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Introduction

Three elements are needed to define an optimal control problem (OCP): (1) a decision or control
model; (2) a set of admissible control policies, and (3) a performance index. So, the OCP is to find
a control policy that minimizes the performance index. We can classify the OCPs in a variety of
ways, for instance: deterministic or stochastic; continuous or discrete time; finite or infinite horizon;
discounted or average cost performance index; with partial or complete state-system information,
among others.

In this work we focus on the study of OCPs considering partially observable discrete-time stochastic
systems, under a discounted optimality criterion, but unlike the standard case, we assume random
discount factors.

Specifically, we study the OCP associated to partially observable Markov decision processes
(POMDPs) in the following scenarios:

1. Observable random discount factors and unknown distribution.

2. Unobservable random discount factors and unknown distribution.

3. Partially observable random discount factors.

For Problem 1, we propose an estimation and control procedure (see e.g. [14–16, 21]) to prove the
existence of asymptotically discounted optimal policies. Instead, because of the non-observability
of the discount factors, we model the Problem 2 as a minimax control problem. That is, we assume
that the controller has an opponent who selects the unknown distribution at each stage, and the
objective is to minimize the maximum cost generated precisely by such an opponent. This class of
problem is viewed as game against nature (see e.g. [17,21]).

Finally, Problem 3 is analized as a two coupled partially observable stochastic systems, namely, the
discount process and the state process. This defines, in a natural way, an extended POMDP which
is treated accordingly.

In general terms, the POMDPs associated to the Problems 1-3 will be studied following a standard
procedure (see e.g. [7,10,19,23]) which consists to transform the corresponding OCP into a complete
observable optimal control problem using a filtering process defined on a suitable space of probability
measures. This standard procedure has been applied to analyze specific problems in several fields
as inventory systems, queueing systems, economic and financial models (see e.g. [2–5,11,18]), where
the dynamic of the state’s process {xt} is given by a stochastic difference equation of the form

xt+1 = F (xt, at, ξt), t ∈ N0 (I.1)

In this case F is a known function, at represents the control selected by the controller or decision-
maker, and {ξt} is a sequence of independent and identically distributed random variables known
as the disturbance process. Moreover, the observation process {yt} is given as

yt = G(at, xt, ηt), (I.2)

1



where G is a known function and {ηt} is a sequence of i.i.d. random variables, independent on {ξt}.

For example, in an inventory system, let xt and at the stock and the stock ordered at the beginning
of the t−th stage, and ξt the demand during the t−th stage. Then, the equation (I.1) takes the
form

xt+1 = max{xt + at − ξt, 0}.

Consider the situation of a large store where there is no counter serving the customer directly. In
this case, the demand of the article is not completely observed, but rather what is observed are the
sales thorough the cash register. Hence, equation (I.2) takes the form

yt = min{xt + at, ξt}

with ηt = ξt.

Another example with partially observable state process is a queueing system with controlled service
rate where xt and ut are the waiting time and the service rate of the t−th customer, respectively,
and ξt is the interarrival time between the t−th and (t + 1)−th customers. As is shown in [11], if
γt represents a random “base” service time of the t−th customer and at is the control defined as
at = 1/ut, the process {xt} evolves as

xt+1 = max{xt + atγt − ξt, 0}, t ∈ N0.

Consider that the waiting time is partially observable because only is observed when xt = 0, which
means that the controller only checks when the customer does not queue or arrives directly at the
server.

In other words, the controller cannot register the waiting time of a customer when the server is
busy. Hence, the observation process {yt} is defined as

yt = 1[xt=0], t ∈ N.

On the other hand, assuming random discount factors, we generalize the standard case where it
is considered constant. This fact is important both from the theoretical point of view and from
applications. The later includes for example, financial models where the discount factors usually
depend on interest rates, which, in turn, are random.

As is well known, there is great uncertainty surrounding interest rates in financial markets. This
uncertainty is due either to the behavior and decisions of investors, to political decisions of gov-
erments, weather issues, among many others. Therefore, it is feasible to assume that the random
variable that defines the discount factor is partially observable in the sense of equations (I.1) and
(I.2). That is, we assume that the discount factor is a stochastic process {αt}, where αt represents
the discount factor at time t, evolving as

αt+1 = G1(αt, ξ
(1)
t )

with observation process
βt = G2(αt, ξ

(2)
t )

where G1 and G2 are known functions and {ξ(1)
t } and {ξ(2)

t } are independent sequences random
variables.
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In [14] is introduced an example of a consumption-investment problem where the discount factor
process {αt} evolves according to an autoregresive process of the form

αt+1 = hαt + ξ
(1)
t ,

for some suitable h > 0. In this example, an observation process could be

βt = I[αt≤α],

which means that the discount factor only is observed while it remains below a threshold α ∈ (0, 1).

Although POMDP and control problems with random discount factors (see e.g. [12–16, 21]) have
both studied separately, to the best of our knowledge, this is the first work dealing with these two
problems together, which constitutes the main motivation and objective in this thesis.

The work is structured in the following manner: In Chapter 1, we introduce basic definitions and
results on COMDPs and POMDPs, and present general conditions under which there exist an
optimal policy. In Chapter 2, we present the OCP for POMDP with observable random discount
factors and then prove the existence of an asymptotically random-discounted policy. In chapter 3,
we show the case with unobservable random discount factors and prove the existence of a minimax
policy. In chapter 4, we address the problem of the partially observable discount factors and show
the existence of an optimal policy.

3
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Chapter 1

Preliminaries on Partially Observable Markov Control
Models

1.1 Introduction

In this chapter we will stablish the most important elements on the theory of partially observ-
able Markov control models. These include the techniques and results that we will apply in the
development of the following chapters.

In particular the class of partially observable optimal control problems we are interested will be
analyzed by applying standard approach which consists of transforming them into new control
problems that are completely observable but defined in appropiate measure spaces. In this sense,
for the sake of organizing the theory, we first introduce the main facts related with the standard
completely observable Markov decision processes. These include the corresponding control model,
sets of control policies, and the discounted performance index.

1.2 Completely observable Markov decision processes

In this section we introduce the completely observable Markov decision process and the optimal
control problem with infinite horizon.

Definition 1. A discrete time completely observable control model consists of five objects:

MCO = (X,A,Q, ν, c), (1.2.1)

where X and A are the state and action spaces, respectively, and both are assumed to be Borel
spaces; Q, the transition law, is a stochastic kernel of X given X × A; ν ∈ P(X) is a probability
measure called the initial distribution; and c a bounded measurable function from X×A to R called
cost-per-stage function.

The control modelMCO represents a controlled stochastic system in which the states are completely
observable at times t ∈ N0. The dynamics of the system can be described as follows: at time t = 0,
the state x0 is a random variable with distribution ν. Now if at time t, the state of the system
is xt = x ∈ X, the control at = a ∈ A is applied. Then two things occur: (1) a cost c(x, a) is
generated, and (2) the system moves to a new state xt+1 according to the probability distribution
Q(·|x, a) on X. If the new state is xt+1 = x′, a control at+1 = a′ is chosen and the process is
repeated, over and over again.

There are situations where the dynamics of the system is defined by a stochastic difference equation
of the form

xt+1 = F (xt, at, ξt), t ∈ N0, (1.2.2)

5



where {ξt} is a sequence of independent and identically distributed (i.i.d.) random variables with
values in a space S, with common distribution θ, independent of the initial state x0 and known
as the state-disturbance process. In this case if x0 = x the initial distribution ν is the probability
measure concentrated at x ∈ X. Further, the transition law is given by

Q(B|x, a) = P (F (xt, at, ξt) ∈ B|xt = x, at = a)

= θ({s ∈ S|F (x, a, s) ∈ B})

=

∫
S

1B[F (x, a, s)]θ(ds), B ∈ B(X). (1.2.3)

The actions a ∈ A are chosen according to rules known as control policies. Furthermore the dynamics
of the system defines a vector, called t-history, ht ∈ Ht := (X ×A)t ×X, of the form

ht := (x0, a0, ..., xt−1, at−1, xt), t ∈ N0.

Specifically, the definition of a control policy is as follows:

Definition 2. A control policy is a sequence of stochastic kernels π = {πt}, t ∈ N0 on A given Ht. A
control policy is Markovian (deterministic) if exists a sequence of measurable functions ft : X → A,
such that for all ht ∈ Ht, C ∈ B(A) and t ∈ N0

πt(C|ht) = 1C [ft(xt)],

and stationary if there exists a measurable function f : X → A, such that for all ht ∈ Ht y t ∈ N0

πt(C|ht) = 1C [f(xt)],

where 1C is the indicator function of the set C.

We denote by F the set of all decision functions (or selectors), i.e., measurable functions f : X → A.
As usual, a stationary policy is denoted by f∞, taking the form f∞ := {f}.

We denote by Π the set of all control policies and by ΠM the set of Markov policies. Following a
standard convention, we denote by F the set of stationary policies. Hence F ⊂ ΠM ⊂ Π.

Now, we are ready to establish the COMDP. Let (Ω,F) be a measurable space where Ω := (X×A)∞

and F := B(Ω) = B((X × A)∞) the corresponding product σ−algebra. Note that the elements of
Ω are of the form

ω = (x0, a0, x1, a1, ...).

Let π ∈ Π be a control policy and ν be an arbitrary probability measure on X. Then by Ionescu
Tulcea Theorem (see Poposition C.2), there exists a unique probability measure P πν on (Ω,F), such
that for all B ∈ B(X), C ∈ B(A) and ht ∈ Ht

P πν (x0 ∈ B) = ν(B)

P πν (at ∈ C|ht) = πt(C|ht)

P πν (xt+1 ∈ B|ht, at) = Q(B|xt, at) (1.2.4)

Definition 3. The stochastic process (Ω,F , P πν , {xt}) is called a COMDP.

6



1.3 Optimal control problem for COMDP

In order to define the optimal control problem (OCP) for COMPD with infinite horizon, we consider
the control model (1.2.1). Thus for a control policy π ∈ Π and initial distribution ν ∈ P(X) we
define the total expected discounted cost as

V (π, ν) := Eπν

[ ∞∑
t=0

βtc(xt, at)

]
, (1.3.1)

where Eπν is the expectation with respect to the probability measure P πν , induced by π and ν, and
β ∈ (0, 1) is the so-called discount factor. Furthermore, the optimal cost function or value function
is given by

V ∗(ν) := inf
π∈Π

V (π, ν), ν ∈ P(X).

So we can define the OCP for a COMDP as follows:

Definition 4. Given the control modelMCO, introduced in (1.2.1), a family of control policies Π,
and the performance index V , the OCP is to find a policy π∗ ∈ Π such that

V (π∗, ν) = V ∗(ν), ∀ν ∈ P(X). (1.3.2)

In this case π∗ is called a discounted optimal policy.

1.4 Solution to OCP for the COMDP

For simplicity, we consider that the initial distribution ν ∈ P(X) is concentrated in x0 = x. So,
from (1.3.1), the total expected discount cost takes the form

V (π, x) := Eπx

[ ∞∑
t=0

βtc(xt, at)

]
.

Then, by (1.3.2), the optimal control problem is to find a policy π∗ ∈ Π such that

V (π∗, x) = V ∗(x) := inf
π∈Π

V (π, x), ∀x ∈ X.

For the purposes of this work, we introduce the following weaker optimality criterion (weaker in the
sense that optimality implies the next optimality criterion):

Definition 5. A policy π ∈ Π is asymptotically discount optimal if, for every x ∈ X,∣∣Vn(π, x)− Eπx [V ∗(xn)]
∣∣→ 0, as n→∞

where,

Vn(π, x) := Eπx

[ ∞∑
t=n

βt−nc(xt, at)

]
is the total discounted cost from stage n onward.

In order to show the existence of an optimal policy, we impose the following conditions on our model.
Let C(X) be the Banach space of bounded and continuous functions on X with the supremum norm

||v|| = sup
x∈X
|v(x)|.

7



Assumption 6.

1. A is a compact set.

2. |c(x, a)| ≤ b for all (x, a) ∈ X × A and continuous in a ∈ A. Therefore, the total discounted
cost is uniformly bounded: |V (π, x)| ≤ b/(1− β), for all policy π and initial state x.

3. The kernel Q is weakly continuous, that is,
∫
X u(x′)Q(dx′|x, a) is a bounded and continuous

function on a ∈ A, for each x ∈ X and each function u ∈ C(X).

The solution of the OCP for the CO case can be obtained by applying the following contraction
mapping approach (see [19]):

1. We define a suitable operator T : C(X)→ C(X) and show that T is a contraction operator on
C(X).

2. Hence, by the Banach’s Fixed-Point Theorem for contraction operators (see Proposition A.1),
there exists a unique function u∗ ∈ C(X) such that u∗ = Tu∗.

3. Finally, one shows that u∗ equals the optimal discounted cost V ∗, so that V ∗ is the unique
bounded solution to the optimality equation.

In order to develope the above approach, for a function u : X → R in C(X), define the dynamic
programming operator by

Tu(x) = min
a∈A

{
c(x, a) + β

∫
X
u(x′)Q(dx′|x, a)

}
, x ∈ X (1.4.1)

and, for f∞ ∈ F the operator

Tfu(x) = c(x, f(x)) + β

∫
X
u(x′)Q(dx′|x, f(x)). (1.4.2)

Lemma 7. Under Assumption 6, we have:

1. Tu(x) ∈ C(X) for all u ∈ C(X).

2. The operators T and Tf are contraction operators modulus β.

3. There exist a unique function u∗ ∈ C(X) and a unique function u∗f ∈ C(X) such that

Tu∗ = u∗ and Tu∗f = u∗f ,

and moreover, for any function u ∈ C(X)

||Tnu− u∗|| → 0 and ||Tnuf − u∗f || → 0, as n→∞,

where Tn is defined recursively by Tn := T (Tn−1), for all n = 1, 2, ... where T 0 is the identity.

Proof.

1. Let u ∈ C(X). It is clear that from Assumption 6.2 and 6.3

v(x, a) := c(x, a) + β

∫
X
u(x′)Q(dx′|x, a)

is continuous on a ∈ A. Then, from Proposition D.2, and Assumption 6.1, we have that
mina∈A v(x, a) is continuous on x ∈ X. Hence, Tu(x) ∈ C(X).

8



2. Let u, u′ ∈ C(X). Then,

∣∣Th(x)− Th′(x)
∣∣

=

∣∣∣∣∣min
a∈A

{
c(x, a) + β

∫
X
h(x′)Q(dx′|x, a)

}
−min

a∈A

{
c(x, a) + β

∫
X
h′(x′)Q(dx′|x, a)

}∣∣∣∣∣
≤ max

a∈A

∣∣∣∣c(x, a) + β

∫
X
h(x′)Q(dx′|x, a)− c(x, a)− β

∫
X
h′(x′)Q(dx′|x, a)

∣∣∣∣
= βmax

a∈A

∣∣∣∣ ∫
X

(
h(x′)− h′(x′)

)
Q(dx′|x, a)

∣∣∣∣
≤ βmax

a∈A

∫
X
|h(x′)− h′(x′)|Q(dx′|x, a)

≤ β||h− h′||

Therefore,

||Th− Th′|| ≤ β||h− h′||.

Similarly we prove

||Tfh− Tfh′|| ≤ β||h− h′||.

3. This part follows by applying the Banach Fixed Point Theorem to the operator T and Tf (see
Proposition A.1).

Then, Lemma 7 has been proved.

Now, we will prove that the fixed point u∗f is indeed V (f∞, x).

Lemma 8. Under Assumption 6, we have:

1. For every x ∈ X, u∗f (x) = V (f∞, x) for an arbitrary stationary policy f∞ ∈ F.

2. A policy π∗ is optimal if and only if its total expected cost satisfies TV (π∗, x) = V (π∗, x) for
every x ∈ X.

Proof.

1. By the uniqueness of the fixed point it is enough to prove that TV (f∞, x) = V (f∞, x). To
this end, we write V (f∞, x) as

V (f∞, x) = Ef
∞

x

[ ∞∑
t=0

βtc(xt, at)

]
= c(x, f(x)) + βEf

∞
x

[ ∞∑
t=1

βt−1c(xt, at)

]
. (1.4.3)

9



Then, by standard properties of the expectation operator, we have

Ef
∞

x

[ ∞∑
t=1

βt−1c(xt, at)

]
= Ef

∞
x

[
Ef
∞

x

( ∞∑
t=1

βt−1c(xt, at)

∣∣∣∣∣h1

)]

= Ef
∞

x

[
Ef
∞

x1

( ∞∑
t=1

βt−1c(xt, at)

)]

= Ef
∞

x

[
Ef
∞

x1

( ∞∑
t=0

βtc(xt+1, at+1)

)]
= Ef

∞
x [V (f∞, x1)]

=

∫
V (f∞, x′)Q(dx′|x, f(x)), (1.4.4)

where the last equation comes from (1.2.4).

Hence, combining (1.4.3) and (1.4.4) we obtain

V (f∞, x) = c(x, f(x)) + β

∫
V (f∞, x′)Q(dx′|x, f(x)) = TV (f∞, x), ∀x ∈ X,

which proves part 1.

2. Let π∗ be a policy such that V (π∗, x′) = TV (π∗, x′), i.e.,

V (π∗, x) = min
a∈A

{
c(x, a) + β

∫
V (π∗, x′)Q(dx′|x, a)

}
, ∀x ∈ X.

To prove that π∗ is optimal we need to show that V (π∗, x′) ≤ V (π, x) for every policy π and
initial state x ∈ X. For a history ht ∈ Ht, it follows from the Markov property (1.2.4) that

Eπx [βt+1V (π∗, xt+1)|ht, at] = βt+1

∫
V (π∗, x′)Q(dx′|xt, at)

= βt

{
c(xt, at) + β

∫
V (π∗, x′)Q(dx′|xt, at)

}
− βtc(xt, at)

≥ βtV (π∗, xt)− βtc(xt, at).

Equivalently
−Eπx [βt+1V (π∗, xt+1)|ht, at] + βtV (π∗, xt) ≤ βtc(xt, at).

Taking expectations Eπx on both sides of this inequality and summing over t = 0, 1, ..., n we
obtain (telescoping series),

n∑
t=0

{
Eπx [βtV (π∗, xt)]− Eπx [βt+1V (π∗, xt+1)]

}
≤ Eπx

[
n∑
t=0

βtc(xt, at)

]
.

which yields

V (π∗, x)− βn+1Eπx [V (π∗, xn+1)] ≤ Eπx

[
n∑
t=0

βtc(xt, at)

]
.
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Now, since V (π, x) is bounded for all π ∈ Π, letting n→∞, we get V (π∗, x) ≤ V (π, x), the desired
conclusion, i.e., π∗ is optimal.

Lastly, we prove the sufficient condition. Let π∗ be an optimal policy. We will show that V (π∗, x)
satisfies: (1) V (π∗, x) ≥ TV (π∗, x) and (2) V (π∗, x) ≤ TV (π∗, x), hence V (π∗, x) satisfies the
optimality equation. We express V (π∗, x) as

V (π∗, x) = Eπ
∗

x

[ ∞∑
t=0

βtc(xt, at)

]
=

∫
A

{
c(x, a) + β

∫
X
V (π∗(1), x′)Q(dx′|x, a)

}
π∗0(da|x),

where π∗(1) = {π∗(1)
t } denotes the “1-shifted” policy, i.e., with x0 = x and a0 = a,

π
∗(1)
t (·|ht) := π∗t+1(·|x0, a0, ht), t = 0, 1, ...

Thus, since π∗ is optimal,

V (π∗, x) ≥
∫
A

{
c(x, a) + β

∫
X
V (π∗, x′)Q(dx′|x, a)

}
π∗0(da|x)

≥ min
a∈A

{
c(x, a) + β

∫
X
V (π∗, x′)Q(dx′|x, a)

}
= TV (π∗, x)

To prove (2), let f ∈ F be an arbitrary stationary policy, and let π′ := (f, π∗) be the policy that
uses f at the initial stage t = 0, and the optimal policy π∗ from stage t = 1 onwards. Because π∗

is optimal we have

V (π∗, x) ≤ V (π′, x) = c(x, f(x)) + β

∫
V (π∗, x′)Q(dx′|x, f(x)), ∀x ∈ X.

hence, since f ∈ F is arbitrary, we finally obtain

V (π∗, x) ≤ min
a∈A

{
c(x, a) + β

∫
V (π∗, x′)Q(dx′|x, a)

}
= TV (π∗, x).

Theorem 9. Suppose that Assumption 6 holds. Then:

(a) The optimal discounted cost function V ∗ : X → R is the unique solution in C(X) of the opti-
mality equation, that is

V ∗(x) = min
a∈A

{
c(x, a) + β

∫
X
V ∗(x′)Q(dx′|x, a)

}
, x ∈ X.

(b) There exists f∗ ∈ F such that

V ∗(x) = c(x, f∗(x)) + β

∫
X
V ∗(x′)Q(dx′|x, f∗(x)), x ∈ X (1.4.5)

Moreover, the stationary policy f∞∗ = {f∗} is an optimal control policy.
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Proof.

(a) Let π∗ ∈ Π be an optimal policy, that is V ∗(x) = V (π∗, x), for all x ∈ X. Then, from Lemma
8.2 we have TV ∗(x) = V ∗(x), for all x ∈ X. Finally from the uniqueness of the fixed point of
the operator T , we prove that V ∗ is the unique solution to the optimality equation.

(b) The existence of f∗ ∈ F satisfaying (1.4.5), follows from Proposition D.2. On the other hand
iterating (1.4.5) we have

V ∗(x) = Ef
∞
∗
x

[
n∑
t=0

βtc(xt, at)

]
+ βn+1Ef

∞
∗
x V ∗(xn+1)

≥ Ef∞∗x

[
n∑
t=0

βtc(xt, at)

]
, ∀n ∈ N, x ∈ X.

Thus, letting n→∞ we obtain

V ∗(x) ≥ V (f∞∗ , x), x ∈ X.

However, since V ∗(x) = infπ∈Π V (π, x), we conclude that

V ∗(x) = V (f∞∗ , x), x ∈ X,

which proves that f∞∗ is an optimal control policy.

Remark 10. Let vt a sequence of functions in C(X) defined as v0 = v and

vt(x) = T tv(x) = Tvt−1(x) := min
a∈A

{
c(x, a) + β

∫
X
vt−1(x′)Q(dx′|x, a)

}
, t ≥ 1, x ∈ X.

Note that by the contraction property of T (see Lemma 7),

||vt − u∗|| = ||Tvt−1 − Tu∗|| ≤ β||vt−1 − u∗||,

so that ||vt − u∗|| ≤ βt||v0 − u∗||, for all t ≥ 0. Therefore, from Theorem 9 we have

||vt − V ∗|| → 0, as t→∞. (1.4.6)

The functions vt are called value iteration functions.

We conclude this section presenting sufficient conditions for asymptotic optimality, introduced in
Definition 5.

Lemma 11. Under Assumption 6, a policy π ∈ Π is asymptotically optimal for the control model
(1.2.1) if for all x ∈ X

lim
t→∞

Eπx [Φ(xt, at)] = 0,

where Φ : X ×A→ R is called discrepancy function, and is defined as

Φ(x, a) = c(x, a) + β

∫
X
V ∗(x′)Q(dx′|x, a)− V ∗(x).

12



Proof. First note that Φ ≥ 0. Now, for each x ∈ X, π ∈ Π and t ≥ 0, from (1.2.4),

Φ(xt, at) = Eπx [c(xt, at) + βV ∗(xt+1)− V ∗(xt)|ht, at].

Next, we multiply by βt−n to obtain

βt−nΦ(xt, at) = βt−nEπx [c(xt, at) + βV ∗(xt+1)− V ∗(xt)|ht, at],

and taking expectation Eπx we have

βt−nEπx [Φ(xt, at)] = βt−nEπx [c(xt, at) + βV ∗(xt+1)− V ∗(xt)].

Summing over all t ≥ n we obtain
∞∑
t=n

βt−nEπx [Φ(xt, at)] =
∞∑
t=n

βt−nEπx [c(xt, at) + βV ∗(xt+1)− V ∗(xt)]

= Eπx [

∞∑
t=n

βt−nc(xt, at)] + Eπx [

∞∑
t=n

β(t+1)−nV ∗(xt+1)− βt−nV ∗(xt)]

= Vn(π, x) + Eπx [ lim
N→∞

N∑
t=n

β(t+1)−nV ∗(xt+1)− βt−nV ∗(xt)]

= Vn(π, x) + Eπx [ lim
N→∞

{βNV ∗(xn+N )− V ∗(xn)}]

= Vn(π, x)− Eπx [V ∗(xn)] + Eπx [ lim
N→∞

βNV ∗(xn+N )].

Since V ∗ is a bounded function (see Assumption 6.2), we have Eπx [βNV ∗(xn+N )]→ 0, as N →∞.
Hence,

∞∑
t=n

βt−nEπx [Φ(xt, at)] = Vn(π, x)− Eπx [V ∗(xn)].

Finally, if Eπx [Φ(xt, at)]→ 0, we get

|Vn(π, x)− Eπx [V ∗(xn)]| → 0, as n→∞,

that is, π is asymptotically optimal.

1.5 Partially observable Markov decision process

We now describe the class of controlled processes that we are interested in this work, the so-called
partially observable Markov Decision Processes (POMDPs).

Unlike COMDPs, in POMDPs the controller only have partial information of the state of the system
xt through a observation process yt. Specifically, similarly to (1.2.2), we consider that the dynamics
of the system is given by

xt+1 = F (xt, at, ξt), t ∈ N0

yt = G(at−1, xt, ηt), t ∈ N
y0 = G0(x0, η0),

13



where F , G and G0 are known functions; xt, at and yt are the state, control, and the observation
at time t, respectively. Further, {ξt} is a sequence of i.i.d random variables that take values in a
Borel space S1, with common distribution θ1; and {ηt} is sequence of i.i.d. random variables that
take values in a Borel space S2, with common distribution θ2, known as the observation noise or
measurement.

A discrete-time partially observed Markov decision model consist of eight objects:

MPO = (X,Y,A,Q, ν,K,K0, c̃) (1.5.1)

where, X, Y , and A represent the state, observation, and control spaces, respectively, all of them
are assumed to be Borel spaces. The following stochastic kernels are defined similarly to (1.2.3),
that is, Q(dx′|x, a), the transition law among states, is a stochastic kernel on X given X×A defined
as

Q(B|x, a) =

∫
S1

1B[F (x, a, s(1))]θ1(ds(1)); B ∈ B(X), x ∈ X, a ∈ A;

K(dy|a, x), the observation kernel, is a stochastic kernel on Y given A×X defined by

K(C|a, x) =

∫
S2

1C [G(a, x, s(2))]θ2(ds(2)); C ∈ B(Y ), x ∈ X, a ∈ A;

ν ∈ P(X) is the distribution (a priori) of x0; K0, the initial observation, is a stochastic kernel on Y
given X, and if x0 = x, it is defined by

K0(C|x) =

∫
S2

1C [G0(x, s(2))]θ2(ds(2)) C ∈ B(Y ), x ∈ X.

Finally c̃ ∈ B(X ×A) is the cost-per-stage function.

The control model (1.5.1) has the following interpretation: at time t = 0 the initial state x0 has a
given distribution ν, then an observation y0 is generated according to the initial observation kernel
K0(·|x0). Next the controller selects an action a0 ∈ A, the cost c̃(x0, a0) is incurred, and the system
moves to a new state x1 according to the law Q(·|x0, a0). In general, at time t, once the action
at ∈ A is selected, the following happen: (1) a cost c̃(xt, at) is generated, (2) the system moves
to the state xt+1 according to the transition law Q(dxt+1|xt, at), and (3) the observation yt+1 is
generated by the observation kernel K(dyt+1|at, xt+1), and the process is repeated.

Hence, the dynamics of the system define a vector called the observed history defined as

h0 := (ν, y0) ∈ H0 := P(X)× Y

ht := (ν, y0, a0, ..., yt−1, at−1, yt) ∈ Ht := Ht−1 ×A× Y, t ≥ 1.

Definition 12. A control policy for the PO control model is a sequence of stochastic kernels π =
{πt}, t ∈ N0 on A given Ht.

Markov policies and stationary policies are defined similarly as in Definition 2. We will remain
using the same notation Π, ΠM , and F, for the family of all policies, Markov policies, and stationary
policies, respectively. The context itself will determine which one we refer to.
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Now, we are ready to establish the POMDP. Let Ω := (X×Y ×A)∞ and F = B(Ω) the corresponding
product σ-algebra. Note that the elements of Ω are of the form

ω = (x0, y0, a0, x1, y1, a1, ...)

Then, each policy π ∈ Π and initial distribution ν ∈ P(X), together with the stochastic kernels Q,
K and K0, determine, on the space Ω, a probability measure P πν given by

P πν (dx0, dy0, da0, dx1, dy1, da1, ...) =

ν(dx0)K0(dy0|x0)π0(da1|q, y0)Q(dx1|x0, a0)K(dy1|a0, x1)π1(da1|q, y0, a0, y1)...

The conditional expectation with respect to this probability measure is denoted by Eπν .

Definition 13. The stochastic process (Ω,F , P πν , {xt, yt}) is called a POMDP.

We consider the control model (1.5.1). For each policy π ∈ Π and initial distribution ν ∈ P(X), we
define the total expected discounted cost as

J(π, ν) := Eπν

[ ∞∑
t=0

βtc̃(xt, at)

]
, (1.5.2)

where β ∈ (0, 1) is a given discount factor.Then, similarly as Definition 4, if

J∗(ν) := inf
Π
J(π, ν), ν ∈ P(X),

is the PO-value function, the PO optimal control problem is to find a policy π∗ ∈ Π such that

J(π∗, ν) = J∗(ν), ν ∈ P(X). (1.5.3)

1.6 Reduction of a PO control model to a CO control model

We analyze the solution of the partially observable optimal control problem (PO-OCP) following a
standard approach (see e.g., [7,19,23]), which consists to transform it into a completely observable
optimal control problem (CO-OCP) defined on P(X). That is, we introduce a controlled CO process
{νt} ⊂ P(X), called the filtering process (see e.g., [10]), which evolves according to a difference
equation

ν0 = H0(ν, y0) and νt+1 = H(νt, at, yt+1), (1.6.1)

where the functions H0 and H are known, ν is the a priori distribution of x0, and {yt} is the
observation process.

Lemma 14. Let X, Y and W be Borel spaces and let R(d(x, y)|w) be a stochastic kernel on X×Y
given W . Then, there exist stochastic kernels H ′(dx|w, y) and R′(dy|w) on X given W × Y and on
Y given W , respectively, such that

R(B × C|w) =

∫
C
H ′(B|w, y)R′(dy|w), ∀B ∈ B(X), C ∈ B(Y ), w ∈W

where R′(dy|w) is the marginal distribution of R(d(x, y)|w) on Y , i.e.

R′(dy|w) := R(X × C|w), C ∈ B(Y ).
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The functions H0 and H are stochastic kernels obtained by Lemma 14 on decomposition of proba-
bility measures on a product space (see e.g., [7, 9, 10, 19,23] for more details).

We proceed to obtain the function H0 and H by applying Lemma 14 in the following sense. Let
X and Y be the state and observation spaces, respectively, and W := P(X) × A. In addition, let
R(d(x, y)|ν, a) a stochastic kernel on X × Y given W defined as

R(B × C|ν, a) :=

∫
X

∫
B
K(C|a, x′)Q(dx′|x, a)ν(dx), B ∈ B(X), C ∈ B(Y ),

whereQ andK are as in (1.5.1). Then, from Lemma 14, there exists a stochastic kernelH ′(dx|ν, a, y)
on X given W × Y = P(X)×A× Y such that for each B ∈ B(X), C ∈ B(Y ) and (ν, a) ∈W ,

R(B × C|ν, a) =

∫
C
H ′(B|ν, a, y)R′(dy|ν, a),

where R′(C|ν, a) := R′(X × C|ν, a) is the marginal of R(·|ν, a) on Y taking the form

R′(C|ν, a) =

∫
X

∫
X
K(C|a, x′)Q(dx′|x, a)ν(dx), C ∈ B(Y ), (ν, a) ∈W. (1.6.2)

Since H ′ is a stochastic kernel the function H : P(X)×A× Y defined as

H(ν, a, y) := H ′(·|ν, a, y) (1.6.3)

is measurable, which in turn yields that

k(D|ν, a) :=

∫
Y

1D[H(ν, a, y)]R′(dy|ν, a), D ∈ B(P(X)), (ν, a) ∈ P(X)×A, (1.6.4)

defines a stochastic kernel on P(X) given P(X)×A.

Following similar arguments as the previous procedure, we prove that there exists a stochastic kernel
H ′0(dx|ν, y) on X given P(X)× Y such that the function H0 : P(X)× Y → P(X) defined as

H0(ν, y) := H ′0(·|ν, y) (1.6.5)

is measurable. Thus,

k0(D|ν) :=

∫
Y

1D[H0(ν, y)]R′0(dy|ν), D ∈ B(P(X)), ν ∈ P(X); (1.6.6)

defines a stochastic kernel on P(X) given P(X).

As is shown in [7,19], from (1.6.1), we have that, for a control policy π ∈ Π and initial distribution
ν ∈ P(X), and for each B ∈ B(X),

ν0(B) = P πν [x0 ∈ B|h0] = H0(ν, y0)(B) = H0(h0)(B), P πν − a.s. (1.6.7)

and
νt+1(B) = P πν [xt+1 ∈ B|ht+1] = H(νt, at, yt+1)(B), P πν − a.s. (1.6.8)

Hence νt can be interpreted as the a posteriori distribution of the unobservable state xt given the
observable history ht.
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Taking into account the previous elements, and considering the PO control model (PO-CM) intro-
duced in (1.5.1), we define the following CO control model (CO-CM)

MCO = (P(X), A, k, k0, c), (1.6.9)

with state space P(X), control space A, transition law k defined in (1.6.4), initial distribution k0

defined in (1.6.6) and one-stage cost function c : P(X)×A→ R defined as

c(ν, a) :=

∫
X
c̃(x, a)ν(dx).

From (1.6.4) and (1.6.6), k and k0 represent the transition kernels of the process {νt} (see (1.6.1),
(1.6.7), (1.6.8)) corresponding to the constructed CO-CM (1.6.9). In order to introduce a suitable
set of policies forMCO we define the information vector

it := (ν0, a0, ..., νt−1, at−1, νt) ∈ It, where It := (P(X)×A)t × P(X)

According to the above, similarly as Definition 2, we define the corresponding control policies which
are called information policies.

Definition 15. An information policy (or i-policy) is a sequence of stochastic kernels δ = {δt} on
A given It, i.e., of the form δt(da|it). We denote ∆ the set of all i-policies.

The Markov policies and the stationary ones are defined accordingly. Now, related to the equivalence
of the models (1.5.1) and (1.6.9), note that ∆ ⊂ Π. Indeed if we take an arbitrary i-policy δ = {δt},
this defines a policy πδ = {πδt } ∈ Π given by

πδt (·|ht) := δt(·|it(ht)), ∀ht ∈ Ht, t ≥ 0,

where, it(ht) ∈ It is the information vector given by the observable history ht. Then, δ and πδ are
equivalents in the sense that for all t ≥ 0, πδ assigns the same conditional probability on A as δt,
for all ht ∈ Ht. In fact we have the following result.

Lemma 16. For all π ∈ Π there exists an i-policy δ ∈ ∆, such that (see (1.5.2))

J(δ, ν) = J(π, ν), ν ∈ P(X).

Proof. See e.g., [23].

As previous sections, an i-policy δ ∈ ∆ and ν ∈ P(X) defines a probability measure P δν on the space
(P(X)×A)∞

Now, consider the control model (1.6.9) and the set of i-policies ∆. We define the total discounted
cost as

V (δ, ν) := Eδν

[ ∞∑
t=0

βtc(νt, at)

]
, ∀δ ∈ ∆, ν ∈ P(X)

where β ∈ (0, 1) is the discount factor and Eδν is the expectation operator asociated to P δν . Hence
the optimal cost function is

V ∗(ν) := inf
δ∈∆

V (δ, ν), ν ∈ P(X).

17



Then, the OCP is to find an i-policy δ∗ ∈ ∆ such that

V (δ∗, ν) = V ∗(ν), ν ∈ P(X). (1.6.10)

Furthermore, the original PO-OCP (1.5.3) and the CO-OCP (1.6.10) are equivalent, (see e.g., [23])
as is stated in the following result.

Lemma 17. V (δ, ν) = J(δ, ν), ∀δ ∈ ∆, ν ∈ P(X).

Given the solution to the optimal control problem (OCP) for the completely observable control
model (CO-CM) (see Theorem 9) and knowing that we can reduce the POMDP to a COMDP, our
objective now is to impose conditions on the original POMDP (1.5.1) in order to ensure a solution
in the CO-CM (1.6.9). These conditions are the following,

Assumption 18.

1. A is a compact set.

2. c̃ ∈ C(X ×A).

3. The state transition law Q and the observation kernel K are continuous stochastic kernels.

4. The function H and H0, defined in (1.6.7) and (1.6.8), are continuous on P(X)× A× Y and
P(X)× Y , respectively.

Now, we show that under those conditions we get the suficient conditions in Assumption 6, corre-
sponding to the CO-CM (1.6.9).

Lemma 19. If Assumption 18 holds, then the CO-CM (1.6.9) satisfies:

1. A is a compact set.

2. c ∈ C(P(X)×A)

3. The stochastic kernel k and k0 are weakly continuous.

Proof. Observe that 1 is the same as Assumption 18. Then we proceed to prove 2 and 3.

Since c̃ is a bounded and continuous function in X ×A and

c(ν, a) =

∫
X
c̃(x, a)ν(dx),

Proposition C.1 yields, c ∈ C(P(X) × A). On the other hand, let v ∈ C(P(X)). To prove that k is
weakly continuous we need to prove that the function

a 7→
∫
P(X)

v(ν ′)k(dν ′|ν, a), ν ∈ P(X),

is continuous.

From (1.6.2) and (1.6.4) we have

v′(ν, a) :=

∫
P(X)

v(ν ′)k(dν ′|ν, a)

=

∫
Y
v[H(ν, a, y)]R′(dy|ν, a)

=

∫
X

∫
X

∫
Y
v[H(ν, a, y)]K(dy|a, x′)Q(dx′|x, a)ν(dx).
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Now, because H is continuous, from Proposition C.1(b)∫
Y
v[H(ν, a, y)]K(dy|a, x′)

is continuous. Likewise, applying repeatedly Proposition C.1(b) we get that∫
P(X)

v(ν ′)k(dν ′|ν, a)

is continuous. Similarly is proved that k0 is continuous.

Summarizing, if we combine Theorem 9 and Lemma 19 we obtain the following result.

Theorem 20. Suppose that Assumption 18 holds, that is, the CO-CM (1.6.9) satisfies Assumption
6. Then:

(a) The optimal discounted cost function V ∗ : P(X) → R is the unique solution in C(P(X)) of the
optimality equation, that is

V ∗(ν) = min
a∈A

{
c(ν, a) + β

∫
X
V ∗(ν ′)k(dν ′|ν, a)

}
, ν ∈ P(X). (1.6.11)

(b) There exists f∗ : P(X)→ A such that

V ∗(ν) = c(ν, f∗(ν)) + β

∫
P(X)

V ∗(ν ′)k(dν ′|ν, f∗(ν)), ν ∈ P(X). (1.6.12)

Moreover, the stationary i-policy f∞∗ = {f∗} is an optimal control i-policy.
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Chapter 2

POMDP with Observable Random Discount Factors and
Unknown Distribution

2.1 Introduction

In this chapter we study a class of partially observable Markov decision processes (POMDP) with
random discount factors of the form α̃(ξt), where {ξt} is a sequence of observable i.i.d. random
variables. The role of the discount factors α̃(ξt), t ∈ N0, during the evolution of the PO system
is the following. At time t = 0, the initial x0 has a given distribution ν and an observation y0 is
generated according to an observation kernel. Then the controller chooses a control a0 ∈ A and a
cost c(x0, a0) is incurred. Next the system moves to a new state x1 according to a transition law, the
random disturbance ξ1 comes in and a new observation y1 is generated. Now, the controller selects
an action a1 ∈ A and incurs a discounted cost α̃(ξ1)c(x1, a1). Next the system moves to a new state
x2 and the process is repeated. In general, at time t, on the record of the random disturbances, the
controller incurs the discounted cost

α̃(ξ1)α̃(ξ2) . . . α̃(ξt)c(xt, at). (2.1.1)

Hence, assuming that ξt has unknown distribution our objective is to study the partially observable
optimal control problem (PO-OCP) under the performance index defined by the accumulation of
the discounted costs (2.1.1). Our approach is to combine statistical estimation methods for the
distribution θ with the PO procedure studied in the previous chapter.

2.2 The partially observable system

We consider a general POMDP with the dynamics of the system given by a pair of difference
equations:

xt+1 = F (xt, at, w
(1)
t ), t ∈ N0 (2.2.1)

and
yt = G(xt, w

(2)
t ), t ∈ N0, (2.2.2)

where xt, at and yt represent the state, the action and the observation at time t, with values in X,
A, and Y , respectively; {w(1)

t } and {w
(2)
t } are independent sequences of i.i.d. random variables with

values in S1 and S2, distributions θ1 ∈ P(S1) and θ2 ∈ P(S2), respectively. We assume that the state
space X, the observation space Y , and the disturbance spaces S1, S2, are Borel spaces, while the
control space A is a compact metric space. Moreover, the cost-per-stage function, c̃ : X × A → R,
is bounded and continuous function; and we consider an initial distribution ν ∈ P(X). Finally,
α̃ : S → (0, 1) is a function of a random variable ξt, which represents the discount factor, where
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{ξt} is a sequence of observable i.i.d. random variables with values in Borel space S, with unknown
distribution θ ∈ P(S), that is

θ(B) = P [ξt ∈ B], B ∈ B(S). (2.2.3)

We call α̃ the discount factor function. Hence, for the stage t ≥ 1, the discounted cost is as (2.1.1).

We define the corresponding PO control model as

MPO = (X,Y,A,Q, ν,K, α̃, c̃), (2.2.4)

where the transition law Q and the observation kernel K are defined by the function F and G as
follows:

Q(B|xt, at) :=

∫
S1

1B[F (xt, at, w
(1))]θ1(dw(1)), B ∈ B(X)

and

K(C|xt) :=

∫
S2

1C [G(xt, w
(2))]θ2(dw(2)), C ∈ B(Y ).

Remark 21. Note that, unlike the model (1.5.1), the observations do not depend on the actions
(see equation (2.2.2)), then the initial observation kernel is K.

To define the corresponding PO-OCP, we follow the procedure stated in Section 1.5. Indeed, let
H0 := P(X) × Y and for t ∈ N, Ht := Ht−1 × A × S × Y be the space of observable histories. An
element ht ∈ Ht takes the form

ht = (ν, y0, a0, y1, a1, ξ1, y2, a2, ξ2, ...at−1, ξt−1, yt).

The control policies are defined similarly as Definition 2 (see Definition 12). Furthermore, if Ω :=
(X × Y × A × S)∞ and F = B(Ω), then for each π ∈ Π and initial distribution ν ∈ P(X), there
exists a probability measure P πν satisfying similar properties as in (1.2.4), together with

P πν [ξt+1 ∈ B|ht, at] = θ(B), B ∈ B(S).

Again Eπν denotes the expectation operator with respecto to P πν .

Taking into account (2.1.1), the costs are accumulated in an infinite horizon under the following
discounted optimality criterion. For each policy π ∈ Π and an initial distribution ν ∈ P(X) we
define

V (π, ν) := Eπν

[ ∞∑
t=1

Γ̃tc̃(xt, at)

]
,

where

Γ̃t :=
t−1∏
k=0

α̃(ξk+1).

Hence, the partially observed optimal control problem (PO-OPC) is to find a policy π∗ ∈ Π such
that

V ∗(ν) := inf
π∈Π

V (π, ν) = V (π∗, ν), ∀ν ∈ P(X). (2.2.5)
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On the other hand, let

α(θ) :=

∫
S
α̃(s)θ(ds) and Γt =

t−1∏
k=0

α(θk+1) = [α(θ)]t, Γ0 = 1. (2.2.6)

Observe that

Eπν [Γ̃tc̃(xt, at)] = Eπν {[α(θ)]tc̃(xt, at)} = α(θ)tEπν {c̃(xt, at)}, t ∈ N0, (2.2.7)

since from the begining, w(1)
t , w(2)

t and ξt are independent. Therefore

V (π, ν) = Eπν

[ ∞∑
t=0

Γ̃tc̃(xt, at)

]
= Eπν

[ ∞∑
t=0

[α(θ)]tc̃(xt, at)

]
(2.2.8)

2.3 The completely observable system

The analysis of the problem (2.2.5) is based on the reduction of the partially observed control model
(PO-CM) (2.2.4) to a completely observable, as in Section 1.6. To fix ideas, for each π ∈ Π and
ν ∈ P(X), we consider the filtering process {νt} ⊂ P(X) defined, for B ∈ B(X), as

ν0(B) := P πν [x0 ∈ B|h0] (2.3.1)

and
νt+1(B) := P πν [xt+1 ∈ B|ht+1], t ≥ 0. (2.3.2)

Furthermore, by Lemma 14 (see (1.6.7) and (1.6.8)), there exist measurable functions, that we will
denote by Ψ0 : P(X) × Y → P(X) and Ψ : P(X) × A × Y → P(X), such that the filtering process
(2.3.1)-(2.3.2) satisfies recursive equations of the form

ν0 = Ψ0(ν, y0) and νt+1 = Ψ(νt, at, yt+1), t ≥ 0. (2.3.3)

Hence, we get the model (see 1.6.9)

MCO = (P(X), A, k, k0, α, c), (2.3.4)

where, P(X), A and c are as the model (1.6.9) in Section 1.6, k is a transition law given by (see
(1.6.2) and (1.6.4))

k(dν ′|ν, a) =

∫
Y

1D[Ψ(ν, a, y)]R′(dy|ν, a),

and k0(·|ν), the initial distribution, defined by (see 1.6.6)

k0(D|ν) :=

∫
Y

1D[Ψ0(ν, y)]R′0(dy|ν), D ∈ B(P(X)), ν ∈ P(X).

In addition, c : P(X)×A→ R is the one stage cost function

c(ν, a) :=

∫
X
c̃(x, a)ν(dx)
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then, performance index for the CO-CM (2.2.8) can be written as

V (δ, ν) = Eδν

[ ∞∑
t=0

[α(θ)]tc(νt, at)

]
, (2.3.5)

while the expected total discounted cost from stage n ≥ t onwards as

Vn(δ, ν) = Eδν

[ ∞∑
t=n

[α(θ)]t−nc(νt, at)

]
.

Thus the OCP for the CO-CM is to find an i-policy δ∗ such that

V (δ∗, ν) = V ∗(ν) := inf
δ∈∆

V (δ, ν), ∀ν ∈ P(X). (2.3.6)

In the scenario of Theorem 20 the following condition ensure the existence of a solution of the
completely observable optimal control problem (CO-OCP) (see Assumption 18).

Assumption 22.

1. A is a compact set.

2. c̃ ∈ C(X ×A).

3. The state transition law Q and the observation kernel K are continuous stochastic kernels.

4. The functions Ψ0 and Ψ are continuous on P(X)× Y and P(X)×A× Y , respectively.

Hence, letting β = α(θ) in Theorem 20, we obtain the following results.

Theorem 23. Under Assumption 22,

(a) The optimal discounted cost function V ∗ : P(X) → R is the unique solution in C(P(X)) of the
optimality equation, that is

V ∗(ν) = min
a∈A

{
c(ν, a) + α(θ)

∫
P(X)

V ∗(ν ′)k(dν ′|ν, a)

}
, ν ∈ P(X). (2.3.7)

(b) There exists f∗ : P(X)→ A such that

V ∗(ν) = c(ν, f∗(ν)) + α(θ)

∫
P(X)

V ∗(ν ′)k(dν ′|ν, f∗(ν)), ν ∈ P(X).

Moreover, the stationary i-policy f∞∗ = {f∗} is an optimal control i-policy.

2.4 Empirical estimation and control

Since θ is unknown, the solution given by Theorem 23 is not accesible to the controller. Therefore,
being that θ is unknown and the random disturbance process {ξt} is observable, we assume that
the controller uses the empirical distribution to get an estimate θ̂t of θ. That is, {θ̂t} ⊂ P(S) is
obtained by the process

θ̂t(B) :=
1

t

t−1∑
i=0

1B(ξi), ∀t ∈ N, B ∈ B(S). (2.4.1)

24



It is well known that θ̂t converges weakly to θ almost surely (see e.g., [8]). Hence,∫
S
α̃(s)θ̂t(ds)→

∫
S
α̃(s)θ(ds) a.s. as t→∞.

That is, as t→∞,
α(θ̂t)

a.s.→ α(θ) (2.4.2)

Observe that the discounted cost defined in (2.3.5) depends strongly on the controls selected in
the first stages, exactly where the information given by the empirical estimation about θ is poor.
This discordance implies that we can not ensure the existence of optimal policies when we apply
estimation and control procedures. Thus, in this case, the optimality will be studied in an asymptotic
sense, as in Definition 5.

The construction of asymptotically discount optimal policies is based in the following variant of the
value iteration scheme.

Let {vt} be a sequence of functions in C(P(X)) defined as

v0 = 0 and vt(ν) = min
a∈A

{
c(ν, a) + α(θ̂t)

∫
P(X)

vt−1(ν ′)k(dν ′|ν, a)

}
, t ≥ 1. (2.4.3)

Since we know the value of θ̂t for all t, we apply the Theorem 23(b), for each t, to obtain that there
exists f̂t : P(X)→ A, such that

vt(ν) = c(ν, f̂t) + α(θ̂t)

∫
P(X)

vt−1(ν ′)k(dν ′|ν, f̂t). (2.4.4)

Hence we apply the estimation process θ̂t, given by (2.4.1) and (2.4.2), to show that the estimated
i-policy δ̂ = {f̂t} is asymptotically discount optimal. That is from Lemma 11 our objective is to
prove

lim
t→∞

E δ̂ν [Φ(νt, at)] = 0, ν ∈ P(X),

where,

Φ(ν, a) = c(ν, a) + α(θ)

∫
P(X)

V ∗(ν ′)k(dν ′|ν, a)− V ∗(ν).

Theorem 24. Under Assumption 22,

(a) ||vt − V ∗|| = supν∈P(X) |vt(ν)− V ∗(ν)| → 0 a.s., as t→∞.

(b) The i-policy δ̂ = {f̂t} is asymptotically discounted optimal, i.e.,

E δ̂ν [Φ(νt, at)]→ 0, as t→∞.

Proof. (a) From (2.3.7) and (2.4.3), for each ν ∈ P(X) and t ∈ N,∣∣∣vt(ν)− V ∗(ν)
∣∣∣

=

∣∣∣∣∣min
a∈A

{
c(ν, a)+α(θ̂t)

∫
P(X)

vt−1(ν ′)k(dν ′|ν, a)

}
−min
a∈A

{
c(ν, a)+α(θ)

∫
P(X)

V ∗(ν ′)k(dν ′|ν, a)

}∣∣∣∣∣
≤ sup

a∈A

∣∣∣∣∣α(θ̂t)

∫
P(X)

vt−1(ν ′)k(dν ′|ν, a)− α(θ)

∫
P(X)

V ∗(ν ′)k(dν ′|ν, a)

∣∣∣∣∣
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= sup
a∈A

∣∣∣∣∣α(θ̂t)

∫
P(X)

vt−1(ν ′)k(dν ′|ν, a)− α(θ)

∫
P(X)

V ∗(ν ′)k(dν ′|ν, a)

+ α(θ̂t)

∫
P(X)

V ∗(ν ′)k(dν ′|ν, a)− α(θ̂t)

∫
P(X)

V ∗(ν ′)k(dν ′|ν, a)

∣∣∣∣∣
= sup

a∈A

∣∣∣∣∣α(θ̂t)

∫
P(X)

(
vt−1(ν ′)− V ∗(ν ′)

)
k(dν ′|ν, a) +

(
α(θ̂t)− α(θ)

) ∫
P(X)

V ∗(ν ′)k(dν ′|ν, a)

∣∣∣∣∣
≤ sup

a∈A

{∣∣∣∣∣α(θ̂t)

∫
P(X)

(
vt−1(ν ′)− V ∗(ν ′)

)
k(dν ′|ν, a)

∣∣∣∣∣+

∣∣∣∣∣(α(θ̂t)− α(θ)
) ∫

P(X)
V ∗(ν ′)k(dν ′|ν, a)

∣∣∣∣∣
}

≤ sup
a∈A

∣∣∣∣∣α(θ̂t)

∫
P(X)

(
vt−1(ν ′)− V ∗(ν ′)

)
k(dν ′|ν, a)

∣∣∣∣∣+ sup
a∈A

∣∣∣∣∣(α(θ̂t)− α(θ)
) ∫

P(X)
V ∗(ν ′)k(dν ′|ν, a)

∣∣∣∣∣
≤ sup

a∈A
α(θ̂t)

∫
P(X)

∣∣vt−1(ν ′)− V ∗(ν ′)
∣∣k(dν ′|ν, a) + sup

a∈A

∣∣α(θ̂t)− α(θ)
∣∣ ∫

P(X)

∣∣V ∗(ν ′)∣∣k(dν ′|ν, a)

≤ α(θ̂t)
∣∣∣∣vt−1 − V ∗

∣∣∣∣+
∣∣α(θ̂t)− α(θ)

∣∣∣∣∣∣V ∗∣∣∣∣. (2.4.5)

Now, if b is a bound of the cost, observe that (see Assumption 6) ||V ∗|| ≤ b/(1− α(θ)). Then,
taking supν∈P(X) on both sides of (2.4.5) we have

∣∣∣∣vt − V ∗∣∣∣∣ ≤ α(θ̂t)
∣∣∣∣vt−1 − V ∗

∣∣∣∣+
∣∣α(θ̂t)− α(θ)

∣∣ b

1− α(θ)
.

Let L := lim sup ||vt−V ∗||. Since vt and V ∗ are bounded, we have that L <∞. Then by (2.4.2)
and taking lim sup as t→∞, we obtain

L ≤ α(θ)L, (2.4.6)

but as 0 < α(θ) < 1, we have L = 0. Therefore

lim
t→∞

∣∣∣∣vt − V ∗∣∣∣∣ = 0 a.s.

(b) We start by defining the approximate discrepancy function

Φt(ν, a) = c(ν, a) + α(θ̂t)

∫
P(X)

vt−1(ν ′)k(dν ′|ν, a)− vt(ν), t ∈ N0.

Observe that by (2.4.4)
Φt(ν, f̂t) = 0,∀t ∈ N0, ν ∈ P(X). (2.4.7)

Hence, if {(νt, at)} is the sequence of state-actions pairs corresponding to the application of the
i-policy δ̂, observe that from (2.4.7)

Φ(νt, at) = |Φ(νt, at)− Φt(νt, at)|
≤ sup

a∈A
|Φ(νt, a)− Φt(νt, a)|

≤ sup
(ν,a)∈P(X)×A

|Φ(ν, a)− Φt(ν, a)| := St
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Hence, the remainder of the proof consists in showing that

lim
t→∞

E δ̂ν [St] = 0. (2.4.8)

To this end, for (ν, a) ∈ P(X)×A we have∣∣Φ(ν, a)− Φt(ν, a)
∣∣

=

∣∣∣∣∣c(ν, a)+α(θ)

∫
P(X)

V ∗(ν ′)k(dν ′|ν, a)−V ∗(ν)−c(ν, a)−α(θ̂t)

∫
P(X)

vt−1(ν ′)k(dν ′|ν, a)+vt(ν)

∣∣∣∣∣
=

∣∣∣∣∣α(θ)

∫
P(X)

V ∗(ν ′)k(dν ′|ν, a)− V ∗(ν)− α(θ̂t)

∫
P(X)

vt−1(ν ′)k(dν ′|ν, a) + vt(ν)

+ α(θ̂t)

∫
P(X)

V ∗(ν ′)k(dν ′|ν, a)− α(θ̂t)

∫
P(X)

V ∗(ν ′)k(dν ′|ν, a)

∣∣∣∣∣
=

∣∣∣∣∣(α(θ)− α(θ̂t)
) ∫

P(X)
V ∗(ν ′)k(dν ′|ν, a) +

(
vt(ν)− V ∗(ν)

)
+ α(θ̂t)

∫
P(X)

(
V ∗(ν ′)− vt−1(ν ′)

)
k(dν ′|ν, a)

∣∣∣∣∣
≤

∣∣∣∣∣(α(θ)− α(θ̂t)
) ∫

P(X)
V ∗(ν ′)k(dν ′|ν, a)

∣∣∣∣∣+
∣∣∣vt(ν)− V ∗(ν)

∣∣∣
+

∣∣∣∣∣α(θ̂t)

∫
P(X)

(
V ∗(ν ′)− vt−1(ν ′)

)
k(dν ′|ν, a)

∣∣∣∣∣
≤
∣∣α(θ)− α(θ̂t)

∣∣ ∫
P(X)

∣∣V ∗(ν ′)∣∣k(dν ′|ν, a) +
∣∣vt(ν)− V ∗(ν)

∣∣
+ α(θ̂t)

∫
P(X)

∣∣V ∗(ν ′)− vt−1(ν ′)
∣∣k(dν ′|ν, a)

≤
∣∣α(θ)− α(θ̂t)

∣∣∣∣∣∣V ∗∣∣∣∣+
∣∣∣∣vt − V ∗∣∣∣∣+

∣∣∣∣V ∗ − vt−1

∣∣∣∣.
This implies,

St ≤
∣∣α(θ)− α(θ̂t)

∣∣∣∣∣∣V ∗∣∣∣∣+
∣∣∣∣vt − V ∗∣∣∣∣+ α(θ̂t)

∣∣∣∣V ∗ − vt−1

∣∣∣∣
≤
∣∣α(θ)− α(θ̂t)

∣∣ b

1− α(θ)
+
∣∣∣∣vt − V ∗∣∣∣∣+ α(θ̂t)

∣∣∣∣V ∗ − vt−1

∣∣∣∣.
Then, by (2.4.2) and part (a) of this theorem, letting t→∞ we get

St
a.s.→ 0 as t→∞.
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Now, since St is bounded we obtain

lim
t→∞

E δ̂ν [St] = 0,

that is the i-policy δ̂ is asymptotically discounted optimal.
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Chapter 3

POMDP with Unobservable Random Discount Factors
and Unknown Distribution

3.1 Introduction

We are now interested in study the model introduced in Chapter 2 when the random variable ξt
really represents a random noise which is imposible to observe and, furthermore, its distribution
may change from stage to stage. In opposite to the previous situation, in this case the controller
cannot estimate by means of statistical methods the unknown distribution. Hence we analize the
problem as a class of minimax systems called game against nature. That is, we assume that the
controller has an opponent, the nature, who selects the distribution θt for ξt at each time t ∈ N.
Hence, the objective of the controller is to select actions directed to minimize the maximum cost
generated by the nature.

3.2 The transformed minimax control problem

We consider a minimax control model of the form

Mmin
max = (P(X), A,Θ, k, k0, c, α), (3.2.1)

where P(X), A, k, k0, c, α are as the completely observable control model (CO-CM) (2.3.4), which
comes from the partially observable control model (2.2.4), and Θ ⊂ P(S) is a Borel subset of the
space of probability measures on S, which represents the opponent action space. We suppose that
{ξt} is a sequence of independent and possibly non-observable random variables on (Ω,F , P ) taking
values on S, with corresponding distribution θt ∈ Θ. That is,

θt(B) := P [ξt ∈ B], t ∈ N, B ∈ B(S).

The model (3.2.1) represents a controlled stochastic system which can be seen as a game against
nature whose evolution is as follows. At time t ∈ N the system is in state νt ∈ P(X), the controller
chooses an action at ∈ A and the opponent, the “nature”, picks a distribution θt ∈ Θ for the random
disturbance ξt. Then, on the record of the previous distributions θ1, θ2, ..., θt−1, the controller incurs
a discounted cost

α(θ1) · · · α(θt)c(νt, at). (3.2.2)

Next, the process moves to a new state according to the transition law k and the process is repeated.
Thus, the goal of the controller is to minimize the maximum cost incurred by nature.

29



As usual the actions are selected according to the control policies, which, in this minimax scenario,
are defined as follows. Let

H0 := P(X), and H′0 := P(X)×A

and, for all t ∈ N0, let

Ht := (P(X)×A×Θ)t × P(X) and H′t := (P(X)×A×Θ)t × P(X)×A.

Elements of Ht and H′t take the form,

ht := (ν, a0, θ1, ..., νt−1, at−1, θt−1, νt), and h′t := (ht, at).

Hence, an i-policy for the controller is a sequence δ = {δt} of stochastic kernels on A given Ht such
that δt(A|ht) = 1 for all ht ∈ Ht and t ∈ N0. Markov and stationary policies for the controller are
defined similarly as in Definition 15. We denote by ∆ the set of all i-policies for the controller, and
by ∆M ⊂ ∆ the subset of Markov i-policies. The policies for the nature are defined considering
the space H′t. Indeed, a i-policy for the nature (the opponent) is a sequence δ′ = {δ′t} of stochastic
kernels on Θ given H′t such that δ′t := (Θ|h′t) = 1 for all h′t ∈ H′t and t ∈ N0. We denote by ∆Θ the
set of all i-policies for the nature.

For each pair of policies (δ, δ′) ∈ ∆ × ∆Θ and initial distribution ν ∈ P(X), we define the total
expected discounted cost as

V (δ, δ′, ν) := Eδδ
′

ν

[ ∞∑
t=0

Γtc(νt, at)

]
, (3.2.3)

where as previous chapters Eδδ′ν is the expectation operator corresponding to the probability measure
P δδ

′
ν induced by (δ, δ′) and ν. In addition,

Γt :=

t−1∏
k=0

α(θk+1) if t ∈ N, Γ0 = 1. (3.2.4)

Thus, the minimax control problem (MMCP) to the controller is to find an i-policy δ∗ ∈ ∆ such
that

V ∗(ν) := inf
δ∈∆

sup
δ′∈∆Θ

V (δ, δ′, ν) = sup
δ′∈∆Θ

V (δ∗, δ′, ν), ν ∈ P(X). (3.2.5)

In this case, the i-policy δ∗ is said to be minimax, whereas V ∗ is the minimax value function. As well
as in previous chapters, we need to impose certain conditions either on the control model (2.2.4) or
directly on the minimax control model (3.2.1) (see Lemma 19). We focus on the model (3.2.1).

Assumption 25.

1. A is a compact set.

2. Θ ⊂ P(S) is a compact set.

3. c ∈ C(P(X)×A).
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4. The stochastic kernels k and k0 are weakly continuous.

5. The function α̃(s) is continuous on S and α∗ := sup
s∈S

α̃(s) < 1.

Remark 26. Remember that α̃ : S → (0, 1) is the discount factor function and α(θ) =
∫
S α̃(s)θ(ds).

Then from Assumption 25.5

max
θ∈Θ

α(θ) = max
θ∈Θ

∫
S
α̃(s)θ(ds) ≤ α∗ < 1

Also note that the function α : Θ → (0, 1) is continuous. Indeed, let {θt} ∈ Θ be a sequence
converging to θ, that is θt → θ weakly. Then∫

S
α̃(s)θt(ds)→

∫
S
α̃(s)θ(ds).

That is,
α(θt)→ α(θ), as t→∞.

3.3 Existence of minimax policies

The solution to the MMCP can be obtained by applying the contraction mapping approach similar
to that defined in previous chapters. We begin introducing the operators; for any function u :
P(X)→ R in C(P(X)), we define the minimax dynamic programming operator as

Tu(ν) = min
a∈A

max
θ∈Θ

T(a,θ)u(ν), (3.3.1)

where
T(a,θ)u(ν) := c(ν, a) + α(θ)

∫
u(ν ′)k(dν ′|ν, a), ν ∈ P(X).

In addition, for an arbitrary stationary policy f∞ ∈ ∆M , we define

Tfu(ν) = max
θ∈Θ

T(f,θ)u(ν) (3.3.2)

where
T(f,θ)u(ν) := c(ν, f(ν)) + α(θ)

∫
u(ν ′)k(dν ′|ν, f(ν)).

Remark 27. Let u ∈ C(P(X)), by Assumption 25.4,
∫
P(X) u(ν ′)k(dν ′|ν, a) is continuous with respec

to ν and a. Hence v(ν, a, θ) := c(ν, a)+α(θ)
∫
P(X) u(ν ′)k(dν ′|ν, a) is bounded and continuous. Then,

from Proposition D.2 we have that maxθ∈Θ v(ν, a, θ) is continuous in P(X)×A. Furthermore, there
exists f∗ : P(X)→ A such that

max
θ∈Θ

v(ν, f∗(ν), θ) = min
a∈A

max
θ∈Θ

v(ν, a, θ), ∀ν ∈ P(X).

That is
max
θ∈Θ

T(f∗,θ)u(ν) = Tu(ν), ν ∈ P(X). (3.3.3)

Accordingly we get the following result.

Lemma 28. If Assumption 25 holds, then:
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1. Tu(ν) ∈ C(P(X)) for all u ∈ C(P(X)).

2. The operators T and Tf are contractions on C(P(X)) with modulus α∗.

3. There exists unique functions u∗ and u∗f ∈ C(P(X)) such that

Tu∗ = u∗ and Tfu
∗
f = u∗f ,

and moreover, for any function u ∈ C(P(X))

||Tnu− u∗|| → 0, and ||Tnf u− u∗f || → 0, as n→∞,

where Tnu = T (Tn−1u), n ∈ N.

Proof.

1. This part is consequence of Remark 27.

2. Let u, u′ ∈ C(P(X)). Then for ν ∈ P(X) we have∣∣Tu(ν)− Tu′(ν)
∣∣

=

∣∣∣∣∣min
a∈A

max
θ∈Θ

{
c(ν, a)+α(θ)

∫
P(X)

u(ν ′)k(dν ′|ν, a)

}
−min
a∈A

max
θ∈Θ

{
c(ν, a)+α(θ)

∫
P(X)

u′(ν ′)k(dν ′|ν, a)

}∣∣∣∣∣
≤ max

a∈A

∣∣∣∣∣max
θ∈Θ

{
c(ν, a)+α(θ)

∫
P(X)

u(ν ′)k(dν ′|ν, a)

}
−max
θ∈Θ

{
c(ν, a)+α(θ)

∫
P(X)

u′(ν ′)k(dν ′|ν, a)

}∣∣∣∣∣
≤ max

a∈A
max
θ∈Θ

∣∣∣∣∣c(ν, a) + α(θ)

∫
P(X)

u(ν ′)k(dν ′|ν, a)− c(ν, a) + α(θ)

∫
P(X)

u′(ν ′)k(dν ′|ν, a)

∣∣∣∣∣

≤ max
a∈A

max
θ∈Θ

∣∣∣∣∣α(θ)

∫
P(X)

(
u(ν ′)− u′(ν ′)

)
k(dν ′|ν, a)

∣∣∣∣∣
≤ max

a∈A
max
θ∈Θ

α(θ)

∫
P(X)

∣∣u(ν ′)− u′(ν ′)
∣∣k(dν ′|ν, a)

≤ α∗max
a∈A

∫
P(X)
|u(ν ′)− u′(ν ′)|k(dν ′|ν, a)

≤ α∗||u− u′||.

Therefore, taking supν∈P(X) we obtain

||Tu− Tu′|| ≤ α∗||u− u′||.

Similarly it is proved that Tf is a contraction operator.

3. This part follows from the Banach Fixed Point Theorem (see Proposition A.1).

Hence, Lemma 28 has been proved.

We define the sequence {vn} ⊂ C(P(X)) of minimax value iteration functions as

v0 = 0 and vn(ν) = Tvn−1(ν) = Tnv(ν), n ∈ N. (3.3.4)
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Theorem 29. Under Assumption 25 the following holds:

(a) The minimax value function satisfies

V ∗(ν) = TV ∗(ν), ν ∈ P(X). (3.3.5)

(b) As n→∞, ||vn − V ∗|| → 0, where {vn} is the sequence of functions defined in (3.3.4).

(c) There exists f∗ : P(X)→ A such that

V ∗(ν) = sup
θ∈Θ

T(f∗,θ)V
∗(ν),= ν ∈ P(X). (3.3.6)

Moreover the stationary i-policy f∞∗ = {f∗}, is a minimax i-policy, that is,

V ∗(ν) = sup
δ′∈∆Θ

V (f∞∗ , δ
′, ν), ν ∈ P(X)

Proof. (a) - (b) From Lemma 28.3, it is sufficient to prove that u∗ = V ∗.

Let f : P(X)→ A such that

u∗(ν) := Tu∗(ν) = sup
θ∈Θ

T(f,θ)u
∗(ν), ν ∈ P(X),

which exists from Remark 27. Then

u∗(ν) ≥ c(ν, f(ν)) + α(θ)

∫
u∗(ν ′)k(dν ′|ν, f(ν)), ∀ν ∈ P(X), θ ∈ Θ. (3.3.7)

Let δ′ ∈ ∆Θ be an arbitrary policy for the opponent. Then, iterating inequality (3.3.7) we get,
for f∞ = {f},

u∗(ν) ≥ Ef∞δ′ν

[
c(ν0, f(ν0)) +

n−1∑
t=1

t−1∏
k=0

α(θk+1)c(νt, f(νt)) +

n−1∏
k=0

α(θk+1)u∗(νn)

]

= Ef
∞δ′

ν

[
c(ν0, f(ν0)) +

n−1∑
t=1

t−1∏
k=0

α(θk+1)c(νt, f(νt))

]
+ Ef

∞δ′
ν

[
n−1∏
k=0

α(θk+1)u∗(νn)

]

= Ef
∞δ′

ν

[
n−1∑
t=0

Γtc(νt, f(νt))

]
+ Ef

∞δ′
ν

[
Γnu

∗(νn)

]
. (3.3.8)

Observe that from Assumption 25.5 and (3.2.4) we have

Ef
∞δ′

ν

[
Γnu

∗(νn)

]
≤ (α∗)n||u∗||. (3.3.9)

Hence letting n→∞ in (3.3.8), since α∗ ∈ (0, 1), from (3.3.9) and (3.2.3) we get

u∗(ν) ≥ V (f∞, δ′, ν), ∀ν ∈ P(X). (3.3.10)

Since δ′ ∈ ∆Θ is arbitrary, (3.2.5) yields

u∗(ν) ≥ V ∗(ν), ν ∈ P(X). (3.3.11)
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On the other hand, since α is a continuous function in Θ, from Lemma 28, the compactness of
Θ, and Proposition D.2, for each (ν, a) ∈ P(X) × A, there exists g : P(X) × A → Θ such that
g(ν, a) ∈ Θ satisfies

u∗(ν) = min
a∈A

{
c(ν, a) + α(g)

∫
P(X)

u∗(ν ′)k(dν ′|ν, a)

}

≤ c(ν, a) + α(g)

∫
P(X)

u∗(ν ′)k(dν ′|ν, a), ∀ν ∈ P(X), a ∈ A. (3.3.12)

For an arbitrary policy δ ∈ ∆, iterating (3.3.12) we obtain

u∗(ν) ≤ V (δ, g∞, ν), ∀ν ∈ P(X). (3.3.13)

where g∞ = {g} ∈ ∆Mθ
.

On the other hand, because ∆Mθ
⊂ ∆Θ, observe that

V (δ, g∞, ν) ≤ sup
δ′∈∆Mθ

V (δ, δ′, ν) ≤ sup
δ′∈∆Θ

V (δ, δ′, ν).

Then, from (3.3.13) we conclude (because δ is arbitrary)

u∗(ν) ≤ inf
δ∈∆

sup
δ′∈∆Θ

V (δ, δ′, ν) = V ∗(ν), ν ∈ P(X). (3.3.14)

Therefore, combining (3.3.11) and (3.3.14) we prove that V ∗(ν) = u∗(ν), ν ∈ P(X).

(c) The existence of f∗ : P(X) → A follows from Remark 27. Now, similar as in (3.3.10) we have
that for an arbitrary δ′ ∈ ∆Θ

V ∗(ν) ≥ V (f∞∗ , δ
′, ν), ∀ν ∈ P(X),

which implies that
V ∗(ν) = sup

δ′∈∆Θ

V (f∞∗ , δ
′, ν), ν ∈ P(X).

Hence Theorem 29 has been proved.
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Chapter 4

POMDP with Partially Observable Random Discount
Factors

4.1 Introduction

In this chapter we study a partially observable Markov decision process (POMDP) with partially
observable (PO) random discount factors. Specifically, we assume that the costs are exponentially
discounted with accumulative random discount rate at stage t of the form e−

∑t−1
k=0 αk where {αt} is

a stochastic process which is assumed to be partially observable. In this case, a cost c incurred at
stage t is equivalent to a cost e−

∑t−1
k=0 αkc at time t = 0. Under this setting, we will take advantage

of the theory developed in previous chapters in order to propose an appropriate model.

4.2 The partially observable control problem

We consider the a partially observable Markov decision process (POMDP) evolving according to
the system equation

xt+1 = F1(xt, at, w
(1)
t ) t ∈ N0

yt = F2(xt, w
(2)
t ), t ∈ N0, (4.2.1)

where F1 and F2 are known functions, and, as before, xt, at and yt are the state, control and
observation at time t, taking values in Borel spaces X, A and Y , respectively. The set A is assumed
to be compact. In addition, {w(1)

t } and {w
(2)
t } are independent sequences of i.i.d. random variables

with values in Borel spaces S1 and S2 with distributions θ1 ∈ P(X) and θ2 ∈ P(X), respectively.
We assume that x0 has distribution ν ∈ P(X).

Let Q and K be the transition kernel, and the observation kernel defined by F1 and F2 as follows:

Q(B|xt, at) :=

∫
S1

1B[F1(xt, at, w
(1))]θ1(dw(1)) and K(B′|xt) :=

∫
S2

1B′ [F2(xt, w
(2))]θ2(dw(2)),

(4.2.2)
with B ∈ B(X) and B′ ∈ B(Y ).

On the other hand, we consider a stochastic process {αt}, representing the discount factor, which
is partially observable in the following sense:

αt+1 = G1(αt, ξ
(1)
t ), t ∈ N,

βt = G2(αt, ξ
(2)
t ), t ∈ N, (4.2.3)
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where αt ∈ Γ := (ε0,∞) for some ε0 > 0, βt ∈ Σ := (0,∞) represent the observation, {ξ(1)
t }

and {ξ(2)
t } are independent sequences of i.i.d., random variables with values in Borel spaces R1

and R2 with distribution ρ1 ∈ P(R1) and ρ2 ∈ P(R2), respectively. Furthermore, the functions
G1 : Γ×R1 → Γ and G2 : Γ×R2 → Σ are known. We assume that α0 has a distribution η ∈ P(Γ).

Similarly as (4.2.2), let Q′ and K ′ be the discount factor transition kernel and the corresponding
observation kernel defined by G1 and G2 as:

Q′(C|αt) :=

∫
R1

1C [G1(αt, ξ
(1))]ρ1(dξ(1)) and K ′(C ′|αt) :=

∫
R2

1C′ [G2(αt, ξ
(2))]ρ2(dξ(2)), (4.2.4)

with C ∈ B(Γ) and C ′ ∈ B(Σ).

The discount factor process plays the following role. Let c̃ : X ×A→ R the one-stage cost function
and define ε̃(α) := e−α, with α ∈ Γ. Then the discounted cost incurred at time t is c(x0, a0) for
t = 0, and for t ∈ N,

ε̃(α0) · · · ε̃(αt−1)c̃(xt, at), t ≥ 1. (4.2.5)

Putting this elements all together, we can define the following extended PO control model

MEPO = (X,Y,A,Q,K, ν,Γ,Σ, Q′,K ′, η, ε̃, c̃), (4.2.6)

The control model (4.2.6) represents a controlled system in which the state and the discount factor
are partially observable, whose dynamics can be described as follows: at time t = 0 the initial
state x0 has a given distribution ν. Then, a state-observation y0 is generated according to the
observation kernel K. Now, a control a0 ∈ A is applied and a cost c̃(x0, a0) is generated. Then
the system moves to state x1 through the transition law Q and the discount-factor α1 has a given
distribution η. Then, a state-observation y1 is generated by K and a discount-factor-observation β1

is generated according to K ′. Now, a control a1 ∈ A is applied and a discounted cost ε(α1)c̃(x1, a1)
is generated. Furthermore, if the system is in state xt and the discount factor is αt at time t ≥ 1,
two observations are generated; the state-observation yt generated by the stochastic kernel K and
the discount-factor-observation βt generated by the stochastic kernel K ′; next, a control at ∈ A
is applied, then (1) a discounted cost ε̃(α1) · · · ε̃(αt)c̃(xt, at) is incurred; (2) the system moves to
state xt+1 according to the transition law Q, and the discount factor moves to αt+1 according to
the stochastic kernel Q′; and (3) the observations yt+1 and βt+1 are generated by the observations
kernels K and K ′, respectively, and the process is repeated.

In order to define the class of control policies for the model (4.2.6), we consider histories of the form:

h0 := (ν, y0) ∈ H0 := P(X)× Y,

h1 := (ν, y0, a0, η, y1, β1) ∈ H1 := H0 ×A× P(Γ)× Y × Σ

ht := (ν, y0, a0, η, y1, β1, a1, y2, β2, ..., yt−1, βt−1, at−1, yt, βt) ∈ Ht := Ht−1 ×A× Y × Σ, t ≥ 2.

Hence
ht := (ht−1, at−1, yt, βt) ∈ Ht := Ht−1 ×A× Y × Σ, t ≥ 2.

Now, control policies are defined as follows.

Definition 30. A control policy is a sequence of stochastic kernels π = {πt}, t ∈ N0 on A given
Ht. A control policy is Markovian if there are measurable functions ft : X × Γ→ A, such that for
all ht ∈ Ht and t ∈ N0,

πt(C|ht) = 1C [ft(xt, αt)], C ∈ B(A),
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and stationary, if there is a measurable function f : X×Γ→ A, such that for all ht ∈ Ht and t ∈ N0

πt(C|ht) = 1C [f(xt, αt)], C ∈ B(A).

Again, we denote by Π the set of all control policies, ΠM the set of Markov policies.

Keeping in mind (4.2.5), the cost are accumulated in an infinite horizon under the following dis-
counted optimality criterion. For each policy π ∈ Π and initial distributions ν ∈ P(X) and η ∈ P(Γ)
we define

W (π, ν, η) := Eπν,η

[ ∞∑
t=0

Λ̃tc̃(xt, at)

]
where

Λ̃t :=

t−1∏
k=0

ε̃(αk). if t ≥ 1 and Λ̃0 = 1,

and Eπν,η is the expectation with respect to the probability measure P πν,η, induced by π, ν, η. Hence
the extended PO-OCP is to find a policy π∗ ∈ Π such that

W ∗(ν, η) := inf
π∈Π

W (π, ν, η) = W (π∗, ν, η), ν ∈ P(X), η ∈ P(Γ). (4.2.7)

In this case, the extended POMDP takes the form (Ω,F , P πν,η, {xt, αt, yt, βt}), where Ω = (X ×Y ×
A× Γ× Σ)∞ and F = B(Ω).

4.3 The extended completely observable control model

Following the standard approach applied in previous chapters, the analysis of the partially observed
optimal control problem (PO-OCP) (4.2.7) is based on its transformation into a completely observ-
able optimal control problem (CO-OCP) by means of a suitable filtering process. Under the present
scenario, because we have two independent partially observable processes, namely, the state process
and the discount process, we introduce two filtering procedures, which will then be coupled in the
corresponding optimality equation.

Specifically, by applying the same procedure given (1.6.2)-(1.6.8), for each π ∈ Π, we have that
there are functions Ψ0 : P(X) × Y → P(X) and Ψ : P(X) × A × Y → P(X), defining the filtering
process {νt} ⊂ P(X) as

ν0(B) = P πν,η[x0 ∈ B|h0], B ∈ B(X),

νt+1(B) = P πν,η[xt+1 ∈ B|ht+1], B ∈ B(X), (4.3.1)

and
ν0 = Ψ0(ν, y0), and νt+1 = Ψ(νt, at, yt+1), t ∈ N. (4.3.2)

Let k and k0 the corresponding stochastic kernels (see (1.6.4) and (1.6.5)) defined as

k(D1|ν, a) :=

∫
Y

1D1 [Ψ(ν, a, y)]R′(dy|ν, a), D1 ∈ B(P(X)), (ν, a) ∈ P(X)×A, (4.3.3)

or equivalently

k(D1|ν, a) :=

∫
X

∫
X

∫
Y

1D1 [Ψ(ν, a, y)]K(dy|x′)Q(dx′|x, a)ν(dx);
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and
k0(D1|ν) :=

∫
Y

1D1 [Ψ0(ν, y)]R′0(dy|ν), D1 ∈ B(P(X)), ν ∈ P(X), (4.3.4)

or equivalently

k0(D1|ν) :=

∫
X

∫
Y

1D1 [Ψ0(ν, y)]K(dy|x)ν(dx).

On the other hand, proceding similarly, we can obtain a filtering procedure for the discount factor
process. That is, for each π ∈ Π, there exists functions Φ,Φ0 : P(Γ) × Σ → P(Σ) defining the
discount filtering process {ηt} ⊂ P(Γ) as

η0(B) = P πν,η[α0 ∈ B|h0], B ∈ B(Γ),

ηt+1(B) = P πν,η[αt+1 ∈ B|ht+1], B ∈ B(Γ), (4.3.5)

and
ν0 = Φ0(η, β0), and ηt+1 = Φ(ηt, βt+1), t ∈ N. (4.3.6)

Furtheremore, let k̃ and k̃0 be the stochastic kernels

k̃(D2|η) :=

∫
Σ
ID2 [Φ(η, β)]R′(dβ|η), D2 ∈ B(P(Γ)), η ∈ P(Γ), (4.3.7)

or equivalently

k̃(D2|η) :=

∫
Γ

∫
Γ

∫
Σ

1D2 [Φ(η, β)]K ′(dβ|α′)Q′(dα′|α)η(dα)

and
k̃0(D2|η) :=

∫
Σ

1D2 [Φ0(η, β)]R′0(dβ|η), D2 ∈ B(P(Γ)), (4.3.8)

or equivalently

k̃0(D2|η) :=

∫
Γ

∫
Σ

1D2 [Φ0(η, β)]K ′(dβ|α)η(dα).

Now, we define the one-stage cost function c : P(X)×A→ R as

c(ν, a) :=

∫
X
c̃(x, a)ν(dx).

In addition, we define the function ε : P(Γ)→ (0,∞) as

ε(η) :=

∫
Γ
ε̃(α)η(dα) (4.3.9)

and

Λt :=
t−1∏
k=0

ε(ηk), t ≥ 1 and Λ0 = 1.

All the previous elements define the following extended completely observable control model (CO-
CM):

MECO = (P(X), A, k, k0,P(Γ), k̃, k̃0, ε, c). (4.3.10)

In order to define the performance index corresponding to the control model (4.3.10), it is necessary
to define the class of information policies, which in this case, we call it extended information policies.
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To this end, let
i0 := (ν0) ∈ I0 := P(X),

it := (ν0, a0, ν1, η1, a1, ..., νt−1, ηt−1, at−1, νt, ηt) ∈ It := It−1 ×A× P(X)× P(Γ), t ∈ N.

Definition 31. An extended information policy (or i-policy) is a sequence of stochastic kernels
δ = {δt} on A given It, that is to say, δt(da|it). We denote ∆ as the set of all i-policies. The class of
Markov i-policies and the class of stationary i-policies are defined in a similar way as in Definition
30, and are denoted as ∆M and F, respectively. Note that, as before, F ⊂ ∆M ⊂ ∆.

Now, for each i-policy δ ∈ ∆ and initial pair of distributions (ν, η) ∈ P(X) × P(Γ) we define the
performance index as

V (δ, ν, η) := Eδν,η

[ ∞∑
t=0

Λtc(νt, at)

]
, (4.3.11)

where Eδν,η is the expectation with respect to the probability measure P δν,η, induced by π, ν, η. Hence
the extended CO-OCP is to find an i-policy δ∗ ∈ ∆ such that

V ∗(ν, η) := inf
Π
V (π, ν, η) = V (δ∗, ν, η), ν ∈ P(X), η ∈ P(Γ). (4.3.12)

4.4 Solution of the extended completely observable control problem

As before, in order to ensure a solution of the completely observable optimal control problem
(4.3.10), we impose conditions on the model (4.3.10). In particular, we follow the contraction
mapping approach. Turns out that such conditions are similar to Assumption 25 (see also Lemma
19).

Assumption 32.

1. A is a compact set.

2. c(ν, a) ∈ C(P(X)×A).

3. The stochastic kernels k, k̃, k0 and k̃0 are weakly continuous.

Now, we define the dynamic programming operators. For u ∈ C(P(X)× P(Γ)) and f ∈ F, let

Tu(ν, η) := min
a∈A

{
c(ν, a) + ε(η)

∫
P(Γ)

∫
P(X)

u(ν ′, η′)k(dν ′|ν, a)k̃(dη′|η)

}
(4.4.1)

and
Tfu(ν, η) := c(ν, f) + ε(η)

∫
P(Γ)

∫
P(X)

u(ν ′, η′)k(dν ′|ν, f)k̃(dη′|η). (4.4.2)

Remark 33. Let u(ν, η) ∈ C(P(X)×P(Γ)), then,
∫
P(Γ)

∫
P(X) u(ν ′, η′)k(dν ′|ν, f)k̃(dη′|η) are bounded

and continuous by Assumption 32.3; and by Assumptiton 32.2, c is bounded and continuous. Then,

v(ν, η, a) := c(ν, a) + ε(η)

∫
P(Γ)

∫
P(X)

u(ν ′, η′)k(dν ′|ν, f)k̃(dη′|η)

is bounded and continuous on a ∈ A for all (ν, η) ∈ P(X)×P(Γ). Next, from Proposition D.2, there
exists a measurable selector f∗ : P(X)× P(Γ)→ A such that

v(ν, η, f∗(ν, η)) = min
a∈A

v(ν, η, a), ∀(ν, η) ∈ P(X)× P(Γ).
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The following Lemma is consequence of Assumption 32.

Lemma 34. Under Assumption 32 we have:

1. Tu(ν, η) ∈ C(P(X)× P(Γ)) for all u ∈ C(P(X)× P(Γ)).

2. The operators T and Tf , are contraction operators modulus ε(η).

3. There exist a unique function u∗ ∈ C(P(X)×P(Γ)) and a unique function u∗
f
∈ C(P(X)×P(Γ))

such that
Tu∗ = u∗ and Tu∗

f
= u∗

f
,

and moreover, for any function u ∈ C(P(X)× P(Γ))

||Tnu− u∗|| → 0 and ||Tnuf − u
∗
f
|| → 0, as n→∞

Proof.

1. This part is consequence of Remark 33.

2. Let u, u′ ∈ C(P(X)× P(Γ)). Then for (ν, η) ∈ P(X)× P(Γ) we have∣∣Tu(ν, η)− Tu′(ν, η)
∣∣

=

∣∣∣∣∣min
a∈A

{
c(ν, a) + ε(η)

∫
P(Γ)

∫
P(X)

u(ν ′, η′)k(dν ′|ν, a)k̃(dη′|η)

}

−min
a∈A

{
c(ν, a) + ε(η)

∫
P(Γ)

∫
P(X)

u′(ν ′, η′)k(dν ′|ν, a)k̃(dη′|η)

}∣∣∣∣∣
≤ max

a∈A

∣∣∣∣∣c(ν, a) + ε(η)

∫
P(Γ)

∫
P(X)

u(ν ′, η′)k(dν ′|ν, a)k̃(dη′|η)

− c(ν, a)− ε(η)

∫
P(Γ)

∫
P(X)

u′(ν ′, η′)k(dν ′|ν, a)k̃(dη′|η)

∣∣∣∣∣

= max
a∈A

∣∣∣∣ε(η)

∫
P(Γ)

∫
P(X)

u(ν ′, η′)k(dν ′|ν, a)k̃(dη′|η)− ε(η)

∫
P(Γ)

∫
P(X)

u′(ν ′, η′)k(dν ′|ν, a)k̃(dη′|η)

∣∣∣∣∣
= ε(η) max

a∈A

∣∣∣∣ ∫
P(Γ)

∫
P(X)

(
u(ν ′, η′)− u′(ν ′, η′)

)
k(dν ′|ν, a)k̃(dη′|η)

∣∣∣∣
≤ ε(η) max

a∈A

∫
P(Γ)

∫
P(X)

∣∣u(ν ′, η′)− u′(ν ′, η′)
∣∣k(dν ′|ν, a)k̃(dη′|η)

≤ ε(η)||u− u′||.

Therefore, taking sup(ν,η)∈P(X)×P(Γ) we obtain

||Tu− Tu′|| ≤ ε(η)||u− u′||.

Similarly is proved that Tf is a contraction operator.
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3. This part follows from the Banach Fixed Point Theorem (see Proposition A.1).

Hence, Lemma 34 has been proved.

Now, we relate the fixed point u∗(ν, η) to V (δ∗, ν, η).

Theorem 35. Under Assumption 32 the following holds:

(a) The optimal discounted cost function V ∗ : P(X) × P(Γ) → R satisfies the optimality equation,
that is

V ∗(ν, η) = min
a∈A

{
c(ν, a)+ε(η)

∫
P(Γ)

∫
P(X)

V ∗(ν ′, η′)k(dν ′|ν, a)k̃(dη′|η)

}
, (ν, η) ∈ P(X)×P(Γ).

(4.4.3)

(b) There exists f∗ : P(X)× P(Γ)→ A such that

V ∗(ν, η) = c(ν, f∗) + ε(η)

∫
P(Γ)

∫
P(X)

V ∗(ν ′, η′)k(dν ′|ν, f∗)k̃(dη′|η), (ν, η) ∈ P(X)× P(Γ).

(4.4.4)
Moreover, the stationary policy f∞∗ = {f∗} is an optimal control i-policy, that is,

V ∗(ν, η) = V (f
∞
∗ , ν, η), (ν, η) ∈ P(X)× P(Γ).

Proof.

(a) By Lemma 34.3, we just need to prove that u∗ = V ∗. According to (4.4.1) we have that

u∗(ν, η) = Tu∗(ν, η).

Therefore,

u∗(ν, η) ≤ c(ν, a) + ε(η)

∫
P(Γ)

∫
P(X)

u∗(ν ′, η′)k(dν ′|ν, a)k̃(dη′|η), ν ∈ P(X), η ∈ P(Γ), a ∈ A.

(4.4.5)
Now, for an arbitrary policy δ ∈ ∆ iteration of the inequality (4.4.5) yields

u∗(ν, η) ≤ Eδν,η

[
c(ν0, a0) +

n−1∑
t=1

t−1∏
k=0

ε(ηk+1)c(νt, at) +
n−1∏
k=0

ε(ηk+1)u∗(νn, ηn)

]

= Eδν,η

[
c(ν0, a0) +

n−1∑
t=1

t−1∏
k=0

ε(ηk+1)c(νt, at)

]
+ Eδν,η

[
n−1∏
k=0

ε(ηk+1)u∗(νn, ηn)

]

= Eδν,η

[
n−1∑
t=0

Λtc(νt, at)

]
+ Eδν,η

[
Λnu

∗(νn, ηn)

]
. (4.4.6)

Now, note that because α > ε0 > 0 we have that ε̃(α) := e−α < e−ε0 < 1. Hence, from (4.3.9),

ε(η) =

∫
Γ
ε̃(α)η(dα) < e−ε0 < 1, η ∈ P(Γ),

which in turns implies

Λn =

n−1∏
k=0

ε(ηk) ≤ (e−ε0)n. (4.4.7)
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Therefore

Eδν,η

[
Λnu

∗(νn, ηn)

]
≤ (e−ε0)n||u∗||. (4.4.8)

Hence, letting n→∞ in (4.4.6), from (4.4.8) we get

u∗(ν, η) ≤ V (δ, ν, η), (ν, η) ∈ P(X)× P(Γ), δ ∈ ∆.

Therefore, since δ ∈ ∆ is arbitrary, (4.3.12) yields

u∗(ν, η) ≤ V ∗(ν, η), (ν, η) ∈ P(X)× P(Γ). (4.4.9)

On the other hand, now we will prove that u∗(ν, η) ≥ V ∗(ν, η). By (4.4.2) and Remark 33, we
know that

u∗(ν, η) = Tfu
∗(ν, η)

therefore,

u∗(ν, η) = c(ν, f) + ε(η)

∫
P(Γ)

∫
P(X)

u∗(ν ′, η′)k(dν ′|ν, f)k̃(dη′|η), (ν, η) ∈ P(X)× P(Γ), a ∈ A.

(4.4.10)
Now, iteration of the inequality (4.4.10) yields

u∗(ν, η) = E
f∞
ν,η

[
c(ν0, a0) +

n−1∑
t=1

t−1∏
k=0

ε(ηk+1)c(νt, at) +
n−1∏
k=0

ε(ηk+1)u∗(νn, ηn)

]

= E
f∞
ν,η

[
c(ν0, a0) +

n−1∑
t=1

t−1∏
k=0

ε(ηk+1)c(νt, at)

]
+ E

f∞
ν,η

[
n−1∏
k=0

ε(ηk+1)u∗(νn, ηn)

]

= E
f∞
ν,η

[
n−1∑
t=0

Λtc(νt, at)

]
+ E

f∞
ν,η

[
Λnu

∗(νn, ηn)

]
. (4.4.11)

Again, we get that

E
f∞
ν,η

[
Λnu

∗(νn, ηn)

]
≤ (e−ε0)n||u∗||.

Hence, letting n→∞ in (4.4.11)

u∗(ν, η) = V (f∞, ν, η), (ν, η) ∈ P(X)× P(Γ), f∞ ∈ F. (4.4.12)

Therefore, since F ⊂ ∆,

u∗(ν, η) ≥ inf
f∞∈F

V (f∞, ν, η) ≥ inf
δ∈∆

V (δ, ν, η), (ν, η) ∈ P(X)× P(Γ).

Hence,
u∗(ν, η) ≥ V ∗(ν, η), (ν, η) ∈ P(X)× P(Γ). (4.4.13)

Finally, combining (4.4.9) and (4.4.13) we prove part (a).

(b) The existence of f∗ : P(X)× P(Γ)→ A follows from Remark 33. On the other hand, similar as
in (4.4.12) we have that f∞∗ is i-optimal.

Hence Theorem 35 has been proved.
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Appendix A

Spaces of functions, functions and contraction operators

A Borel Space is a Borel subset of a complete separable metric space. A Borel space is always
endowed with the Borel σ-algebra B(X), that is, the smallest σ-algebra of subsets of X that contains
all the open sets in X. In this sense, “measurable”, for either sets or functions, means “Borel
measurable”.

For a Borel space X, we define the following spaces:

1. B(X), Banach space of real bounded measurable functions on X with the supremum norm

||v|| := sup
x∈X
|v(x)|

2. C(X) ⊂ B(X), Banach space of bounded and continuous functions on X with the supremum
norm.

Let (V, d) be a metric space. A functional mapping T from V into itself is said to be a contraction
operator if for some β satisfying 0 < β < 1 (called the modulus of T ) one has

d(Tu, Tv) ≤ βd(u, v), ∀u, v ∈ V.

An element v∗ ∈ V is called a fixed point of T if Tv∗ = v∗. For a functional T : V → V , the
functional Tn is defined recursively by Tn := T (Tn−1), for all n = 1, 2, ... where T 0 is the identity.

Proposition A.1 (Banach’s Fixed Point Theorem). If T is a contraction operator mapping a
complete metric space (V, d) into itself, then T has unique fixed point, say v∗. Furthermore, for any
v ∈ V and n ≥ 0,

d(Tnv, v) ≤ βnd(v, v∗).

The function vn := Tvn−1 = Tnv are called successive approximations.

Proof. See [19] and references therein.

Proposition A.2. Let X be an arbitrary non-empty set, and let u and v be functions from X to R
bounded from above (so that supu and sup v are finite). Then,

| sup
x
u(x)− sup

x
v(x)| ≤ sup

x
|u(x)− v(x)|, and | inf

x
u(x)− inf

x
v(x)| ≤ sup

x
|u(x)− v(x)|

Proof. See [19] and references therein.
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Appendix B

Probability Measures

Let X be a Borel space and B = B(X) its Borel σ-algebra. We denote by P(X) the space of
probability measures on X. Sea P, P1, P2, ... be probability measures on X. It is said that Pn
converges weakly to P if, as n→∞,∫

fdPn →
∫
fdP, ∀f ∈ C(X),

where C(X) is the space of real valued, bounded and continuous functionson X, with the sup norm.
Equivalentemente Pn converges weakly to P if∫

udPn →
∫
udP

for every unifromly continuous function u ∈ C(X). We will always understand P(X) as a topological
space with the topology of weak convergence. In such case, since X is a Borel space, P(X) is also
a Borel space (see e.g. [8]).
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Appendix C

Stochastic Kernels

Let X and Y be Borel spaces. A stochastic kernel on X given Y is a function q(dx|y) such that
for each y ∈ Y , q(·|y) is a probability measure on X, and for each Borel set B ∈ B(X), q(B|·) is a
measurable function from Y to [0, 1]. Equivalently, a collection of probability measures q(dx|y) on
X parametrized by y ∈ Y is a stochastic kernel, if and only if, the function h : Y → P(X) defined
by

h(y) := q(·|y)

is measurable. A stochastic kernel q(dx|y) on X given Y is said continuous if the function h
is continuous, that is, q(·|yn) converges weakly to q(·|y) whenever yn converges to y. Then, the
stochastic kernel q(dx|y) is continuous if

∫
v(x)q(dx|y) is a continuous function of y ∈ Y for every

function v ∈ C(X).

Proposition C.1. Let q(dx|y) be a stochastic kernel on X given Y , f(x, y) be a real valued mea-
surable function on X × Y , and f ′ : Y → R be the function defined by

f ′(y) :=

∫
f(x, y)q(dx, y)

whenever the integral exist. Then

• If f ∈ B(X × Y ), then f ′ ∈ B(Y ).

• If q(dx|y) is continuous and f ∈ C(X × Y ), then f ′ ∈ C(Y ).

Proof. See Lemma 5.2 in [22].

Proposition C.2 (Ionescu Tulcea). Let X1, X2, ... be a sequence of Borel spaces, and define Yn :=
X1 × . . . × Xn, and Y := X1 × X2 × . . . . Let p ∈ P(X1) be a given probability measure and for
n = 1, 2, ..., let qn(dxn+1|yn) be a stochastic kernel on Xn+1 given Yn. Then, for each n ≥ 2, there
exists a unique probability measure rn ∈ P(Yn) such that for all Bi ∈ B(Xi), where i = 1, ..., n

rn(B1 × . . .×Bn) =

∫
B1

p(dx1)

∫
B2

q1(dx2|x1) . . .

∫
Bn

qn−1(dxn|x1, ..., xn−1)

Mmoreover, if a measurable function f on Yn is rn-integrable, then∫
Yn

fdrn =

∫
X1

p(dx1)

∫
X2

q1(dx2|x1) . . .

∫
Xn

f(x1, ..., xn)qn−1(dxn|x1, ..., xn−1).

Finally, there exists a unique probability measure r on Y , sometimes writen as

r = pq1q2 . . .

such that for each n, the marginal of r on Yn is rn.
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Proof. See [7] and references therein.
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Appendix D

Multifunctions and Measurable Selectors

Throughout the following, X and A denote Borel spaces. A mapping D which associates with each
x ∈ X a non-empty subset D(x) of A is called a multifunction (or set-valued function) from X to A.
In the text, X and A denote, respectively, the state space and the action set in a Markov decision
model, and, in our case, D(x) = A(x) = A.

A multifunction D from X to A is said to be

1. Borel measurable if D−1[G] is a Borel subset of X for every open set G ⊂ A;

2. upper semicontinuous (u.s.c.) if D−1[F ] is closed in X for every closed set F ⊂ A;

3. lower semicontinuous (l.s.c.) if D−1[G] is open in X for every open set G ⊂ A;

4. continuous if it is both u.s.c. and l.s.c.

A multifunction is said to be compact-valued if D(x) is a compact set for all x ∈ X.

Given a Borel measurable multifunction D from X to A, and F denotes the set of measurable
functions f : X → A with f : X → A with f(x) ∈ D(x) for all x ∈ X. A function f is called a
selector for the multifunction D. Moreover, for a given measurable function v : X × A → R we
denote

v∗(x) := inf
D(x)

v(x, a), x ∈ X.

Proposition D.1. Suppose that D is compact valued. If v(x, ·) is l.s.c. on D(x) for every x ∈ X,
then there exist a selector f∗ ∈ F such that

v(x, f∗(x)) = v∗(x) = min
D(x)

v(x, a), x ∈ X

and v∗ is measurable.

Let K(A) be the collection of all non-empty compact subsets of A topologized by the Hausdorff
metric H. If (A, d) is separable, then (K(A), H) is a separable metric space (see e.g., [19] and
references therein).

Proposition D.2. Let D : X → K(A) be a Borel measurable multifunction, and let v(x, a) be a real
valued measurable function on X×A such that v(x, a) is upper semicontinuous (u.s.c.) in a ∈ D(x),
for each x ∈ X, Then:

1. There exists a selector f : X → A for D, such that

v(x, f(x)) = max
a∈D(x)

v(x, a), ∀x ∈ X,

and the function v∗(x) := maxa∈D(x) v(x, a) is measurable.
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2. if D is continuous and v is continuous and bounded, then v∗ is continuous and bounded.

Proof. See e.g., [19], [7] and references therein.
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Appendix E

Notation

E.1 Abbreviations

• a.s.: almost surely (i.e., with probability 1).

• CO: completely observable.

• CO-CM: completely observable control model.

• COMDP: completely observable Markov decision process.

• ECO: extended completely observable.

• EPO: extended partially observable.

• i.i.d.: independent and identically distributed.

• MDP Markov decision process.

• OCP: optimal control problem.

• PO: partially observable.

• PO-CM: partially observable control model.

• POMDP: partially observable Markov decision process.

E.2 Symbols

• N: set of positive integer numbers.

• N0: set of non-negative integer numbers.

• R: set of real numbers with usual topology.

• B(X): Borel σ-algebra of X.

• C(X): Banach space of bounded and continuous functions on X.

• P(X): space of probability measures on X.

• Ht: space of histories ht up to time t.

• Π: set of control policies.

• ΠM : set of Markov policies.
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• F: set of stationary policies.

• ||v|| = supx∈X |v(x)|: supremum norm.

• P πν : probability measure when the policy π ∈ Π is used and the initial state x0 has distribution
ν ∈ P(X).

• Eπν : expectation operator with respect to the probability measure P πν .
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