generated in the physiological process of energy production. 

(Kobayashi, Usami, Porcel, Lacombe, & Sech, 2010). Double stand breaks are usually 

irreparable and can be wrongly matched even if they undergo repair. This complete 

disruption leads to cell death, carcinogenesis or mutation. (Rahman, 2010) 
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The damage caused by ionizing radiation to biological materials is highly dependent on 

number of radiation interaction and dose deposited. The interaction of x-rays with high 

density and high Z materials will result into high numbers of free radicals which will cause 

significant damages to the DNA molecules in the cells hence leading to cell death. Therefore, 

if large numbers of such particles are introduced into cells in the target it will enhance 

radiation effects. One mechanism lately explored for delivering high Z atoms into biological 

targets is the use of nanostructures; an analysis of its energy deposition after irradiation with 

x-rays is the main aim in this study.   

When x-rays photons interact with matter, the first mechanism that is activated is either 

photoelectric absorption or a Compton effect. These ionization events of molecules 

correspond to the energy deposition events in matter. More importantly, the electrons emitted 

either by photoelectric effects or by Compton effects can further induce energy deposition in 

matter until these ionization events totally exhaust their kinetic energy.  The range of 

energetic Compton electrons might be up to several hundred microns. In cases of lower 

energy, of photoelectrons or Auger electrons, however, the range size becomes much smaller; 

the range of 1𝑘𝑒𝑉 electron is calculated around 0.05𝜇𝑚. Energy deposition events are 

produced along these tracks, and radiation energy is thus distributed in the biological system. 

These physical events initiate biophysical processes in the irradiated system. For this reason, 

radiobiological phenomena are assessed on the basis of the energy deposited in the biological 

system, hence, the metric 𝐺𝑦 (Gray) is defined as the energy (𝐽) deposited divided by the 

mass (𝑘𝑔) of the system concerned. This quantity corresponds to an averaged value in the 

target, and is not a sufficient basis upon which to predict the resulting radiobiological 

phenomena.   

In radiation biology, it is important to relate the radiation energy deposited by these physical 

processes to the resulting radiobiological phenomena from the viewpoint of the amount of 

energy deposited per event, as well as the spatial distribution of these events along the track 

of the charges particle. In aqueous systems that include living cells, the indirect effects 

mediated by radicals are known to play an important role in the production of DNA damage. 

These radicals can react with various molecules in an aqueous solution due to their high 

reaction coefficients. This determines the diffusion lengths of radicals, or the lifetime of 
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radicals. Diffusion lengths can be calculated as several 10 of 𝑛𝑚 in intracellular 

circumstances in which many kinds of biomolecules are dissolved. These suggest that energy 

deposition events and consequently Auger effects need to occur very close to biologically 

important molecules such as DNA. Therefore it has generally been believed that localization 

in the nucleus gives higher sensitization due to the higher resulting efficiency in producing 

DNA damage.  

 

1.2 DOSE DISTRIBUTION AROUND X-RAY IRRADIATED GOLD NANOPARTICLE 
 

1.2.1 Monte Carlo Simulations. 
 

Recently, Monte Carlo (MC) simulations have been used to investigate the dose enhancement 

from gold nanoparticles within microscopic (𝑛𝑚 − 𝜇𝑚) distances in response to clinical x-

ray beams, brachytherapy sources and low energy gamma- / x-rays. The dose enhancement 

was characterized via considering numerous interaction phenomena and quantities, such as 

photoelectric absorption, properties of secondary electrons ejected from GNPs, photoelectric 

energy conversion, as well as dose ratios.  

For a single GNP the spatial distribution of DER is found to be nearly isotropic with limited 

magnitude and relatively short range (100-200 nm for DER significantly greater than 1). For 

a cluster of GNPs both the magnitude and range are found much greater (1 − 2𝜇𝑚). The 

relation between DER for clusters of GNPs and a single GNP is strongly nonlinear. 

(Zygmanski, et al., 2013) The nonlinear relation between DER for a single and multiple 

GNPs suggest that parameters such as the number of adjacent nanoparticles per cell and the 

distance between the GNPs in the cellular target may be important in assessing the biological 

effectiveness associated with GNP. 

Due to various limitations in the MC method, simulations of energy deposition at 

submicroscopic (or nanoscopic) levels must be carried out separately from the simulation at 

macroscopic (𝑚𝑚 − 𝑐𝑚) levels. Due to those limitations in most of the simulations a well-

known technique in multi-scale radiation transport simulations is used in this technique two 

stages are necessary. Figure 1.1. In the first (macroscopic) stage of the simulation the x-rays 



13 
 

are transported across macroscopic depths (mm to cm) to a location near the target GNP in a 

homogeneous medium where the phase space is determined.  Phase space incorporates all 

particle types, their numbers, energy and direction of motion. In the second stage, this phase 

space (spectrum) is used as the source for a new MC simulation to determine the nanoscopic 

dosimetric quantities. Therefore a bridge between the two levels (macro-micro) has to be 

established. Modeling the transition between the macroscopic and nanoscopic levels of 

simulation is essential in order to ensure that the magnitude of the computed dose 

enhancement effects is not misrepresented. (Zygmanski, et al., 2013). DER is defined as the 

local energy deposited within a microscopic voxel in the medium near the GNP (or multiple 

GNPs) divided by the energy deposited in the same voxel without the presence of GNPs. The 

microscopic scoring voxel size in the proximity of GNPs is the volume where the DER is 

estimated, depends on the aims of the analysis the scoring voxel size ranges from 

micrometers to nanometers.    

In real experiments the most likely morphology is a cluster of nanoparticles rather than 

solitary nanoparticles. Owing mostly to self-shielding and nanoparticle packing geometry 

within the cluster, the dose distribution about the cluster of nanoparticles cannot be obtained 

by superimposing dose distributions due to many single nanoparticles. The dose to the 

Figure 1.1 Schematic diagram (example) of the macroscopic and microscopic simulation 

geometries for a single gold nanoparticle of varying size, the scoring voxel are placed near the 

GNP. Adapted from Zygmansky (2013) 
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cellular or sub cellular target is therefore a nonlinear function of the number of particles and 

their morphology.  

The difference in the photoelectron fluency between the cases with and without GNPs is 

more pronounced below the electron energy of about 20𝑘𝑒𝑉, due to the increased photon 

interactions around gold 𝐿 − and 𝑀 − shell photoelectric absorption edges. (Cho S. , Jones, 

Krishman, & Sunil, 2009) The photoelectrons contribute to the local energy deposition 

significantly more than the Auger electrons, even though the fluence of the photoelectrons is 

comparable to that of the Auger electrons. However, the role of Auger electrons, particularly 

those with large abundance due to gold 𝐿 − and 𝑀 − shells relaxation processes, would 

become significant when one considers microscopic dose enhancement for the current cases 

on a cellular level to find some correlation with radiobiological effects.  

 

Figure 1.2. Average radial dose which are deposited following a single ionizing event from 40keV primary 

radiation in gold nanoparticle of variety of sizes. Areas in the vicinity of the nanoparticle, see extremely large 

doses following a typical ionizing event. Small nanoparticles deposit more in their local area than larger ones, 

due to the greater relative contribution from the outer layer of the nanoparticle.Adapted from (McMahon, 

2011) 

The average dose deposited assessed in MC calculations in the vicinity of a 2𝑛𝑚 GNP 

following a single ionizing event by a 6𝑀𝑉 source is shown in the Figure1.2. It shows that, 

as in kilovoltage irradiations, single ionizations in a GNP have the potential to deposit very 
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high doses in the surrounding water volume due to the cascade of low-energy secondary 

electrons generated following an ionizing event in gold. The consideration of these dose 

inhomogeneities in dose will lead to predict levels of radiosensitization which are 

substantially greater than macroscopic dose enhancement, as observed experimentally.  

The analysis of MC calculations conclude that dose enhancement is found to be almost 

isotropic about a spherical GNP but its magnitude strongly depended on the simulation 

micro-geometry (model of the micro source) and the phase space properties (plane-parallel 

versus full angular phase space). Under non-uniform GNP distribution (the number of GNPs 

and their distance to specific cellular targets) such stochastic effects may lead to decreased 

radiobiological effectiveness of GNP therapy.  

 

1.2.2 Analytical Approach: Dose distribution in cells. 
 

Most works have focused on the macroscopic dose enhancement averaging effects over 

volumes much larger than a single NP. Approach that is fundamentally flawed because it 

ignores the significant dose inhomogeneity in the vicinity of embedded NPs. Monte Carlo 

(MC) simulations gives an alternative view on NP radiosensitization, this are carried out to 

calculate dose in the nanoscale vicinity of individual NPs. Despite the fact that MC methods 

provide precise numerical results, it is desirable to have and analytical solution that, will 

unavoidably simplify the physical model, and would provide valuable insight into the nature 

of the studied problem and gives a possibility to alter parameters and conditions without 

having to rerun costly MC simulations.  Few papers present advances in describe analytically 

the dose deposition around nanoparticles or the dose enhancement due to its presence in 

media.  

Some published papers present an analytical approach to calculate the dose enhancements in 

cells and their nuclei due to the presence of gold nanoparticles around them. The location 

relative to nuclei and the gold nanoparticles concentration are one of the most important 

variables considered in this studies. These analysis consider the contribution from 

photoelectrons and Auger electrons in order to develop an accurate calculation of the micro-

scale dose enhancement. 
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Endothelial cells are the selected ones in these analysis to perform the calculations. Tumor 

endothelial cell damage during radiation therapy contribute significantly to tumor eradication 

and treatment efficacy. Preclinical research has established that combining tumor vascular 

disrupting agents (VDAs) with radiotherapy results in consequential improvements in cancer 

treatment outcome. The vascular disrupting agents cause vascular shutdown leading to 

extensive ischemic necrosis in the core region of the tumor. The vascular shutdown caused 

by VDAs leads to the destruction of large tumor areas in the central tumor region, including 

hypoxic areas typically most resistant to radiation. (Ngwa, Makrigiorgos, & Berbeco, 2012) 

Given that GNP can be concentrated or located selectively to the tumor endothelium via its 

functionalization, and that photoelectrons generated in gold have inherently very short 

ranges, localized effect and a boost of radiation dose to endothelial cells in the vicinity on 

GNPs is expected. The studies used cellular microdosimetry to calculate local radiation dose 

enhancement by vasculature confined GNPs during irradiation by brachytherapy sources, 6 

MV Linac beam and 50 𝑘𝑉𝑝 x-rays. They considered ranges of GNPs concentrations as 

reported in literature, and assume that GNPs are confined to the tumor vasculature.  A simple 

geometric model to calculate the local energy loss of photoelectrons and/or Auger electrons 

originated from the nanoparticles on the endothelial cell surface was used Figure1.1.  

In the following paragraphs a short review of the procedures, considerations and calculations 

developed in the published papers related with endothelial dose enhancement due to GNPs 

aided radiotherapy is presented.   

The tumor vascular endothelial cell was modeled as a thin slab with dimensions of 2𝜇𝑚 

(thickness) 𝑥 10𝜇𝑚(length)  𝑥 10𝜇𝑚(width).  A spherical nanoparticle is simulated to be 

attached to the vascular-side surface of the endothelial cell. (Berbeco, Ngwa, & 

Makrigiorgos, 2011) A nucleus is added with 5% to 10% of the cellular volume, 

corresponding to typical nucleus dimensions and sizes. (Ngwa, Makrigiorgos, & Berbeco, 

2012) (Hossain & Su, 2012) Figure1.1 illustrates a simplified model of the endothelial cell 

and nucleus which is assumed to be centrally located. The exact position of the GNP is not 

of particular importance as several nanoparticles, assumed to be evenly spread along the 

lumen wall of the vasculature, can be attached on a single endothelial cell. Furthermore 

photo/Auger electrons from nanoparticles attached near the edge of an endothelial cell may 



17 
 

deposit energy to the adjacent cell, and vice versa, thereby providing lateral electron 

equilibrium. Such lateral compensation of the emitted energy allows energy emission from 

GNPs in the periphery of endothelial cells to be treated similar to centrally located GNPs. 

 

Figure1.1 Simplified model of an endothelial cell. The gold nanoparticles are attached to the vascular-side 

surface of the cell. The range of electron is shown as a sphere of interaction, with the nanoparticle at the center. 

(adapted from Ngwa 2012)  

For the estimation of the dose enhancement an arbitrary dose 𝐷𝑤 is taken as the dose absorbed 

by the cell without nanoparticles, the choice of the authors was a dose of 2𝐺𝑦 (the choice of 

a different dose will lead to the same results due to the definition of the DEF (dose 

enhancement factor)) 

The calculations evaluate the energy deposited by a single created photoelectron at the 

surface of the GNP deposited in the slab cell structure, then the same value is prescribed for 

all the created electrons in the case of monoenergetic irradiation; the self-attenuation due to 

GNP dimensions is not taken into account. The total number of emitted photoelectrons is 

calculated as the product of the number of photoelectrons created by a single nanoparticle, 

multiplied by the total number of nanoparticles. 

To evaluate the range of emitted photoelectrons, the kinetic energy 𝐸𝐾𝐸 of emitted 

photoelectrons must be known, it is given by 𝐸𝐾𝐸 = 𝐸 − 𝐸𝑒𝑑𝑔𝑒, where 𝐸𝑒𝑑𝑔𝑒 is relevant 

photoelectric absorption edge of nanoparticle. As emitted photoelectrons interact with their 

surroundings, they will deposit energy in a sphere of interaction centered on the nanoparticle, 

the sphere represent the possibility of an arbitrary direction of ejection of the photoelectron, 
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which moves in a straight path. The radius of interaction sphere defines the range 𝑅𝑡𝑜𝑡 of 

photoelectrons given by  

𝑅𝑡𝑜𝑡 = 0.0431(𝐸𝐾𝐸 + 0.367)1.77 − 0.007    (1. 1) 

The last expression gives the total range of a photoelectron generated in the surface of the 

GNP moving in water measured in 𝜇𝑚, the value of the energy should be expressed in 𝑘𝑒𝑉. 

The papers use the Cole’s empirical relation between electron energy loos (𝑑𝐸𝐾𝐸) (𝑑𝑥)⁄  and 

range 𝑅𝑡𝑜𝑡(𝜇𝑚) 

𝑑𝐸𝐾𝐸

𝑑𝑥
= 3.316(𝑅𝑡𝑜𝑡 − 𝑥 + 0.007)−0.435 + 0.0055(𝑅𝑡𝑜𝑡 − 𝑥)0.33    (1.2) 

Where 𝑥 is the distance from photoelectron emission site. Each photoelectron emitted from 

an NP will deposit energy locally as a function of its initial kinetic energy.  The energy 

deposited within the volume of interest (whole cell or cell nucleus) is calculated by 

integration over the differential energy loss (𝑑𝐸/𝑑𝑟) from the closes surface of the volume 

of interest to NP, to the farthest surface of the volume of interest. In the integration the 

hemispherical shell in the blood vessel is excluded, as the spherical shell beyond the volume 

of interest of the endothelial cell. Therefore the energy deposited within the endothelial cell 

is calculated as 

𝐸𝐸𝐶 = ∫
𝐴ℎ−𝐴ℎ𝑐

𝑆𝐴
∙

𝑑𝐸𝐾𝐸

𝑑𝑥

𝑅𝑡𝑜𝑡

𝑟
𝑑𝑥    (1.3) 

Where 𝐴ℎ is the area of the hemisphere that intersects the cell, 𝐴ℎ𝑐 is the area of the 

hemispherical cap beyond the endothelial cell and 𝑆𝐴 is the surface area of the entire sphere. 

(To clarify see the sphere of interaction in Figure1.1) 

Rewriting the equation replacing the areas of the integral we get (Hossain & Su, 2012) 

𝐸𝐸𝐶 = ∫
2𝜋𝑅𝑡𝑜𝑡

2 − 2𝜋(𝑅𝑡𝑜𝑡 − 𝑡)𝑅𝑡𝑜𝑡

4𝜋𝑅𝑡𝑜𝑡
2 ∙

𝑑𝐸𝐾𝐸  

𝑑𝑥
𝑑𝑥

𝑅𝑡𝑜𝑡

𝑟

 

  (1.4) 

The lower limit of the integration is the radius of the nanoparticle and the upper limit is the 

total range of the photoelectron (the final radius of the sphere of interaction). Assuming a 

homogeneous distribution of nanoparticles, and dose deposited in the entire sphere of 
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interaction, the total energy deposited to cell 𝐸𝐸𝐶  by photoelectrons can be derived by 

multiplying by the number of emitted photoelectrons (monoenergetic case); that is  

𝐸𝐸𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐸𝐸𝐶 ∙ 𝑁𝑃𝐸𝑡𝑜𝑡𝑎𝑙 

The absorbed dose is given by the energy deposited in the endothelial cell divided by its 

mass. It is assumed that each neighboring endothelial cell has a similar nanoparticle attached: 

therefore energy that is deposited in an adjacent cell (cross-fire) is accounted (Ngwa, 

Makrigiorgos, & Berbeco, 2010). Dose delivered to the entire cell by photoelectrons 

following nanoparticle and x-ray interactions is obtained by 

𝐷𝑁𝑃(𝑃𝐸) =
𝐸𝐸𝐶𝑡𝑜𝑡𝑎𝑙

𝑉𝐸𝐶 ∙ 𝜌𝐸𝐶
 

and as it is defined, the DEF due to photoelectrons is given by 

𝐷𝐸𝐹(𝑝ℎ𝑜𝑡𝑜𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠) =
𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑑𝑜𝑠𝑒 𝑤𝑖𝑡ℎ 𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑑𝑜𝑠𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑛𝑎𝑛𝑜𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
=

𝐷𝑤 + 𝐷𝑁𝑃(𝑃𝐸)

𝐷𝑤
 

remarking that DEF of 1.0 refers to 0% enhancement, whereas a DEF of 2.0 refers to 100% 

enhancement. 

To derive contributions from Auger electrons, Auger electrons spectra obtained from Monte 

Carlo simulations for tumors loaded with gold nanoparticles and irradiated with certain 

sources (Cho, Jones, & Krishnan, 2009) were used by the authors.  The energy deposited by 

Auger electrons in the cell was determined as described for photoelectrons. The product of 

number of source photons and number of Auger electrons per source photon gives the total 

number of Auger electrons emitted. The total energy deposited for each energy beam equals 

the number of Auger electrons emitted multiplied by the corresponding energy deposited. 

Summing over all energy beams then yields to the total energy deposited in the endothelial 

cell.  

The results for the endothelial dose enhancement, due to GNPs emitted photoelectrons and 

Auger electrons, as a function of local concentration obtained by (Ngwa, Makrigiorgos, & 

Berbeco, 2010) are presented in Figure 1.2  as it is expected, the EDEF increases with the 

GNP concentration.  
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Figure 1.2 A) Endothelial dose enhancement factor (EDEF) as a function of local GNP concentration at the 

endothelium due to photoelectrons. Auger electrons are not included in the calculation of the EDEF  B) 

Endothelial cell dose enhancement factor (EDEF) as a function of local nanoparticle concentration due to 

Auger electrons, both calculations were made  for 400 nm diameter bismuth, gold and platinum nanoparticles 

irradiated by a 50kVp external beam x-ray source.  Adapted from (Hossain2012) 

Although, EDEFs due to Auger electrons increase linearly with nanoparticle concentration, 

they are considerable higher than dose from photoelectrons at the same concentration. As a 

result of the near-particle energy deposition, dose contribution within several hundred 

nanometers from nanoparticle location is dominated by Auger electrons. 

The authors mentioned the fact that the calculated dose deposited in the endothelial cells and 

cells nucleus by these photo/Auger electrons represented average dose estimates. In 

particular, for lower concentrations, stochastic effects may be important. The results 

published predict that using GNPs in conjunction with conventional or hypofractionated 

radiotherapy can result in a very significant enhancement of local dose and biological effect 

in the tumor endothelium. This boost of microvascular dose would be expected to enhance 

vascular shutdown in tumors, thereby also boosting secondary tumor cell death due to 

ischemia. 

Some facts to criticize of the papers that estimates the enhancement due to Auger electrons 

are first the arbitrary interpretation of the data obtained for (Cho, Jones, & Krishnan, 2009). 

Even when the paper gives a value of the average number of Auger electrons, created per 

photoelectric event, the energy of the Auger electrons is not specified at all. Another thigh to 

consider is the fact that enhancement factor due to Auger electrons decreases with increase 

in particle size. Following an ionizing event, photo or Auger electrons must escape 

nanoparticle before causing damage to surrounding cells; however, the percentage of 
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electrons emitted from nanoparticle upon x-ray excitation strongly depends on particle size, 

with majority of low-energy and short-range Auger electrons being absorbed more readily 

within nanoparticle of increasing size.  

During the literature review a modification of this calculations was proposed in order to 

consider the effect of range and energy attenuation of photoelectrons in the equation (1.3) 

without taking the first term of the integral as a merely geometric constant. Congruent results 

were obtained providing physical meaning of all the terms of the expression (1.3). Due to the 

extension of the calculations and the small relevance in the context of the present analysis its 

presentation was omitted. 

 

1.3 MODELS OF CELL SURVIVAL. 
 

1.3.1 Lea’s target theory. 
 

This model was first developed in 1946, is one of the earliest interpretative models for 

radiation-induced cell killing and was developed starting from data on microorganisms and 

bioactive molecules. According to the model, which is specific for low LET radiation 

(providing that interaction between distinct events is rare), a cell contains one or more 

sensitive targets of size 𝑣, which can receive one or more radiation “hits”, a hit is an “active 

event” occurring within the volume 𝑣, that is an energy absorption event able to induce 

biological damage such as an ionization or an excitation in the target molecule or in water. 

The hit probability is then  𝜌 = 𝑣 𝑉⁄ , where V is the total cellular volume (product between 

average cell volume and number of cells at risk). If 𝐷 is the total number of active events in 

the cell population, introducing a function 𝐻(ℎ) representing the probability that the cell will 

survive ℎ hits (“hit-survival function”), the survival probability after ℎ hits is  

𝑃(𝜌, ℎ, 𝐷) = 𝐻(ℎ)𝑝(𝜌, ℎ, 𝐷) = 𝐻(ℎ)𝜌ℎ(1 − 𝜌)(𝐷−ℎ) 𝐶ℎ𝐷      (1.5) 

where 𝐶ℎ𝐷  is the binomial coefficient expressing that ℎ hits and (𝐷 − ℎ) “misses” can be 

assigned for 𝐷 active events. (Ballarini, 2010). Since a cell may survive for ℎ = 1,2,3, … , 𝐷, 

the total survival probability for the cell, that is the general survival equation according to 

Lea’s theory, is  
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𝑆(𝜌, 𝐷) = ∑ 𝑃(ℎ  𝜌, ℎ, 𝐷)    (1.6) 

The target theory model of cell survival is based on the concept that a number of critical 

targets have to be inactivated for cells to be killed. The case that found widest applicability 

in radiobiology is the “multitarget-single-hit” (MTSH) version, according to which the cell 

contains 𝑛 critical targets, each target has the same probability 𝑞 of being hit by radiation, 

and one hit in a given target is sufficient to inactivate that target, not the entire cell. The 

probability that a cell will survive with 𝑏 hits is then 

𝑃(𝑞, 𝑏, 𝑛, 𝐷) = (1 − 𝑒−𝑞𝐷)𝑏(𝑒−𝑞𝐷)𝑛−𝑏 𝐶𝑏𝑛 𝐵(𝑏)    (1.7) 

where 𝐵(𝑏), analogous to 𝐻(ℎ), is the hit survival function. In the MTSH case, the following 

limiting conditions can be assigned to 𝐵(𝑏): (1) if 𝑏 < 𝑛, 𝐵(𝑏) assumes a value so that 𝑃 =

1, (2) if 𝑏 ≥ 𝑛  𝐵(𝑏) = 0 and 𝑃 = 0. This means that for 𝑏 < 𝑛 the cell will survive, whereas 

for 𝑏 ≥ 𝑛 the cell will die.  

If the cell contains more than one identical target, each of which must be inactivated by a 

single hit in order to inactivate the cell, survival is represented by the multitarget, single-hit 

survival equation. Since the 𝑛𝑡ℎ hit assumes nonsurvival, the overall survival probability is  

𝑆(𝑞, 𝑛, 𝐷) = 1 − (1 − 𝑒−𝑞𝐷)𝑛 

When 𝑙𝑛𝑆 is plotted versus 𝐷, except for the case of 𝑛 = 1, this equation gives a survival 

curve with a shoulder at low doses, that increase in breath with 𝑛;  and straight-line response 

at higher dose. For 𝑆 values below about 0.1 each curve becomes a straight line, Except for 

𝑛 = 1, the slope at zero dose will be zero, which is one of the main limitations of the model 

because it is not consistent with the experimental data.  Survival data is usually plotted on 

semi-log coordinates. Target theory and the derivation of simple cell-survival relationships 

in terms of targets and hits dominated radiobiological thinking over a long period. A problem 

with this concept is that specific radiation targets have not been identified in mammalian 

cells. What is now understood in the importance of DNA strand breaks and of strand-break 

repair, the sites of damage and repair being dispersed throughout the cell nucleus. (Lehnert, 

2007) 
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Figure 1.3 Survival curve for mammalian cells; multitarget survival curve from target hit theory. Adapted 

from (Lehnert 2007) 

The model predicts that the slope of the linear portion of the plot remains constant with 

increasing dose whereas a more frequent experimental observation is a constantly increasing 

slope. This lead the investigators to try alternative approaches, also basing on the fact that 

the reported data on mammalian cell lines were better described by functions in which the 

dose appeared both to the first and to the second power of the prescribed dose.  

1.3.2 The molecular (or linear-quadratic) model. 

  

The target theory makes no assumption about the induction and repair of the initial DNA 

damage, which is now known to play a fundamental role of radiation-induced clonogenic 

death. A number of alternative approaches to Lea’s theory have been developed to respond 

to such objection, and several of these approaches are of a linear-quadratic form. In 1981 

Chadwick and Leenhouts developed what they called the “molecular model”, which has 

come to be widely known as the “linear-quadratic” (LQ) model. According to the LQ model, 

the cell contains certain critical molecules, assumed to be double-stranded DNA, the integrity 

of which is essential for clonogenic survival, the critical damage is assumed to be a DNA 

double-strand break (DSB).  Ionizing radiation can induce the rupture of DNA molecular 

bonds (“lesions”) that, under certain conditions, are repaired, varying degrees of repair imply 
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different radiobiological effects. If 𝑁𝑜 is the number of DNA molecular bonds available for 

rupture in the target cell, 𝑁 is the number of these bonds that remain intact after a dose 𝐷, 

and 𝑘 is the rupture probability of a single bond per unit dose, then  

−
𝑑𝑁

𝑑𝐷
= 𝑘𝐷  ,𝑁 = 𝑁0𝑒−𝑘𝐷     (1.8) 

The number of effective broken bonds is therefore 

𝑁0 − 𝑁 = 𝑓𝑁0(1 − 𝑒−𝑘𝐷) 

where f is the fraction of broken bonds that are not repaired.  

According to Chadwick and Leenhouts, the double helix can undergo a DSB as the result of 

two different mechanisms:  

i. Both DNA strands are broken by the same radiation track (or “event”). 

ii. Each strand is broken independently, but the breaks are close enough in time and 

space to lead to a DSB. 

Let ∆ be the fraction of dose acting through mechanism (i), and (1 − ∆) the fraction of dose 

acting through mechanism (ii). The average number of lethal DSB per cell is  

𝑄 = 𝑝 [𝜒(1 − 𝑒(−𝑘0∆𝐷)) + 𝜌(1 − 𝑒−𝑘(1−Δ)𝐷)
2

]     (1.9) 

where 𝑝 is the assumed proportionality constant between the DSB yield and cell death. Since 

according to Poisson-type cell killing the probability of cell survival 𝑆 is given by the 

probability of having 0 lethal lesions, then 𝑆 = 𝑒−𝑄. Assuming that 𝑘 and 𝑘𝑜 are quite small, 

one gets the familiar linear-quadratic relationship as follows.  

𝑆 = exp (−𝛼𝐷 − 𝛽𝐷2)    (1.10) 

where 𝛼 = 𝛼(𝑓0, 𝑘0, Δ) and 𝛽 = 𝛽(𝑓0, 𝐸, 𝑘2, (1 − Δ)2). This model represents an attempt to 

bridge the gap between physics, that is energy deposition by radiation, an biology, that is 

DNA repair or lack of repair, although the fundamental assumptions are not widely accepted, 

in particular the hypothesis that the yield of DSBs is proportional to the yield of lethal lesions 

is not consistent with most experimental data, which in general show that DSB tend to 

increase linearly with dose whereas lethal lesions increases with dose in a linear – quadratic 

fashion. However, the LQ model is widely used in radiobiology since it fits mammalian cell 
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survival data pretty well, overcoming not only the problem of zero slope at zero dose, but 

also the problem of constant slope at high doses. (Ballarini, 2010) 

The linear quadratic model has taken precedence as the model of choice to describe survival 

curves. For doses used for fractioned radiotherapy, the LQ model adequately represents the 

data. The model can be manipulated to predict response to fractionated radiation and it has 

the advantage of depending on only two unknown factors, 𝛼 and 𝛽 (Lehnert, 2007) 

 

Figure 1.4 Survival curve for mammalian cells. Linear quadratic model of cell killing. adapted from (Lehnert 

2007) 

 

1.3.3 The local effect model (LEM)  
 

 A more recent approach, is the “Local Effect Model”, this model is based on the assumption 

that the local biological effect, that is the damage in a small sub volume (𝑛𝑚) of the cell 

nucleous, is solelay determined by the expectation value of energy deposition in that sub 

volume, independent of the radiation type, in other words the biological effect of radiation is 

determined entirely by the spatial local dose distribution inside the cell nucleus. This implies 

that differences in the biological action of charged beams should be attributed to the different 

pattern of energy deposition by heavy charged particles with respect to photons, which is 
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radiation track structure at the nm scale. Furthermore, for a given radiation type, differences 

in the photon response for different biological targets should lead to differences in the 

corresponding RBE values. (Ballarini, 2010) 

The LEM is based on the assumption that the response of cells to inhomogeneous radiation 

dose on the micro-scale is similar to the response of the cell population as a whole to sparsely 

ionizing radiation, which deposits dose uniformly throughout the cell. By summing the 

effects of the dose at each point over the entire cell volume, a prediction can then be made of 

the probability of cell death.  

The local effect model uses the concept of “lethal” event, where each lethal event or lesion 

leads to cell inactivation. It is not relevant how these events occur, since we get the 

information about the probability of cell death and the corresponding average number of 

lethal events from experiments with x-rays. In these experimental data, all kinds of damages 

such as complex strand breaks or DNA misrejoining as well as the repair mechanisms are 

included. Therefore, a lethal event may also be the result of several sublethal damages that 

in combination lead to cell inactivation. (Elsässer & Scholz, 2007) 

According to LEM, the biological characteristics of the various target tissues are essentially 

determined by the 𝛼 𝛽⁄  ratio for conventional photon irradiation. Moreover in cell- survival 

analysis, the fraction of cells which survive an exposure to ionizing radiation is given by a 

linear-quadratic response,  

𝑆 = 𝑒−(𝛼𝐷+𝛽𝐷2) 

where 𝛼 and 𝛽 are characteristics of the cell line, and 𝐷 is the mean dose delivered to the 

entire volume containing the cells. This dose is typically calculated on a macroscopic scale, 

averaged over a volume containing a very large number of cells.  

This approach works well for sparsely ionizing radiation such as the X-rays which are 

typically used in radiotherapy. However, if an equal dose D is delivered to a cell population 

using densely ionizing radiation such as heavy ions, significantly more cells are killed. This 

increase in killing is referred to as the Relative Biological Effectiveness (RBE). While the 

RBE can be empirically determined from cell survival experiments, considerable effort has 

also been put into explain it from a theoretical basis. One such approach which seeks to do 
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this is the Local Effect Model (LEM). Instead of considering the cell-killing effects of an 

average macroscopic dose as described above, the LEM considers the probability of damage 

occurring at each point in a cell based on the dose at that point alone, and calculates a 

surviving fraction based on the sum probability of damage occurring over the whole cell. 

(McMahon S. , et al., 2011) 

The LEM describes the damage which occurs to cells in terms of “lethal lesions” which can 

be described in the case of a uniform dose as  

𝑆(𝐷) = 𝑒−𝑁(𝐷)    (1.11) 

where 𝑁(𝐷) is the number of lethal lesions induced by a homogeneous dose 𝐷. Lethal lesions 

are not explicitly characterized, but are simply defined as any event which lead to cell death. 

Thus, for sparsely ionizing radiation, it can be seen that applying the linear-quadratic the 

number of lethal lesions is 

𝑁(𝐷) = 𝛼𝐷 + 𝛽𝐷2    (1.12) 

However, for inhomogeneous radiation, the number of lesions induced is calculated based 

off the local dose at each point and then integrated over the whole cell volume, giving  

𝑁𝑡𝑜𝑡 = ∫ 𝑁(𝐷(𝑟))
𝑑𝑉

𝑉
= ∫(𝛼𝐷(𝑟) + 𝛽𝐷(𝑟)2)

𝑑𝑉

𝑉
     (1.13) 

where 𝐷(𝑟) is the local dose delivered at point 𝑟, and 𝑑𝑉/𝑉 is the corresponding volume 

fraction which sees that dose. Once the total number of lesions within a cell, 𝑁𝑡𝑜𝑡, is 

calculated, the survival probability is then given by  

𝑆𝐿𝐸𝑀 = 𝑒−𝑁𝑡𝑜𝑡     (1.14) 

It can be seen that this simplifies to the standard survival curve in the case of a uniform dose, 

but inhomogeneous doses can cause grater levels of damage due to quadratic term in the dose 

response. While the LEM is typically applied to heavy ion therapies, it can be applied to any 

system where the dose distribution can be calculated, such as the GNP-radiation interaction.  

Once the rapidly-varying component of the dose distribution has been calculated, this can be 

added to the effectively uniform background dose level which is delivered by x-rays which 

do no interact with GNPs to give the full dose volume distribution for a given combination 

of x-ray energy and GNP size. This can then be applied to the function above to calculate the 

local damage at each point in the volume, and thus 𝑁𝑡𝑜𝑡 and 𝑆𝐿𝐸𝑀.  
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This model requires three input quantities: (i) the volume 𝑉 of the sensitive target, (ii) the 

local dose distribution 𝑑 and (iii) the experimental survival curve 𝑆 after irradiation. In the 

present analysis the LEM theory of cell survival was used to exemplify the potential uses of 

the analytical framework for radial dose distribution in cell structure proposed. 

 

1.4 SIMULATED CELL SURVIVAL CURVES FOR CELL CULTURES WITH EMBEDDED 

GOLD NANOPARTICLES.  
 

There are a few papers who describe analytical or simulation efforts to predict cell survival 

of cell cultures with embedded gold nanoparticles after irradiation with x-rays.  This papers 

present as a goal starting from the calculation of the dose distribution on the nanoscale in the 

vicinity of the GNPs, introduce a model for cell survival which can take this inhomogeneities 

into account to generate new predictions for the effects of GNP on radiotherapy and in the 

cell survival analysis. Therefore analyses whether the dose inhomogeneities created by the 

GNPs on a sub – cellular scale affect the non-linear dose dependence of cell survival.  

The papers highlighted the discrepancy between the theoretically predicted increases in cell 

killing and experimentally observed results. Theoretical studies suggest that GNP 

concentrations on the order of 1% combined with keV x-rays would be necessary to generate 

significant increases in cell killing, experimental studies have observed enhancement of the 

effects of radiation at GNP concentrations which are orders of magnitude smaller. On the 

other hand, due to the lack of contrast between tissue and gold, these models predict little 

benefit at the megavoltage energies typically used in therapy; however, in vitro experimental 

studies of GNP radiosensitization present a rather different picture, with many reporting 

radiation sensitizing effects substantially greater than the additional dose due to the presence 

of GNPs.    

The theoretical and simulated calculations of these papers where compared with in vitro 

results previously published. The MDA-MB-231 cells where chosen from the calculations. 

The procedures of preparing the cultures and the embedding of GNP are described in 

(McMahon S. , et al., 2011) with the irradiation procedures and the measures of cell uptake 

with the TEM.  
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To estimate the dose enhancement in the cellular targets due to the presence of GNPs Monte 

Carlo calculations where performed by the authors. The dose distribution in the GNP-water 

system is typically calculated by scoring energy deposits in concentric shells centered on the 

gold nanoparticle and dividing these deposits by the mass of the shell. However this 

calculation is misleading, as energy deposits spread from the location of the ionizing events, 

rather than the nanoparticles center Figure 1.5. As a result, calculations of dose which center 

on the nanoparticle tend to slightly underestimate dose, by considering energy deposits 

spread over a large than is actually the case.  

 

Figure1.5 Comparison of track structure of ionizing events either on the surface (solid lines) or in the bulk 

(dashed lines) of a 20nm spherical gold nanoparticle, plotted both in 3D (a), and as a 2D projection (b). Adapted 

from (McMahon, 2011) In the figure, an incident 50keV photon (green tracks) interacts with the gold 

nanoparticle and ejects a number of electrons (red tracks). For the event which occurs in the bulk, the majority 

of low-energy electrons are stopped immediately in the nanoparticle allowing only the most energetic and 

sparsely ionizing electrons to escape. By contrast, the surface event also produces a very large shower of low 

energy electrons who deposit their energy very densely in the vicinity of the nanoparticle, leading to high doses 

and many ionization events in a small volume. 

The dose distribution throughout a cell is then taken as being a combination of a uniform 

background resulting from naturally occurring dose, and sharp spikes, which are the result of 

the addition of GNPs. The number of GNP ionizations-and thus dose spikes- per cell can be 

calculated by multiplying the number of ionizations in a single nanoparticle per Grey by the 

number of GNP per cell and the prescribed dose. Each ionization is then assumed to deposit 

a dose distribution around it as calculated by the nanodosimetry model. These ionizing events 

are then added to the uniform background with a random distribution, based on the 



30 
 

assumption of a sparse, uniform distribution of GNPs. This then gives a distribution of dose 

throughout the cell on the nanoscale, taking into account inhomogeneities introduced by the 

GNPs, which can be used as input to the LEM. (McMahon S. , et al., 2011) 

If we analyze the variation in dose near the nanoparticle in nanoscale distances, we will see 

doses of the order of thousands of Gy deposited in the vicinity of the nanoparticle following 

a single ionizing event. The combination of extremely high doses and extremely small 

volumes is relatively uncommon in x-ray radiotherapy, as the incident radiation is typically 

very sparsely ionizing. Distributions of this sort are regularly seen around particle tracks in 

charged particle therapies.  The hypothesis that the high degree of dose localization near 

GNPs is responsible for the large dose enhancements observed experimentally was tested by 

applying a predictive framework which has been successful in accounting for the biological 

effects of dose inhomogeneity in heavy ion therapy. To quantify this effect, the Local Effect 

Model (LEM) has been applied to the inhomogeneous dose distributions around GNPs to 

determine what additional cell killing results from this effect.  

The predictions of the LEM are closely related to the cell line under consideration. Taking 

into account the dose inhomogeneity in the vicinity of GNPs using the LEM leads to 

predicted RBEs which are several times greater than those predicted by the change in 

macroscopic dose alone. This increase in effectiveness is in qualitative agreement with 

experimental results, suggesting that these dose inhomogeneities may be responsible for 

some or all the large enhancements which are observed experimentally.  

Unfortunately the connection between the obtained results of dose deposition by MC 

simulation and the results that the authors present of the cell survival curves are not clearly 

presented. The authors assure that by combining the nanoscale dose distribution and 

ionization rates for the amount of gold within a cell and the cell line’s fitted with 𝛼 and 𝛽 

parameters in the absence of gold, predictions of the radiosensitizing effect of GNPs can be 

obtained using the LEM. This allows for predictions to be made about 𝛼 and 𝛽 parameters in 

the presence of GNPs at each energy, and thus the degree of radiosensitization achieved 

through the addition of GNPs, without reference to the experimental observed results. 

After calculations the corresponding curves obtained as dashed lines are presented in Figure 

1.6. It can be see that these curves are in good agreement with the observed radiation response 
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of GNPs, closely following the experimental measured points. Values obtained for the 𝛼 and 

𝛽 parameters are in good agreement with the measured from the experimental results. The 

lack of description of how they obtain those values is a limiting factor when we try to 

reproduce it.  

 

 

Figure 1.6 Comparison of LEM predictions and observed experimental results for MDA-MB-231 cells 

exposed to   MV radiation, with and without GNPs.   Points are measured values (squares, control; diamonds, 

with gold). The solid line is a fit to the control cell response curve, while the dashed line is the LEM 

prediction for the radiation response in the presence of GNPs. Adapted from (McMahon, 2011) 

The dominance of short-range effects highlights the importance of the sub-cellular uptake 

and localization.  The observed dose enhancement varies significantly between different cell 

lines, suggesting that enhancement depends significantly on the biological distribution of the 

GNPs within the cell. These observations highlight the importance of improved 

understanding of sub-cellular localization of the contrast agents, as agents which see and 

inhomogeneous distribution may see a decreased efficacy, as GNPs which are localized far 

from sensitive areas within the cell would be less likely to lead to cell death.  

A relatively small number of well-targeted particles could potentially lead to a significant 

concentration within the cell nucleus, and correspondingly large RBE. Additionally, the 

relative inactivity of the core of the nanoparticle is of potential to approaches which seek to 

optimize nanoparticle properties by combining cores and coatings of different materials.  
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CHAPTER II. GENERAL EQUATIONS DESCRIBING NANOSCALE 

DOSE DISTRIBUTION IN CRITICAL STRUCTURES WITH 

EMBEDDED GOLD NANOPARTICLES.  

 
The global aim of theoretical consideration of GNP-aided radiation therapy is the estimation 

of survival of GNP loaded tumor cells irradiated with external (Linac, X-ray tube) and 

internal (brachytherapy) photon sources. Four almost independent stages should be described 

to quantify the cell survival after irradiation (Zygmanski, et al., 2013). The first stage 

simulates the photon transport across macroscopic depths from a clinical radiation source to 

a tumor region and relates the spectral characteristics of the incident beam to the radiation 

fluence at the tumor cell location. In the second stage, this fluence is used as the radiation 

source for new simulations that allow to describe the interaction of fluence with GNPs and 

to calculate the radial dose distribution around single or multiple GNPs. The third stage 

describes the dose distribution in a cell structures linking the radial dose distribution for 

individual GNPs and the GNP distribution in the cell. The last, forth stage relates the cell 

survival probability to the dose distribution in cell structures loaded with GNPs. 

In the following, we will present a set of general expressions describing the second, third and 

fourth stages that constitute an analytical framework for the assessment of cell survival in 

GNP radiotherapy. The first stage simulates the photon transport across macroscopic depths 

in a homogenous medium ignoring the nanoscale heterogeneity caused by the presence of 

GNPs. This stage is typically provided with macroscopic Monte Carlo simulations and is 

excluded from our analytical framework. But the simulated at this stage radiation fluence 

will be included in the framework as an input variable. We also will ignore the complex 

structure of biological cells and will suppose that GNPs are embedded in pure water. 

2.1 PHOTON INTERACTION WITH A GNP AND THE CREATION OF SECONDARY 

ELECTRONS 
 

 Let’s consider a single GNP embedded in a homogenous medium (water) under photon 

irradiation. As was mentioned above, the fluence at the location of cell should be found by 

MC simulations and will be considered here as an input variable. Moreover, we will suppose 

that the photon fluence is homogenous and isotropic within the cell: 
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0

)( phphE dEE                 (2.1) 

where 𝛷𝐸(𝐸𝑝ℎ) is the normalized energy distribution of the fluence (normalized incident 

photon spectrum).  

The mean number of photon interaction per target entity in a certain small volume subjected 

to incident photons with energies between 𝐸𝑝ℎ and 𝐸𝑝ℎ  +  𝑑𝐸𝑝ℎ  can be found from the 

definition of the cross section is (ICRU85, 2011) 

      phphEphph dEEEEdN int
    (2.2) 

Taking into account the relation between the total cross section and the mass attenuation 

coefficient (ICRU85, 2011) we can write 
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the quantity 𝑀 in Eq.(2.3) is the molar mass of the target entity material. If the target entity 

is gold (𝑀𝐴𝑢  =  196.97 𝑔) and 𝐴0 = 6.022𝑥1023 is the Avogadro’s constant.  The equation 

 
 













0
0

int, phphE

Au

phAu
Au dEE

E

A

M
N




    (2.4) 

gives the mean number of photon interactions per gold atom. 

The mean number of photon interactions per GNP is proportional to the photon fluence Φ.To 

find the coefficient of proportionality one should replace 𝑀𝐴𝑢 with  𝑀𝐺𝑁𝑃 = 𝑉𝐺𝑁𝑃𝜌𝐴𝑢𝐴0 and 

extract the fluence (which is energy independent) from the integral (2.4) 
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here 𝑉𝐺𝑁𝑃 =
4𝜋

3
𝑅𝑁𝑃

3  is the GNP volume and Φ𝐸(𝐸𝑝ℎ) Φ⁄  is the energy distribution of the 

fluence described by Eq(2.1). 
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The expression (2.5) is valid for any GNP shape. It only assumes that the attenuation of the 

photon beam is negligible over the GNP size, and every point in the GNP experiences the 

same photon fluence. 

Direct comparison of the mass attenuation coefficients for tissue and gold shows that the 

photoelectric effect is the principal interaction mode at photon energy less than 300 keV.Its 

probability is determined by the ratio 𝑘𝑝𝑒(𝐸𝑝ℎ). In the photoelectric interaction between a 

photon of energy Eph and an atom the photoelectron is ejected from the atom with a kinetic 

energy 

jphe EEE       (2.6) 

leaving behind a vacancy in the shell or subshell from which it was ejected. The energy jE  

is the binding energy of the 𝑗 − 𝑠ℎ𝑒𝑙𝑙 or 𝑗 − 𝑠𝑢𝑏𝑠ℎ𝑒𝑙𝑙 electron (where 𝑗 stands for the 𝐾 shell, 

three 𝐿 subshells, five 𝑀 subshells and so on). The number of interactions with the specific 

subshell is determined by the probability 𝑃𝑗(𝐸𝑝ℎ), which is the probability for the 

photoelectric effect, if it occurs, to occur in the 𝑗 subshell of an absorber atom. The photon 

energy 𝐸𝑝ℎ must exceed the threshold energy 𝐸𝑗 for the photoelectric event to occur in 

subshell 𝑗. Taking into account that the energy of a secondary photoelectron is determined 

by incident photon energy through Eq. (2.6) and that each photon interaction creates a 

secondary electron, the number of electrons ejected from GNP with energy 𝐸𝑒 (the energy 

spectrum of the secondary photoelectrons created in the GNP) can be written as 
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The atomic relaxation of ionized subshells results in emission of the characteristic X-ray 

fluorescence and Auger electrons. The number of characteristic photons (sometimes called 

fluorescent photons) emitted per orbital electron vacancy in subshell 𝑗 is referred to as 

fluorescent yield 𝜔𝑗, while the number of Auger electrons emitted per orbital electron 

vacancy is equal to (1 − 𝜔𝑗). The fluorescent yield depends on the atomic number 𝑍 of the 

atom and on the principal quantum number of a shell. 
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The characteristic X-rays are absorbed sufficiently far from the GNP, do not significantly 

contribute to the dose around a GNP and will not considered here. From the other hand, low 

energy Auger electrons are absorbed in and near the GNP and provide significant and often 

major contribution to the dose deposition near the GNP surface. 

In the Auger process the ionized subshell, of binding energy jE , is filled by an electron from 

an outer subshell, of binding energy iE , and the excess energy jE( iE )  is given to another 

electron in a still more shallow one of binding energy hE . The kinetic energy jihE  of the 

ejected Auger electron, is then 

hijjih EEEE       (2.8) 

in contrast to photoelectron, the energy of the Auger electron does not depend on the energy 

of the incident photon. 

Multiplication Eq. (2.5)  with 𝑃𝑗(𝐸𝑝ℎ),  and the Auger electrons yield, (1 − 𝜔𝑗)  and 

integration over the energy higher the jE  give the total number the Auger cascades, 𝑁PA,j,GNP 

initiated by the creation of the initial vacancy in the subshell 𝑗 
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The discrete spectrum of the Auger electrons created in a GNP after interaction of incident 

photons with the energy distribution of fluence Φ𝐸(𝐸𝑝ℎ) can be presented as a sum 
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where coefficients jihA  are the number of Auger electrons with he kinetic energy jihE  after 

the creation of initial vacancy in the subshell 𝑗. 
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2.2  THE DOSE DELIVERED BY ONE ESCAPED SECONDARY ELECTRON IN THE 

VICINITY OF A GNP. 
 

After interaction of incident photons with a GNP a number of secondary electrons of various 

energies are created. Below we present equations describing the dose delivered by one 

escaped secondary electrons created in an irradiated GNP. 

Let’s suppose that an incident photon creates in a certain point of GNP one electron of energy 

𝐸0. In fact, the photon does not create electron, only knock out it from a gold atom, therefore 

the terms “creation of secondary electrons” and similar are formally incorrect. However, we 

will use this term because of its convenience and simplicity. 

Geometry assumed for estimation of energy deposition by electrons created in NP is shown 

in Figure 2.1 (Chernov, Chernov, & Barboza-Flores, 2012). A spherical GNP of radius 𝑅NP 

is centered at the origin 𝑂 of a spherical coordinate system (in the figure the radius of the 

GNP is presented as 𝑎0). An electron is created at a point 𝐴0 at distance 𝑙 from the NP surface. 

At a point 𝐴1 the electron crosses the GNP surface and travels at the angle 𝛼 relative to the 

normal of the GNP surface at the point 𝐴1, continuing to travel in the surrounding medium. 

At a point 𝐴2  the electron reaches a sphere of radius 𝑟 centered on the center of the GNP. 

 

Figure 2.1 Geometry assumed for the estimation of the energy deposition by electrons created in GNP. 
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During travel, the electron losses energy and slows down. If its energy is sufficiently high, 

the electron crosses the GNP surface, continues to travel in the medium and eventually stops. 

In our calculations, we will use the continuous slowing down approximation (CSDA). In this 

approximation, the rate of energy loss is assumed to be equal to the total stopping power and 

energy-loss fluctuations are neglected (ESTAR, 2012) . 

The rest electron energy at the NP surface 𝐸1 and the electron energy at distance 𝑟 from the 

GNP center 𝐸2(𝑟) are determined by its initial energy 𝐸0 and distances 𝑙 and 𝑑 that the 

electron passes in the GNP and in a cell (the lengths 𝐴0𝐴1 and 𝐴1𝐴2 in Figure2.1, 

respectively. Assuming that emitted electrons travel in a straight-line path, the energies can 

be found from the equations 

𝑅𝑝(𝐸1) = 𝑅𝑝(𝐸𝑜) − 𝑙 

𝑅𝑚(𝐸2(𝑟)) = 𝑅𝑚(𝐸1) − 𝑑         (2.11) 

where the functions )(ERAu  and )(ERw
 are the electron range - energy relationships for 

gold and water (the main cell constituent) that relate a residual range and an electron energy. 

The distance 𝑑 is equal to 

𝑑 = √𝑟2 − 𝑅𝑁𝑃
2 𝑠𝑖𝑛2𝛼 − 𝑅𝑁𝑃𝑐𝑜𝑠𝛼  (2.12) 

   

where 𝛼 is the angle at which an electron escapes the GNP (relative to the normal of the GNP 

surface). Inversion the first part of (2.11) with respect to 𝐸1 and the second one with respect 

to 𝐸2  gives 
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where the inverse functions )(1 RRAu

  and 1

WR (R)are the energies of electron with given range 

R in gold and water, respectively. 
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To find the average energy of escaped electrons at the distance 𝑟 from the GNP center, 

 lEEav ,0  Eq. (2.13) should be integrated over all possible travel distances in the GNP 𝑙 and 

the escaping angles 𝛼 
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 (2.14)  

here  dldl ),(  is the probability that the created electron in the GNP has passed the 

distance between 𝑙 and 𝑙 +  𝑑𝑙 in the GNP and left the GNP at an angle between 𝛼 and 𝛼 +

 𝑑𝛼 relative to the normal of the GNP surface at the point of escaping. The integral (2.14) is 

taken over those 𝑙 and 𝛼, for which 0>),,,( 02 lErE . 

The function ),(  l  depends on the distribution of the created electrons over the GNP 

volume and their directions of travel. In the case of the homogenous and isotropic creation 

of secondary electrons and straight-line electron traveling, the function ),(  l  can be found 

from a geometrical consideration, similar to that used in the MIRD formalism to estimate the 

absorbed dose at the cellular level from intracellularly localized radionuclides (Goddu, 

Howell, & Rao, 1994) (Chernov, Chernov, & Barboza-Flores, 2012) 
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The values of l and α are limited by the conditions 

0 ≤ 𝑙 ≤ 2𝑅𝑁𝑃; 0 ≤ 𝛼 ≤ 𝛼𝑚𝑎𝑥 = cos−1(𝑙 2𝑅𝑁𝑃)⁄     (2.16) 

The dose delivered at a distance 𝑟 from the GNP center or the radial dose distribution, 𝐷(𝑟), 

is defined as the average energy deposited in a spherical shell with the radii between 𝑟 and 

𝑟 +  𝑑𝑟, normalized to its mass 
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where w  is the surrounding medium (water) density. The minus sign comes from the fact 

that )(rEav  always decreases when 𝑟 increases. 
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The set of equations (2.11) – (2.17)  allows to find the radial dose distribution (RDD) around 

a GNP per one created electron with energy 𝐸0. If photon irradiation creates electrons of 

various energies, the equations should be averaged over a spectrum of the secondary 

electrons. An analytical expressions describing RDD can be derived in the case of the 

simplest supposition that the residual range of electron is proportional to its energy (Chernov 

G. , 2014). Several cases depending on relationships between various parameters of length 

dimension could be considered. The most important for this thesis case corresponds to RDD 

in vicinity of a sufficiently small GNP. A GNP will be considered as small if the range of the 

created electron of energy 𝐸0 in gold, 𝑅Au is greater than the GNP diameter (2𝑅𝑁𝑃 < 𝑅Au ). 

The vicinity of the GNP considered is determined by the condition 
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where wR  is the range of electron of energy 𝐸0  in water.  

The RDD for this case is described by expression 
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2.3. THE RELATION BETWEEN THE DOSES DELIVERED BY SECONDARY ELECTRONS 

ESCAPING FROM A GNP AND IN SURROUNDING WATER. 

 

Eq. (2.19) describes the RDD per one created photoelectron (or one photon interaction with 

gold atom) in a GNP. For practical applications, it is needed to relate the dose delivered by 

escaping secondary electrons to the dose in water in vicinity of the X-ray irradiated GNP and 

a number of created electrons. The given photon fluence Φ with the energy distribution 

𝛷𝐸(𝐸)  interacts with a GNP and knock out a number of secondary photoelectrons Eq. (2.5) 

and Auger electrons Eq. (2.9). The given photon fluence will interact with water delivering 

a dose 𝐷𝑤 in the vicinity of the GNP. In the case of charged-particle equilibrium the kerma 

serve as approximations to absorbed dose, then the absorbed dose in water can be written as 

(ICRU85, 2011) 
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where (𝜇𝑡𝑟/𝜌)𝑤 is a mass energy-transfer coefficient of water. 

It follows from Eq. 2.20 that 
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The substitution of Eq. 2.21 into Eq.2.7 give us the relationship between the spectrum of 

created photoelectrons in the spherical GNP of radius 𝑅𝑁𝑃 and the dose in surrounding water 

(sufficiently far from the GNP), 𝐷𝑤. 
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Integrating the dose per one created photoelectron of energy 𝐸𝑒 (Eq. 2.19) over their spectrum 

Eq. 2.22 from 0 to the maximal energy of photoelectrons, 𝐸𝑚𝑎𝑥, gives us the relationship 

between the dose delivered in a vicinity of the GNP and dose in surrounding water 
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The coefficient 𝐶𝜇 does not depend on the GNP radius and it is determined by the parameters 

describing the interaction of photons with water and gold. For the case of the monoenergetic 

photon fluence,Φ𝐸(𝐸𝑝ℎ) = 𝛿(𝐸𝑝ℎ − 𝐸𝑝ℎ0), 𝐸𝑒 + 𝐸𝑗 = 𝐸𝑝ℎ0 and Eq. 2.24 can be presented 

as 
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if the photon energy is higher than 𝐸𝐾 = 80.7 𝑘𝑒𝑉 , photons will mainly interact with 𝐾 shell 

electrons, therefore  
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where 𝐸𝑒0 = 𝐸𝑝ℎ0 − 𝐸𝑘 is the initial energy of photoelectron ejected from a gold atom.  

2.4  THE ENERGY DELIVERED IN A SPHERICAL CRITICAL CELL STRUCTURE BY ONE 

GNP. 

In the following, we will derive an expressions describing the dose distribution 𝑝(𝐷) in a 

critical structure an X-ray irradiated cell with one embedded GNP. For simplicity, the critical 

structure and GNP be considered as spheres of radii 𝑅st and 𝑅NP, respectively. We will 

suppose that the RDD is spherically symmetric and described by a decreasing function D(r), 

where 𝑟 is the distance from the GNP center. Depending on a distance L between the critical 

structure and the GNP two cases should be considered: the GNP is located inside or outside 

of the critical structure. 

The dose distribution function 𝑝(𝐷)𝑑𝐷 describes the distribution of dose within the critical 

structure. It is defined as the volume with doses between D and 𝐷 +  𝑑𝐷 normalized on the 

structure volume 𝑉st 
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or 

     

stVst

rdrDD
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     (2.28) 

where  rD
  is the spatial dose distribution within the structure and the three-dimensional 

integral is taking over the structure volume 𝑉st. 

2.4.1 The GNP is located outside of the critical structure. 

In the case of 𝐿 >  𝑅𝑠𝑡 +  𝑅𝑁𝑃 the GNP is located outside of the critical structure. The sketch 

presenting this case is shown in Figure 2.2. The GNP is centered at the origin 𝑂 of a spherical 

coordinate system. The polar angle 𝜃 is measured from the z–axis that passes through the 

critical structure center 𝑂1. The surface at a current distance 𝑟 on which the dose has the 

constant value 𝐷(𝑟) is shown by the dash line. The polar angle at which this surface crosses 

the structure surface is denoted as 𝜃𝑚𝑎𝑥. 

 

Figure 2.2 Geometry assumed for the description of the case 1, when the GNP is located outside of the critical 

structure (cell) (see explanation in the text). 

Because of simple geometry the integral (2.28) can be easily reduced to an iterated integral 

with the integration over the spherical coordinates 𝑟, 𝜃 and 𝜑 
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where 𝑅𝑚𝑖𝑛  =  𝐿 –  𝑅𝑠𝑡 and 𝑅𝑚𝑎𝑥  =  𝐿 +  𝑅𝑠𝑡  are closest and the farthest distances from the 

GNP center to the surface of the structure, respectively. 

The integration over 𝜑 gives 2𝜋. Taking into account that 𝑑𝜃𝑠𝑖𝑛𝜃 =  −𝑑(𝑐𝑜𝑠𝜃) and 

𝑉𝑠𝑡 =
4𝜋

3
𝑅𝑠𝑡

3     (2.30) 

we can rewrite Eq.(2.29) as 

𝑝(𝐷) =
3

2𝑅𝑠𝑡
3  

∫ 𝑑𝑟 𝑟2𝛿[𝐷 − 𝐷(𝑟)] ∫ 𝑑(𝑐𝑜𝑠𝜃)
1

𝑐𝑜𝑠𝜃𝑚𝑎𝑥(𝑟)

𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛

 

(2.31) 

or 

𝑝(𝐷) =
3

2𝑅𝑠𝑡
3  

∫ 𝑑𝑟 𝑟2𝛿[𝐷 − 𝐷(𝑟)] [1 − 𝑐𝑜𝑠𝜃𝑚𝑎𝑥(𝑟)]
𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛

 

(2.32) 

The angle 𝜃𝑚𝑎𝑥 is a function of the current radius 𝑟 in the target sphere. The dependence of 

𝜃𝑚𝑎𝑥  on 𝑟 can be found with the cosine theorem  

𝑐𝑜𝑠   𝜃𝑚𝑎𝑥 =
𝑟2+𝐿2−𝑅𝑠𝑡

2

2𝑟𝐿
        (2.33) 

Substituting Eq.(2.33) in Eq.(2.32) we will have  

𝑝(𝐷) =
3

2𝑅𝑠𝑡
3  

∫ 𝑑𝑟 𝑟2𝛿[𝐷 − 𝐷(𝑟)]  (1 −
𝑟2 + 𝐿2 − 𝑅𝑠𝑡

2

2𝑟𝐿
)

𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛

 

(2.34) 

or 

𝑝(𝐷) =
3

4𝑅𝑠𝑡
3 𝐿 

∫ 𝑑𝑟 𝑟𝛿[𝐷 − 𝐷(𝑟)] (𝑅𝑠𝑡 + 𝐿 − 𝑟)
𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛

 (𝑅𝑠𝑡 − 𝐿 + 𝑟) 

 (2.35) 
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The radial dose distribution 𝐷(𝑟) is monotonic single-valued decreasing function. Therefore 

we can express the current radius 𝑟 as a function of dose, 𝑟(𝐷) and pass from integration 

over 𝑟 to integration over 𝐷 

 

𝑝(𝐷) =
3

4𝑅𝑠𝑡
3 𝐿 

∫ 𝑑𝐷1 [−
𝑑𝑟(𝐷1)

𝑑𝐷1
] 𝑟(𝐷1)[𝑅𝑠𝑡 + 𝐿 − 𝑟(𝐷1)]

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

[𝑅𝑠𝑡 − 𝐿 + 𝑟(𝐷1)] 𝛿[𝐷 − 𝐷1] 

(2.36) 

where  𝐷𝑚𝑖𝑛 =  𝐷(𝐿 + 𝑅𝑠𝑡  ) and 𝐷𝑚𝑎𝑥 =  𝐷(𝐿 − 𝑅𝑠𝑡  ), respectively. The presence of the 

delta function allows taking integral (2.36) for any integrand that gives: 

𝑝(𝐷) = 0,    0 ≤ 𝐷 ≤ 𝐷𝑚𝑖𝑛 

𝑝(𝐷) =
3𝑟(𝐷)[𝑅𝑠𝑡 + 𝐿 + 𝑟(𝐷)] [𝑅𝑠𝑡 − 𝐿 + 𝑟(𝐷)] 

4𝑅𝑠𝑡
3 𝐿

[−
𝑑𝑟(𝐷)

𝑑𝐷
] , 𝐷𝑚𝑖𝑛 ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥 

𝑝(𝐷) = 0,    𝐷 ≥ 𝐷𝑚𝑎𝑥 

(2.37) 

2.4.2 The GNP is located inside of the critical structure. 

In the case of 𝐿 < 𝑅𝑠𝑡 −  𝑅𝑁𝑃 the GNP is located inside of the critical structure. The sketch 

presenting this case is shown in Figure 2.3. The symbols and their meaning are the same of 

Figure 2.2.  

As in the previous case, the simple spherical geometry allows to reduce the three-dimensional 

integral (2.28) to the iterated integral (2.29). Only integration limits should be changed. It is 

easy to see in Figure 2.3 that for 𝑅𝑁𝑃 <  𝑟 < 𝑅𝑠𝑡  –  𝐿 the angle 𝜃𝑚𝑎𝑥 will be equal to 𝜋 and 

the integral (2.29) should be rewritten as 

𝑝(𝐷) =
3

2𝑅𝑠𝑡
3  

{∫ 𝑑𝑟 𝑟2𝛿[𝐷 − 𝐷(𝑟)] ∫ 𝑑(𝑐𝑜𝑠𝜃)
1

−1

𝑅𝑠𝑡−𝐿

𝑅𝑁𝑃

+ ∫ 𝑑𝑟 𝑟2𝛿[𝐷 − 𝐷(𝑟)] ∫ 𝑑(𝑐𝑜𝑠𝜃)
1

𝑐𝑜𝑠𝜃𝑚𝑎𝑥(𝑟)

𝑅𝑠𝑡+𝐿

𝑅𝑠𝑡−𝐿
} 

(2.38) 
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Figure 2.3 Geometry assumed for the description of the second case, when the GNP is located inside of the 

critical structure (see explanation in the text). 

or 

𝑝(𝐷) =
3

2𝑅𝑠𝑡
3  

{2 ∫ 𝑑𝑟 𝑟2𝛿[𝐷 − 𝐷(𝑟)]
𝑅𝑠𝑡−𝐿

𝑅𝑁𝑃

+ ∫ 𝑑𝑟 𝑟2𝛿[𝐷 − 𝐷(𝑟)][1 − 𝑐𝑜𝑠𝜃𝑚𝑎𝑥(𝑟)]
𝑅𝑠𝑡+𝐿

𝑅𝑠𝑡−𝐿
} 

(2.39) 

 

The dependence of 𝜃𝑚𝑎𝑥 on 𝑟 is the same as for the first case Eq.(2.33), therefore we can 

omit the steps describing by Eqs.(2.33)-(2.35) and present the dose distribution as: 

𝑝(𝐷) = 0,    0 ≤ 𝐷 ≤ 𝐷𝑚𝑖𝑛 

𝑝(𝐷) =
3𝑟(𝐷)[𝑅𝑠𝑡 + 𝐿 − 𝑟(𝐷)] [𝑅𝑠𝑡 − 𝐿 + 𝑟(𝐷)] 

4𝑅𝑠𝑡
3 𝐿

[−
𝑑𝑟(𝐷)

𝑑𝐷
] , 𝐷𝑚𝑖𝑛 ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥 
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𝑝(𝐷) =
3𝑟2(𝐷)

𝑅𝑠𝑡
3 [−

𝑑𝑟(𝐷)

𝑑𝐷
] 𝐷𝑚𝑎𝑥 ≤ 𝐷 ≤ 𝐷𝑁𝑃 

𝑝(𝐷) = 0,    𝐷 ≥ 𝐷𝑁𝑃 

(2.40) 

where  𝐷𝑚𝑖𝑛 =  𝐷(𝑅𝑠𝑡 +  𝐿),  𝐷𝑚𝑎𝑥 =  𝐷(𝑅𝑠𝑡  −  𝐿) and  𝐷𝑁𝑃 =  𝐷(𝑅𝑁𝑃), respectively. 

 

2.5 THE ENERGY DELIVERED IN A SPHERICAL CRITICAL CELL STRUCTURE BY 

SEVERAL GNPS. 

 

The function describing the dose distribution within a critical structure from several GNPs 

located inside or/and outside its volume can be presented as 

     










stV

N

i

i

st

rdrDD
V

Dp
 3

1

1
     (2.41) 

where 𝑁 is the number of GNPs and  

  )( ii rrDrD


     (2.42) 

is the RDD from a GNP located at the position ir

 in the coordinate system related to the 

critical structure. 

It should be note that Eq.(2.42) corresponds only to the dose delivered by secondary electrons 

escaped from gold atoms. The dose delivered by secondary electrons from water will 

assumed to be constant and equal to 𝐷𝑤. 

In fact, the integral (2.41) is too complex to be taken analytically for an arbitrary set of GNP 

positions and could be evaluated numerically. MC simulations and analytical considerations 

of RDD clearly indicate that dose gradually decreases with increasing the distance from the 

GNP center. This means that at distances sufficiently far from the GNP center the dose 

delivered by secondary electron escaped from the GNP will be much lower than dose in water 

𝐷𝑤. Then we can introduce a critical radius 𝑅𝑐 at which the dose related to a GNP is 
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sufficiently small to compare with 𝐷𝑤  and corresponding to this radius the critical volume 

𝑉𝑐 

wwcc DDkRD )(     (2.43) 

3

3

4
cc RV


     (2.44) 

where 𝑘𝑐 is the coefficient (equal, for instance 0.1) specifying (quantifying) the condition 

𝐷(𝑅𝑐 )  <<  𝐷𝑤. 

Let's assume that all GNPs are located inside the structure, they are identical, their number 

in the structure is sufficiently small, the distances between the GNP centers more than 2𝑅𝑐  

and the distances from the GNP centers to the structure surface more than 𝑅𝑐. In this case, 

we can divide the structure volume in two parts. The first volume, 𝑉1  =  𝑁𝑉𝑐, consists of 

𝑁 nonoverlapping spheres of radius 𝑅𝑐  with the same dose distribution 𝑝1(𝐷) among them 

(grey regions). The second volume, 𝑉2  =  𝑉𝑠𝑡 – 𝑉1, is the volume between the 

nonoverlapping spheres Figure 2.4. With the above assumptions, Eq. (2.34) can be rewritten 

as 

      
 


N

i Rrr

wi

stVr

w

st
ci

rdDrrDD
V

rdDD
V

Dp
1

33 )(
11

2



     (2.45) 

All GNPs were assumed to be identical and their centers are located at larger distances than 

𝑅𝑐  from the structure surface, therefore, the terms under summation are all the same (all 𝑟𝑖 

can be replaced by 0) and 

 
   








cRr
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    (2.46) 

After integration  

   

    w

ww
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DDDNpDp
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,

0,1

1


    (2.47) 
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Figure 2.4 Schematic representation of the target structure with embedded gold nanoparticles, the critical 

radius 𝑅𝑐 around the GNPs defines the regions where the dose deposition is not negligible when compare with 

the prescribed dose 𝐷𝑤.  

where 

      drrDrDD
V

drrD
V

Dp
c

NP

NP R

R

w

st

R

st

22

0

1 )(
44

  





    (2.48) 

The second integral in Eq.(2.48)  can be taken as integral (2.36)  
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CHAPTER III. DOSE DISTRIBUTION IN A SPHERICAL 

CRITICAL CELL STRUCTURE: 𝟏 𝒓𝟐⁄  RADIAL DOSE 

DISTRIBUTION DEPENDENCE.  

 

3.1. RADIAL DOSE DISTRIBUTION AROUND A GNP PER ONE CREATED 

PHOTOELECTRON; THE CASE OF  𝟏 𝒓𝟐⁄  DEPENDENCE 

 

Recalling Eq.(2.19); the radial dose distribution around the GNP is defined by 

 




























NP

NP

NP

NP

wwNP Rr
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Rr

RR

E
rD ln

42

1

4

3
)(

22

2

0


 (2.19) 

where 𝐸0 is the kinetic energy of the photoelectron with which they leaves the GNP surface, 

𝑅𝑁𝑃 is the GNP radius,   𝜌𝑤 is the density of the media surrounding the GNP (water in this 

case), 𝑅𝑤 is the range of the photoelectron in the media and 𝑟 is the current distance measured 

from GNP center where the dose deposition is being measured. The equation (33) is only 

valid for radius 

𝑟 ≤ 𝑅𝑁𝑃 + 𝑅𝑤 (1 −
2𝑅𝑁𝑃

𝑅𝐴𝑢
)    (3.1) 

For a small GNP when 𝑅𝑁𝑃 ≪ 𝑅𝐴𝑢 the condition (3.1) is valid at distances sufficiently far 

from a GNP (where 𝑅𝐴𝑢 is the photoelectron range in the nanoparticle media (gold)). 

Introducing a small parameter 𝑡 =  𝑅𝑁𝑃/𝑟 we can rewrite Eq.(2.23) as 

𝐷1(𝑟) =
3𝐸0

4𝜋𝑅𝑁𝑃
3 𝜌𝑤

𝑅𝑁𝑃

𝑅𝑤
[
1

2
+

1

4
(

1

𝑡
− 𝑡) 𝑙𝑛 (

1 − 𝑡

1 + 𝑡
)]     

(3.2) 

The Taylor series expansion of the expression in squared brackets around 𝑡 =  0 gives (the 

odd terms are equal to 0) 

𝐷1(𝑟) =
3𝐸0

4𝜋𝑅𝑁𝑃
3 𝜌𝑤

𝑅𝑁𝑃

𝑅𝑤
[

𝑡2

3
+

𝑡4

15
+

𝑡6

35
+

𝑡8

63
+ 𝑂(𝑡10)]      (3.3) 
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returning to the variable 𝑟, keeping only four nonzero terms of Taylor series and allocating 

the 1/𝑟2 term we will obtain a simple equation describing the dose distribution at the 

distances sufficiently far from the GNP (several GNP radii): 

𝐷1(𝑟) =
𝐸0

4𝜋𝜌𝑤𝑅𝑤

1

𝑟2
[1 +

𝑅𝑁𝑃
2

5𝑟2
+

3𝑅𝑁𝑃
4

35𝑟4
+

𝑅𝑁𝑃
6

21𝑟6
] 

𝐷1(𝑟) =
𝐴

𝑟2
[1 +

𝑅𝑁𝑃
2

5𝑟2
+

3𝑅𝑁𝑃
4

35𝑟4
+

𝑅𝑁𝑃
6

21𝑟6
]    (3.4) 

where  

𝐴 =
𝐸0

4𝜋𝜌𝑤𝑅𝑤
     (3.5) 

The constant 𝐴 does not depend on the GNP radius and should be evaluated in [𝑛𝑚2] if 

substitute 𝐸0 in [𝐽], 𝜌𝑤 in  [𝑘𝑔/𝑛𝑚3] and 𝑅𝑤 in 𝑛𝑚. For a 20 𝑘𝑒𝑉 ejected photoelectron in 

water media  𝐴 = 2.98 × 104 𝑛𝑚2 . 

Figure 3.1 shows the deviation of the radial dose distributions from the 1/𝑟2 law. The curves 

are the ratios of the dose distributions calculated for a GNP of radius 100 𝑛𝑚 to the 𝐴/𝑟2 

dependence. The upper curve (black) corresponds to the exact dose distribution Eq.(2.19) 

while the other curves are the approximate distributions Eq.(3.4) with increasing number of 

the Taylor terms. The straight line corresponds to the 𝐴/𝑟2  dependence. It is possible to see 

that sufficiently far from the GNP surface (more than 5𝑅𝑁𝑃) the radial dose distribution 

follows to the 1/𝑟2 dependence and is independent of the GNP radius. 
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Figure 3.1 The deviation of the radial dose distribution around a GNP of radius 100 nm from the 1/𝑟2 law. 

The curves are calculated as the ratio of the dose distribution to the A/𝑟2 dependence. . The upper curve 

(black) corresponds to the exact dose distribution Eq.(2.19). The other curves are the approximate 

distributions Eq. (3.4) with the indicated numbers of the Taylor terms. The straight line corresponds to the 

A/r2 dependence. 

During all the analysis we will try to maintain the radial dose deposition 𝐷(𝑟), as a general 

function, without specifying the dose dependence on the current distance from source in the 

GNP when exemplifications are suitable the first order approximation of Eq. (3.4) will be 

used for the radial dose deposition  

𝐷(𝑟) =
𝐴

𝑟2    (3.6) 

In the following, we will use the derived expressions in the previous chapter  and as especial 

case of RDD the 1/𝑟2 derived approximation to  describe the dose distribution in an X-ray 

irradiated critical structure (cell) due to presence embedded gold nanoparticles (GNPs). For 

simplicity, the critical structure and GNP be considered as spheres of radii 𝑅𝑠𝑡  and 𝑅𝑁𝑃, 

respectively. We will suppose that the dose distribution around the GNP is spherically 

symmetric and described by a decreasing function 𝐷(𝑟). 

The quantities �̅� (average dose deposited in target) and (𝐷2)̅̅ ̅̅ ̅̅  (average squared dose 

deposited in target) are calculated either in the special domain 𝑑𝑟  as an in the dose domain 
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𝑑𝐷, being the last a deduction with a higher physical meaning and a wider application due to 

no dependence on a specific dose deposition relation.  

 

3.2 AVERAGE DOSE DISTRIBUTION IN A SPHERICAL CELL STRUCTURE DUE TO 

GNPS EXPERIENCING MULTIPLE IONIZATIONS; INTEGRATION IN THE SPATIAL 

DOMAIN.  

 Introducing a modification in the radial dose deposition expression proposed in Eq. (3.6) we 

can describe the dose around a nanoparticle as  

𝐷(𝑟) = 𝐷𝑤 (
𝐴

𝑟2 + 1)     (3.7) 

The first term of Eq. (3.7) is the dose deposition due to the presence of the GNP as a linear 

function on 𝐷𝑤, the second term is the prescribed dose to the whole system (macroscopic 

prescribed dose). To calculate the average dose in the volumes on radial dose deposition due 

to the GNP  �̅�𝑐 (Average dose inside spheres of critical radius 𝑅𝐶 surrounding each GNP) 

the following integral must be considered  

�̅�𝑐  =
1

𝑉𝐶
∫ 𝐷(𝑟)𝑑𝑟

|𝑟|≤𝑅𝑐
 (3.8) 

In the case of a single gold nanoparticle, centered in cell structure, and in virtue of the radial 

dose deposition expression, the expression (3.8) can be rewritten in spherical coordinates as 

�̅�𝑐  =
1

𝑉𝑐
∫ ∫ ∫ 𝐷(𝑟)𝑟2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜙

𝑅𝐶

𝑅𝑁𝑃

𝜋

0

2𝜋

0
    (3.9) 

Introducing the proposed radial dose distribution (3.7) in (3.9) 

�̅�𝑐  =
1

𝑉𝑐
𝐷𝑤 ∫ ∫ ∫ (

𝐴

𝑟2
+ 1) 𝑟2𝑠𝑖𝑛𝜃𝑑𝑟𝑑𝜃𝑑𝜙

𝑅𝐶

𝑅𝑁𝑃

𝜋

0

2𝜋

0

 

Introduce Eq. (3.7) imply that the dose deposition is isotropic around the nanoparticle after 

the ionizing events, due to the not dependence on the dose deposited in the angular 

coordinates, this integrals can be taken directly, obtaining 

�̅�𝑐 =
4𝜋

𝑉𝑐

𝐷𝑤 ∫ (
𝐴

𝑟2
+ 1) 𝑟2𝑑𝑟

𝑅𝐶

𝑅𝑁𝑃
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After integration the average dose deposited between 𝑅𝑁𝑃 and 𝑅𝐶 

�̅�𝑐 =
3𝐷𝑤

𝑅𝑐
3 (𝐴(𝑅𝑐 − 𝑅𝑁𝑃) +

1

3
(𝑅𝑐

3 − 𝑅𝑁𝑃
3))    (3.10) 

Following the same chain of procedures, to obtain the average quadratic dose deposited 

inside the regions 𝑅𝑐  we have  

(𝐷2)𝑐
̅̅ ̅̅ ̅̅ ̅ =

4𝜋

𝑉𝑐

𝐷𝑤
2 ∫ (

𝐴

𝑟2
+ 1)

2

𝑟2𝑑𝑟
𝑅𝑐

𝑅𝑁𝑃

 

and after integration  

(𝐷2)𝑐
̅̅ ̅̅ ̅̅ ̅ =

𝐷𝑤
2

𝑅𝑁𝑃𝑅𝑐𝑅𝑠𝑡
3 [−𝑅𝑐𝑅𝑁𝑃

4 − 6𝐴𝑅𝑐𝑅𝑁𝑃
2 − 3𝐴2𝑅𝑁𝑃 + 𝑅𝑁𝑃𝑅𝑐

4 + 6𝐴𝑅𝑁𝑃𝑅𝑐
2 + 3𝐴2𝑅𝑐]    

(3.11) 

The expressions for 𝑅𝑐 and A can be introduced in (3.11)  and (3.10) to highlight the 

dependence of the expressions in the parameters, due to the extension of the equations these 

ones are not presented. Introducing the relative volume of water with dose equal to 𝐷𝑤 as 

𝑉𝑟𝑒𝑙𝐷𝑤
= 1 − 𝑁𝐺𝑁𝑃

𝑅𝑐
3

𝑅𝑠𝑡
3      (3.12) 

being 𝑉𝑟𝑒𝑙𝐷𝑤
 the volume of the target outside the volumes of 𝑅𝑐 surrounding each GNP. The 

average dose in the target can be rewritten (for the case of multiple gold nanoparticles in 

accomplished the condition of no overlapping radial dose deposition regions) as 

�̅�𝑡𝑎𝑟𝑔 = (𝑁𝐺𝑁𝑃 ∙ �̅�𝑐 + 𝑉𝑟𝑒𝑙𝐷𝑤
∙ 𝐷𝑤)     (3.13) 

The first term describing the average dose deposited in the critical volumes in the vicinity of 

the GNPs and the second term describing the average dose deposited in the volumes outside 

these regions, where the only dose deposited is the prescribed to the whole system. 

Introducing (3.10) and (3.12)  

�̅�𝑡𝑎𝑟𝑔 =  −
𝐷𝑤

𝑅𝑠𝑡
3

(𝑁𝐺𝑁𝑃𝑅𝑐
3𝐴 − 3𝑁𝐺𝑁𝑃𝐴𝑅𝑁𝑃 + 3𝑁𝐺𝑁𝑃𝐴𝑅𝑐 + 𝑅𝑠𝑡

3 − 𝑁𝐺𝑁𝑃𝑅𝑁𝑃
3 ) 

(3.14) 

Moreover the average quadratic dose deposited in the target (𝐷2)𝑡𝑎𝑟𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  can be written as 
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(𝐷2)𝑡𝑎𝑟𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  = (𝑁𝐺𝑁𝑃 ∙ (𝐷2)𝑐

̅̅ ̅̅ ̅̅ ̅ + 𝑉𝑟𝑒𝑙𝐷𝑤
∙ 𝐷𝑤

2)      (3.15) 

introducing (3.11) and (3.12)  

(𝐷2)𝑡𝑎𝑟𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  =

𝐷𝑤
2

𝑅𝑁𝑃𝑅𝑐𝑅𝑠𝑡
3

(6𝑁𝐺𝑁𝑃𝑅𝑁𝑃𝐴𝑅𝑐
2 − 𝑁𝐺𝑁𝑃𝑅𝑐𝑅𝑁𝑃

4 − 6𝑁𝐺𝑁𝑃𝑅𝑐𝐴𝑅𝑁𝑃
2 + 3𝑁𝐺𝑁𝑃𝑅𝑐𝐴2

− 3𝑁𝐺𝑁𝑃𝑅𝑁𝑃𝐴2 + 𝑅𝑁𝑃𝑅𝑐𝑅𝑠𝑡
3 ) 

(3.16) 

After introduce the dependence of the 𝑁𝐺𝑁𝑃 in the mas concentration 𝐶𝐴𝑢 of GNPs and the 

dimensions of the target structure𝑁𝐺𝑁𝑃(𝐶𝐴𝑢, 𝑅𝑠𝑡), the dependence of (3.14) and (3.16) in 𝑅𝑠𝑡 

disappear, therefore it is not a needed input parameter for the calculations.  

3.3 THE DOSE DISTRIBUTION IN A CRITICAL STRUCTURE WITH SEVERAL GNPS FOR 

𝒓−𝟐
 RADIAL DEPENDENCE; INTEGRATION IN THE DOSE DOMAIN. 

Under the monotonic nature of the radial dose deposition, from (3.7) we can write an 

expression for 𝑟 as a function of 𝐷. 

𝑟(𝐷) = √𝐷𝑤𝐴(𝐷 − 𝐷𝑤)−
1

2         (3.17) 

and 

−
𝑑𝑟(𝐷)

𝑑𝐷
= −(𝐷𝑤𝐴)

1
2 (−

1

2
) (𝐷 − 𝐷𝑤)−

3
2 =

(𝐷𝑤𝐴)
1
2

2(𝐷 − 𝐷𝑤)
3
2

 

(3.18) 

In general, the knowledge of GNP distribution inside and outside the critical structure is 

needed to calculate the dose distribution in a critical structure. It is follows from (3.7) that 

dose at distances sufficiently far from the GNP center is almost equal to the dose in water 

𝐷𝑤. Recalling the introduction of a critical radius 𝑅𝑐 at which the extra dose created by 

electrons ejected from a GNP is sufficiently small to compare with 𝐷𝑤 . The Figure 3.2  

presents the radial dose deposition around a 50nm GNP experiencing multiple ionizations 

(plot presents the radial dose deposition from the GNP surface).  
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Figure 3.2 Radial dose deposition around a 50 nm gold nanoparticle suspended in water, irradiated 

isotropically with a monoenergetic beam of 100keV photons. The prescribed dose to the whole system 

(yellow line) is 2Gy, the red line is the radial dose deposition due to the GNP presence, and the green line is 

the total dose as described by Eq.(3.7) 

Rewriting Eq.(2.40)  

𝐷(𝑅𝑐) = 𝐷𝑤 (
𝐴

𝑅𝑐
2 + 1) = 𝑘𝑐𝐷𝑤    (3.19) 

where 𝑘𝑐 is the coefficient (equal, for instance 0.1) specifying (quantifying) the condition 

𝐷(𝑅𝑐) ≪ 𝐷𝑤. 

The solution of (3.19) respect to 𝑅𝑐  gives 

𝑅𝑐 = √
𝐴

𝑘𝑐
    (3.20) 

 Fixing values for the incident photon energy and GNP radio, the distance at which the radial 

dose deposition due to GNP start to be negligible when compared to planed dose can be 

estimated .e.g. For a 50𝑛𝑚 GNP irradiated with a 100𝑘𝑒𝑣 photon beam and 𝑘𝑐 = 0.1 𝐷𝑤  

the 𝑅𝑐 is about 72.19 𝑛𝑚.   

In the case of homogenous distribution of GNPs inside the critical cell the average distance 

between GNPs is determined by the expression (Hetz & Chandrasekhar, 2011) 
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𝑙𝑎𝑣 = Γ (
4

3
) (

3

4𝜋𝑛𝑁𝑃
)

1

3
≈ 0.544(𝑛𝑁𝑃)−

1

3    (3.21) 

Where Γ  is the gamma function and 𝑛𝑁𝑃 is the concentration of GNPs in the critical target. 

The condition 

𝑅𝑐 ≪ 𝑙𝑎𝑣 or 𝑛𝑁𝑃 ≪ (0.554√
𝐴

𝑘𝑐
)

3

     (3.22) 

determines the maximal GNP concentration, at which the volumes of no negligible radial 

dose deposition due to  individual GNPs (spheres of radii 𝑅𝑐)  are not overlapped. Therefore, 

we can summaries the volumes 𝑑𝑉(𝐷) corresponding to given doses between 𝐷 and 𝐷 +

 𝑑𝐷 and express the dose distribution function in the case of several GNPs in the target as 

𝑝(𝐷) =
𝑁𝐺𝑁𝑃𝑅𝑁𝑃

3

𝑅𝑠𝑡
3 𝛿(𝐷) + (1 −

𝑁𝐺𝑁𝑃𝑅𝐶
3

𝑅𝑠𝑡
3 ) 𝛿(𝐷 − 𝐷𝑤), 0 ≤ 𝐷 ≤ 𝐷𝑤 (

𝐴

𝑅𝑠𝑡
2 + 1) 

𝑝(𝐷) = 𝑁𝐺𝑁𝑃

3(𝐷𝑤𝐴)
3
2

2𝑅𝑠𝑡
3 (𝐷 − 𝐷𝑤)

5
2

,    𝐷𝑤 (
𝐴

𝑅𝑠𝑡
2 + 1)  ≤ 𝐷 ≤ 𝐷𝑤 (

𝐴

𝑅𝑁𝑃
2 + 1) 

𝑝(𝐷) = 0, 𝐷 ≥ 𝐷𝑤 (
𝐴

𝑅𝑁𝑃
2 + 1) 

(3.23) 

The first term in (3.23-1) takes into account the total volume of GNPs with the dose supposed 

to be equal to 0 (it does not participate in the dose deposition in cell), the second term 

represents the dose in the regions of target outside the volumes of critical radii and the Eq. 

(3.23-2) presents the dose deposition due to GNPs inside the volumes of critical radii. The 

total volume of the target with dose 𝐷𝑤 (represented in the second term of the equation). 

Proposing the radial dose distribution in the target in a vicinity of GNP (𝑟 ≤ 𝑅𝑐) as follows  

𝐷𝑠𝑡 =
𝐷𝑤 ∙ 𝐴

𝑟2
+ 𝐷𝑤 

𝐷𝑚𝑖𝑛 =
𝐷𝑤 ∙ 𝐴

𝑅𝑐
2 + 𝐷𝑤 
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𝐷𝑚𝑎𝑥 =
𝐷𝑤 ∙ 𝐴

𝑅𝑁𝑃
2 + 𝐷𝑤 

(3.24) 

The average doses in target can be calculated for the case of multiple GNP without 

overlapping regions as  

�̅�𝑠𝑡 = ∫ 𝐷 ∙ 𝑝
1
(𝐷). 𝑑𝐷

𝐷𝑚𝑖𝑛

0

+ ∫ 𝐷 ∙ 𝑝
2
(𝐷). 𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

 

(3.25) 

Where the sub-script represent the first and second equations of Eq.(3.23) , Eq.(3.25) can be 

divided in two parts the first integral recalled as �̅�𝑠𝑡𝛿
 representing the average dose deposited 

inside the GNPs and the regions outside the 𝑅𝑐. The second integral named �̅�𝑠𝑡𝐺𝑁𝑃
 describing 

the average dose deposited inside the regions of 𝑅𝑐. Rewriting the first part of (3.25) 

introducing the expression for 𝑝1(𝐷) from (3.23-1) we obtain 

�̅�𝑠𝑡𝛿
= ∫ 𝐷 ∙ 𝑝1(𝐷). 𝑑𝐷

𝐷𝑚𝑖𝑛

0

= ∫ 𝐷 ∙ [
𝑁𝐺𝑁𝑃𝑅𝑁𝑃

3

𝑅𝑠𝑡
3 𝛿(𝐷) + (1 −

𝑁𝐺𝑁𝑃𝑅𝐶
3

𝑅𝑠𝑡
3 ) 𝛿(𝐷 − 𝐷𝑤)] 𝑑𝐷

𝐷𝑚𝑖𝑛

0

 

(3.26) 

and after integration Eq.(3.26)  reduces to  

�̅�𝑠𝑡𝛿
= 𝐷𝑤 (1 −

𝑁𝐺𝑁𝑃𝑅𝑐
3

𝑅𝑠𝑡
3 )    (3.27) 

The second part of (3.25) introducing the expression for 𝑝2(𝐷) from (3.23-2) can be 

rewritten as  

�̅�𝑠𝑡𝐺𝑁𝑃
= ∫ 𝐷 ∙ 𝑝2(𝐷). 𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

= 𝐷𝑎𝑣𝛿
= ∫ 𝐷 ∙ 𝑁𝐺𝑁𝑃

3(𝐷𝑤𝐴)
3
2

2𝑅𝑠𝑡
3 (𝐷 − 𝐷𝑤)

5
2

𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

 

(3.28) 

The integration results  
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�̅�𝑠𝑡𝐺𝑁𝑃
=

𝐷𝑤 ∙ 𝑁𝐺𝑁𝑃

𝑅𝑠𝑡
3 [(1 +

3𝐴

𝑅𝑐
2) 𝑅𝑐

3 − (1 +
3𝐴

𝑅𝑁𝑃
2 ) 𝑅𝑁𝑃

3 ] 

(3.29) 

The addition of the results after integration of Eq.(3.27) and Eq.(3.29) is the total average 

dose in the target structure 

�̅�𝑠𝑡 = �̅�𝑠𝑡𝛿
+ �̅�𝑠𝑡𝐺𝑁𝑃

    

�̅�𝑠𝑡 = 𝐷𝑤 (1 −
𝑁𝐺𝑁𝑃𝑅𝑐

3

𝑅𝑠𝑡
3 ) +

𝐷𝑤∙𝑁𝐺𝑁𝑃

𝑅𝑠𝑡
3 [(1 +

3𝐴

𝑅𝑐
2) 𝑅𝑐

3 − (1 +
3𝐴

𝑅𝑁𝑃
2 ) 𝑅𝑁𝑃

3 ]  

 (3.30) 

The same chain of calculations can be done to obtain the average squared dose defined as  

(𝐷2)𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅ = ∫ 𝐷2 ∙ 𝑝

1
(𝐷). 𝑑𝐷

𝐷𝑚𝑖𝑛

0

+ ∫ 𝐷2 ∙ 𝑝
2
(𝐷). 𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

 

(3.31) 

Splitting the previous equation in two terms; the first part can be rewritten as  

(𝐷2)
𝑠𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅

𝛿
= ∫ 𝐷2 ∙ 𝑝1(𝐷). 𝑑𝐷

𝐷𝑚𝑖𝑛

0

= ∫ 𝐷2 ∙ [
𝑁𝐺𝑁𝑃𝑅𝑁𝑃

3

𝑅𝑠𝑡
3 𝛿(𝐷) + (1 −

𝑁𝐺𝑁𝑃𝑅𝐶
3

𝑅𝑠𝑡
3 ) 𝛿(𝐷 − 𝐷𝑤)] 𝑑𝐷

𝐷𝑚𝑖𝑛

0

 

(3.32) 

The integration of (3.32) is 

(𝐷2)
𝑠𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅

𝛿
= 𝐷𝑤

2 (1 −
𝑁𝐺𝑁𝑃∙𝑅𝑐

3

𝑅𝑠𝑡
3 )     (3.33) 

and  the second part of (3.31)  

(𝐷2)
𝑠𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐺𝑁𝑃
= ∫ 𝐷2 ∙ 𝑝2(𝐷). 𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

= ∫ 𝐷2 ∙ 𝑁𝐺𝑁𝑃

3(𝐷𝑤𝐴)
3
2

2𝑅𝑠𝑡
3 (𝐷 − 𝐷𝑤)

5
2

𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

 

(3.34) 

The result of the integration Eq.(3.34) is 
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(𝐷2
)

𝑠𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐺𝑁𝑃
=

𝑁𝐺𝑁𝑃𝐷𝑤
2

𝑅𝑠𝑡
3 [(8 − 12 (

𝐴

𝑅𝑁𝑃
2 + 1) + 3 (

𝐴

𝑅𝑁𝑃
2 + 1)

2

) 𝑅𝑁𝑃
3

− (8 − 12 (
𝐴

𝑅𝐶
2 + 1) + 3 (

𝐴

𝑅𝐶
2 + 1)

2

) 𝑅𝑐
3] 

(3.35) 

As previously Eq. (3.33) describe average squared dose inside the nanoparticle and the dose 

outside the critical radius; and Eq.(3.35) describe the average squared dose due to the GNP 

presence, deposited inside the volume of critical radius.  After integration and adding (3.33) 

with (3.35)  we obtain the total average squared dose 

(𝐷2)𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅ = (𝐷2)𝑠𝑡

̅̅ ̅̅ ̅̅ ̅̅
𝛿

+ (𝐷2)𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅

𝐺𝑁𝑃
   

(𝐷2)𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅ = 𝐷𝑤

2 [(1 −
𝑁𝐺𝑁𝑃 ∙ 𝑅𝑐

3

𝑅𝑠𝑡
3 )

+
𝑁𝐺𝑁𝑃

𝑅𝑠𝑡
3 [(8 − 12 (

𝐴

𝑅𝑁𝑃
2 + 1) + 3 (

𝐴

𝑅𝑁𝑃
2 + 1)

2

) 𝑅𝑁𝑃
3

− (8 − 12 (
𝐴

𝑅𝐶
2 + 1) + 3 (

𝐴

𝑅𝐶
2 + 1)

2

) 𝑅𝑐
3]    ] 

 (3.36) 

Equations (3.30) and (3.36) are going to be used in the analysis of cell survival from the 

perspective of the dose domain 𝑑𝐷 in the following chapter. As expected the average dose 

and average squared dose calculated by the two different special approaches (𝑟 or 𝐷) lead to 

the same results, evidencing the equivalence of the descriptions developed in the two 

different approaches.  
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CHAPTER IV. AN APLICATION OF THE DOSE 

DEPOSITION IN CRITICAL STRUCTURES: CELL 

SURVIVAL CALCULATIONS.  

 

4.1  GENERAL ASPECTS OF RADIATION DAMAGE TO CELLS AND TISSUES. 

Studies of the biological action of ionizing radiation on cells and tissues are of interest for 

applications in radiotherapy as well as radiation protection. When discussing the biological 

action of radiation – whether due to photon, electron or ion beams – on living cells and tissue, 

several differences to the action on non-living material have to be considered.  Processing of 

damage includes a whole spectrum of possible reactions, repair of the damage being the most 

important one.  Processing of damage takes time, and in combination with other kinetic 

effects it thus implies a pronounced time dependence of biological effects, spanning a huge 

time scale from minutes to years until the primary induced damage is actually converted into 

a visible or detectable biological response. Furthermore, the radiation response of tissues is 

characterized by a complex interplay between different cells types, each of them showing an 

individual response to radiation damage. 

The above mentioned processes play an important role for the interpretation and 

understanding of the dose response curves observed after irradiation, which may vary 

considerably depending, for example, on the particular cell type, environmental conditions 

and the time structure of dose delivery. 

A single cell represents the smallest functional unit of any complex organized tissue. In 

general, within a single cell two clearly separated compartments can be distinguished visually 

and functionally: the cell nucleus and the cytoplasm. The cell nucleus contains the genetic 

information in form of a large macromolecule, the Deoxyribonucleic Acid (DNA). In 

combination with additional proteins secondary, tertiary and higher-order structures are built, 

resulting in a condensed structure of the DNA molecule. 

Within the cytoplasm, further substructures (organelles) can be distinguished. All of them 

are separated by membranes, which allow to keep concentration gradients of certain types of 

ions or molecules. This is also true for the outer cell membrane, separating the inner cell 
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volume from the environment. A typical characteristic of many cells is their ability to grow 

and to produce two identical daughter cells by cell division. This division requires the exact 

duplication of the DNA contained in the cell nucleus, and the precise distribution of each of 

the two copies into the daughter cells. The total time for a complete division cycle of typical 

mammalian cells under laboratory conditions is in the order of 12–24 hours. 

Starting from the structural complexity of a single cell, the question arises, which 

compartment is most sensitive to radiation and can thus be expected to be responsible for the 

observable response of a cell to radiation. Experimental results have demonstrated a 

correlation between the radiosensitivity and the DNA content, at least for groups of 

biologically similar objects: the higher the amount of DNA, the more sensitive the object. 

These results already suggested the DNA to play a key role in the response to radiation. This 

hypothesis was proven also more directly for mammalian cells. The experiments revealed, 

that energy deposition in the nucleus is by far more efficient to produce biological damage, 

compared to the case where similar amounts of energy are deposited to the cytoplasm only. 

However, there is increasing evidence in the last few years, that DNA damage is not 

necessarily a prerequisite for the induction of biologically relevant effects. 

Lesions do not necessarily occur separately, but instead, depending on the dose level, 

combinations of different types occurring in close vicinity can lead to more complex lesions. 

Since the information on both strands of the DNA molecule is complementary, all injuries 

affecting only one side of the DNA double strand like, for example, single strand breaks 

(SSB) can be potentially easily repaired by using the information on the intact strand as a 

template. Therefore, double strand breaks (DSB) are generally considered as the critical event 

for the induction of lethal lesions. The incidence of several types of lesions after application 

of 1 𝐺𝑦 to a typical cell are presented in Table 4.1. These numbers, however, should only 

illustrate an order of magnitude; there can be considerable variations from cell type to cell 

type. (Scholz, 2006) 
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Approximate yields of DNA damage per Gy per 

cell 

SSB 

 

1000 

DSB 

 

30–40 

DNA–Protein crosslinks 

 

50 

Complex damage (SSB + Base lesion) 
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Table 4.1 Stimation of the number of each tipe of lesions after the irradiation of 1Gy to a typical cell. 

 

4.1.1  Cell survival essays. 

 

Investigation of radiation induced cell death, defined as mitotic death in the sense of a 

complete loss of the proliferation capacity, is one of the most commonly used methods to 

study radiation effects on cells. As mentioned earlier, many cell types are characterized by 

regular cell division in 12–24 h intervals. Thus, according to the exponential growth, a single 

cell can produce thousands of daughter cells within a few days. If the cells are originally 

seeded in culture flasks at the appropriate low density, the daughter cells of each individual 

cell appear as clusters or ‘colonies’. A cell is classified as ‘survivor’, if it is able to produce 

at least 50 daughter cells within a time interval of approximately 10–14 normal division 

cycles, i.e. 5–14 days; if less than 50 daughter cells are produced, the cell is classified as dead 

or ‘inactivated’ (Puck and Markus, 1956). The threshold of 50 cells is an empirically 

determined value and somewhat arbitrary. 

Most experiments to study survival probabilities are based on a so called dilution assay 

Figure 4.1, which briefly consists of the following steps  

• After irradiation, a cell suspension is produced by removing the cells grown on the bottom 

of the culture vessel by controlled enzymatic digestion. The cell number in the suspension is 

counted. 
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• From the dose delivered, the expected fraction of surviving cells is estimated. The cell 

suspension is then diluted and aliquots are reseeded to new culture vessels at a density, that 

approximately 100 surviving cells are expected per culture vessel. 

• Cells are incubated for 5–14 days typically, corresponding to 10–14 cycle times. 

• The number of colonies with more than 50 cells is determined; the fraction of surviving 

cells is then calculated by normalization to the number of cells originally seeded in the flask. 

 

Figure 4.1 Dilution assay for measuring cell survival after irradiation. Adapted from (Scholz, 2006) 

Cellular survival as a function of dose follows almost exponential behavior, and thus survival 

curves are generally shown in logarithmic plots. A purely exponential behavior would be 

expected based on simple mechanistic assumptions on the distribution of energy deposition 

and damages. The most prominent feature of most survival curves is thus the deviation from 

such a simple curve, namely, the dose response curve typically shows a shoulder. For most 

cell types, survival curves start with a moderate slope, and with increasing dose, the slope 

correspondingly increases.  
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Therefore, the efficiency per dose increment increases as well. This can be understood in 

terms of the reparability of radiation induced damages. At low doses, only a few damages 

are induced with a large spatial separation, and a considerable fraction of these damages can 

be repaired correctly. In contrast, at high doses, the density of damages increases, leading to 

an interaction of damages and thus a reduced fraction of repairable damages. The term 

‘interaction’ has to be understood here in the most general sense. It can happen, that actually 

two individual damages are combined to form a more complex type of damage; on the other 

hand, two damages produced in close vicinity can lead to conflicting or competing repair 

processes, also reducing the fraction of repairable damage. The following sub chapter present 

an analytical description of the cell survival response modifications of cell cultures with 

embedded GNPs after irradiation. The perspective is presented from the view of the dose 

space of radial dose deposition with the proposed relations obtained in chapter 3. 

4.2  AN APPLICATION OF THE DOSE DEPOSITION IN CRITICAL STRUCTURE; CELL 

SURVIVAL FROM THE DOSE DOMAIN. 

The number of lesions in the target due to the presence of multiple nanoparticles can be 

obtained with the following equation (Zygmanski, et al., 2013) 

𝑁𝐿𝑡𝑜𝑡 = ∫ (𝛼𝐷 + 𝛽𝐷2)𝑝(𝐷)𝑑𝐷
∞

0
   (4.1) 

Eq.(4.1)  can be splitted in two parts  one averaging the number of lesion in a linear dose 

dependence and the other averaging the number of lesions in a quadratic dose dependence as 

𝑁𝐿𝑙𝑖𝑛 = 𝛼 ∫  𝐷 𝑝(𝐷)𝑑𝐷
∞

0

 

𝑁𝐿𝑞𝑢𝑎 = 𝛽 ∫ 𝐷2𝑝(𝐷)𝑑𝐷
∞

0

 

(4.2) 

The two equations presented in (4.2) are actually the average dose �̅�𝑠𝑡 and the average 

squared dose (𝐷2)𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅  presented in the calculations of chapter III. Eq. (3.30) and (3.36), 

therefore the total number of lesion in target can be written as  

𝑁𝐿𝑡𝑜𝑡 = 𝛼�̅�𝑠𝑡 + 𝛽(𝐷2)𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅      (4.3) 
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The evaluation of the integrals in Eq.(4.2-1) evidence the linear dependence of �̅�𝑠𝑡 in 𝐷𝑤, 

and in the same way the evaluation of the integral  in Eq.(4.2-2) stick out the squared 

dependence of (𝐷2)𝑠𝑡
̅̅ ̅̅ ̅̅ ̅̅       in 𝐷𝑤. Specifying the average number of lesions in the target due 

to the linear part (first part of Eq.(4.3))  

𝑁𝑙𝑖𝑛𝑡𝑎𝑟 = 𝛼𝐷𝑤 [(1 −
𝑁𝐺𝑁𝑃𝑅𝑐

3

𝑅𝑠𝑡
3 ) +

𝑁𝐺𝑁𝑃

𝑅𝑠𝑡
3 {(1 +

3𝐴

𝑅𝑐
2

) 𝑅𝑐
3 − (1 +

3𝐴

𝑅𝑁𝑃
2 ) 𝑅𝑁𝑃

3 }] 

(4.4) 

and specifying the average number of lesion in target due to the quadratic part (second term 

in Eq. (4.3)) 

𝑁𝑞𝑢𝑎𝑡𝑎𝑟 =  𝛽𝐷𝑤
2 {(1 −

𝑁𝐺𝑁𝑃𝑅𝑐
3

𝑅𝑠𝑡
3 )

+
𝑁𝐺𝑁𝑃

𝑅𝑠𝑡
3 [(8 − 12 (

𝐴

𝑅𝑁𝑃
2 + 1) + 3 (

𝐴

𝑅𝑁𝑃
2 + 1)

2

) 𝑅𝑁𝑃
3

− (8 − 12 (
𝐴

𝑅𝑐
2

+ 1) + 3 (
𝐴

𝑅𝑐
2

+ 1)
2

) 𝑅𝑐
3]} 

(4.5) 

 Therefore after replacing the specific dependences in equation (4.3)  the equation can be 

rewritten in terms of modified coefficients 𝛼 and 𝛽. Therefore (4.3) can be rewritten as  

𝑁𝐿𝑡𝑜𝑡 = 𝛼𝐺𝑁𝑃  𝐷𝑤 + 𝛽𝐺𝑁𝑃𝐷𝑤
2
     (4.6) 

Where 𝛼𝐺𝑁𝑃 and  𝛽𝐺𝑁𝑃  are the response parameter of the cell culture with embedded GNP 

exposed to the same irradiation as when 𝛼 and 𝛽 where evaluated in the biological essay. The 

modified response parameters are obtained after evaluate all the quantities in 𝐴, 𝑁𝐺𝑁𝑃 , 𝑅𝑐 and 

specify the values of the mass concentration 𝐶𝐴𝑢 and the GNPs radius. All the numerical 

values can be collected in this new coefficients 𝛼𝐺𝑁𝑃 and  𝛽𝐺𝑁𝑃 , maintaining the linear 

quadratic dependence in 𝐷𝑤. (The radius of the target structure is not a needed parameter, 

𝑅𝑠𝑡 disappear of the expressions after introduce the 𝑁𝐺𝑁𝑃  as a function of the mass 

concentration 𝐶𝐴𝑢  and the structure radius𝑅𝑠𝑡). 
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Being as in the L.E.M the survival probability  

𝑆 = 𝑒−𝛼𝐺𝑁𝑃 𝐷𝑤−𝛽𝐺𝑁𝑃𝐷𝑤2
 (4.7) 

We have obtained a form of assess the response of a cell culture with embedded GNPs, taken 

as an input the parameters that characterize its response when irradiated without GNPs, the 

characteristics of the GNP and characterization of the irradiation process.  

The same calculation can be made in the spatial domain 𝑟  with the local effect model (LEM). 

For inhomogeneous radiation, the number of lesions induced is calculated based off the local 

dose at each point and then integrated over the whole cell volume, giving  

𝑁𝐿𝑡𝑎𝑟 = ∫ 𝑁(𝐷(𝑟))
𝑑𝑉

𝑉
= ∫(𝛼𝐷(𝑟) + 𝛽𝐷(𝑟)2)

𝑑𝑉

𝑉
 

(4.8) 

And the surviving fraction is  

𝑆 = 𝑒−𝑁𝐿𝑡𝑎𝑟     (4.9) 

 

The integrals in Eq.(4.8) were presented in the third chapter Eq.(3.14) an Eq. (3.16) after 

some algebra we obtain the same results that  for the average dose deposited an average 

quadratic dose deposition in the dose domain 𝐷 Eq. (3.30) and Eq.(3.36).  Therefore we have 

obtain the same cell response from the two different perspectives (the same number of lesions 

in target and the same survival fraction). This fact allow us to trust in the veracity of our 

proposed model.  

 The obtained results are presented in the following section.  
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4.2.1 Obtained results for Cell survival. 

 

With the goal of estimate results of the analytical scheme presented previously Chapter 4.2. 

The cell line MDA-MB-231 human mammary gland/breast cells has been chosen, 

characterized for the 𝛼 = 0.019 [1 𝐺𝑦⁄ ]  and 𝛽 = 0.052 [1 𝐺𝑦2⁄ ]  responding to a 160𝑘𝑉𝑝 

photon source (Jain, et al., 2011). Figure 4.2 presents the cell survival modified response of 

the cell culture when it had embedded 1.9𝑛𝑚 GNPs and is exposed to the same planed 

radiation treatment.  

 

Figure 4.2 Radiation dose response curve for MDA-MB-231 cell line with GNPs irradiated with 160kVp x-

rays containing  0
𝜇𝑔

𝑚𝐿
 (⨀) and 2.85

𝜇𝑔

𝑚𝐿
 (∎) gold nanoparticles. Adapted from (Jain, et al., 2011) 

With the help of the software Maple 12. Numerical evaluation of the expression obtained in 

the sub chapter 4.2 can be performed, to fulfil this aim all the parameters should be replaced 

by its numerical value; it is important in each procedure corroborate the dimension 

concordance of the variable assessed. In this particular evaluation, for the equation (4.7), the 

following described values had been assigned to each coefficient: 
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· Initial energy of an incident photon in 𝐽; 𝐸𝑝 = 1.602𝑥10−14𝐽 

· The energy of photoelectron in 𝐽; 𝐾𝐸𝑝𝑒 = 3.204𝑥10−15𝐽 

· CSDA ranges of photoelectron of energy 20 𝑘𝑒𝑉 in water and gold, respectively, in 

𝑛𝑚                      𝑅𝐴𝑢 = 1170𝑛𝑚; 𝑅𝑤 = 8570𝑛𝑚. 

· The photoelectric effect probability for 100 𝑘𝑒𝑉 photons; 𝐾𝑝𝑒 = 0.94 

· The probability for the photoelectric effect at K shell; 𝑃𝐾 = 0.801 

· The mass attenuation coefficient of gold and the mass energy-transfer coefficient of 

water for 100 𝑘𝑒𝑉 photon, in 𝑐𝑚2/𝑔; 
𝜇𝑒𝑛

𝜌 𝐴𝑢
= 5.158

𝑐𝑚2

𝑔
 , 

𝜇𝑡𝑟

𝜌 𝑤
= 0.02546

𝑐𝑚2

𝑔
 

respectively. 

· The radius of the 𝑅𝑁𝑃 GNP, in 𝑛𝑚 ; 𝑅𝑁𝑃 = 100𝑛𝑚 

· The GNP concentration in target 𝐶𝐴𝑎, in 𝑚𝑔 𝑔⁄ ; 𝐶𝐴𝑎 = 7
𝑚𝑔

𝑔
 

· The 𝛼, 𝛽 coefficients for the  cell culture irradiated with the prescribed dose of x-rays 

𝛼 = 0.019 [1 𝐺𝑦⁄ ]  and 𝛽 = 0.052 [1 𝐺𝑦2⁄ ] 

After replace those values in the set of equations Eq.(3.30)-Eq.(3.36), the cell survival curve 

obtained for the cell culture with embedded 100𝑛𝑚 GNP is presented in Figure 4.3 

 

Figure 4.3 Survival curve for MDA-MB-231 cells exposed to a 100 keV  x-ray irradiation, red line cell 

without nanoparticles, green line cell with embedded 100 nm GNP. 
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The obtained parameters following the calculations are 𝛼𝐺𝑁𝑃 = 0.02128 and 𝛽𝐺𝑁𝑃 =

0.07264; and the reported ones 𝛼𝑟𝐺𝑁𝑃 = 0.091     𝛽𝑟𝐺𝑁𝑃 =0.093; results  are not the same, 

but maintain a good agreement between them. The differences in results was expected due to 

the differences between the irradiation essay and the calculated one; e.g. the differences in 

the energies of the photon beam; the radii of the considered nanoparticles and the 

concentration in target. Improvements to reproduce the experimental essays can be done, but 

we consider it a failed effort, due to the lack of exact information of the papers that report 

experimental results in terms of GNPs localization and GNPs uptake by cells.  

 

The Figure 4.4 presents the modifications in the response of the cell culture to varying 

concentration of GNPs. As expected when the concentration increases the fraction of survival 

cells decrease for the same scheme of irradiation, the variation in the response is remarkable 

at higher doses.  

 

Figure 4.4 Calculated Survival fraction for MDA-MB-231 cells for different GNPs concentrations. The input 

parameters are mantained as in Figure 4.3 
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CONCLUSIONS 

 

 A literature review of the applications of GNPs as radiosensitizers in radiotherapy 

was sketched, highlighting the viability of further developments in cancer treatments 

as GNP aided radiotherapy, proposed for various authors. The    review of the models 

that describe cell survival experiments was also performed, recalling the parameters, 

taking into consideration, and presenting the LEM model as the more suitable to 

describe the radiosensitization effect of GNPs embedded in cell cultures.  

 

 The general framework starting from the irradiation process to the assessment of the 

dose deposition in a critical structure with embedded GNPs was developed. The 

proposed framework is a general analytical approach that admits arbitrary radial 

dependence of the dose delivered from the GNPs.  

 

  In order to perform estimations, a simple expression (1/𝑟2 dependence) for the radial 

dose deposition around a single GNP suspended in water-like tissue after irradiation 

has been proposed, which satisfactory fits the obtained general expression.  

 

 Two main suppositions to derive close analytical formulas were proposed: the 

isotropic and homogenous irradiation of the GNPs with photons resulting in isotropic 

radial dose distribution around GNP and sufficiently low GNP concentration in the 

target allowing to exclude from consideration the extremely complex case of  

overlapping dose enhanced regions around individual GNPs. Each one of this can be 

modified in order to present a more realistic frame, but to provide these modifications 

information about the angular dependence of the radial dose distribution and a method 

to take into account dose overlapping from different GNPs are needed.  

 

 Exact knowledge about  the number of GNP inside a cell structure and its specific 

location in the main structures of the target  is not available  at nowadays stage of the 

research in GNP uptake into mammalian cells. Therefore, we had proposed an 

simplify framework to assess cell survival that that does not need  such information 
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and has as parameters the weight concentration of nanoparticles per unit volume of 

the cell structure and the GNP radius, parameters that can be well determined in 

experimental essays.  

 

 The average dose and average squared dose in a target structure with homogeneously 

distributed GNPs were calculated by the two different approaches (spatial r-domain 

and dose D-domain) both leading to the same results, evidencing the equivalence of 

the descriptions. Furthermore, we have obtained the same cell response from the two 

different integration domains (the same number of lesions in target and the same 

survival fraction). This fact confirms the veracity of the proposed approach. 

 

 The analytical approach to assess cell survival was compared with experimental 

results reported in literature, the calculated survival curves present a good agreement  

with the reported experimental ones; the fraction of cells surviving under the same 

prescribed treatment decrease when they had embedded GNPs, and the effects are 

more appreciable when the mass concentration of GNPs increases in a target. Specific 

experimental essays are necessary in order to assess the coincidence of our analytical 

approach with experimental results. 
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