
UNIVERSIDAD DE SONORA
División de Ciencias Exactas y Naturales
Departamento de Investigación en Fı́sica

PECULIAR VELOCITY ESTIMATION FROM

SUNYAEV-ZEL’DOVICH EFFECT SIMULATED SIGNAL

USING DEEP LEARNING

Submitted to the graduate degree program in Physics in partial fulfillment of the requirements for
the Degree of Master of Science (Physics)

By
Edgar Martı́n Salazar Canizales

Director
Hume A. Feldman

Hermosillo, Sonora, 7th of August 2020

Universidad de Sonora

Repositorio Institucional UNISON

Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess

© 2020 Edgar Martı́n Salazar Canizales. All rights reserved.

Sponsored by Consejo Nacional de Ciencia y Tecnologı́a through
the graduate studies scholarship program 2018-2020.

All figures and text were generated and compiled by the author with
LATEX free typsetting system.

MAGNETICUM and SMAC are owned by Klaus Dolag at the Max

Planck Gesellschaft für Astrophysik, Garching, Germany.

This work is licensed under a
Creative Commons “Attribution-
NonCommercial-NoDerivatives 4.0
International” license.

July 2020
PRINTED IN MEXICO

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

Obtained Products

This project was designed and initiated during the eight-week KU-Sonora Summer Re-
search Program in Global Perspective1 in the summer of 2019 at The University of Kansas
in Lawrence, USA. Sponsored in jointly efforts by Universidad de Sonora, Sonora State
Government, KU Provost Office, KU CLAS Dean Office and KU Department of Physics &
Astronomy.

The present thesis is one of the products obtained from the collaborative work with Y. Wang2

and N. S. Ramachandra3,4. An article derived from this collaboration titled “Peculiar Velocity
Estimation from Kinematic SZ Effect using Deep Neural Networks” is ready for submission
to the Monthly Notices of the Royal Astronomical Society at the elaboration date of this
document.

1More at https://isp.ku.edu/sonora-research-program
2Department of Physics & Astronomy, University of Kansas, Lawrence, KS 66045, USA.
3High Energy Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA.
4Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA.

i

https://isp.ku.edu/sonora-research-program

To my parents, sisters, nana and Ari.

Thank you for all of your support along

the way.

ii

Acknowledgments

To Prof. Feldman my thesis advisor at The University of Kansas, for letting this thesis to
be my own work. To Y. Wang for allowing me to collaborate in a free environment whilst
pushing me to develop my independence.

To the University of Kansas Physics Department for providing access to HPC facilities oper-
ated by, and the staff of, the University of Kansas Center for Research Computing during the
realization of my project.

To the University of Kansas ISS office for being so attentive in providing human and material
resources that allowed me to start my work on this project during 2019’s summer internship.
Margaret, Mindy and Aaron, your kindness and hospitality meant a big deal to me.

To CONACYT for funding my studies through the graduate studies scholarship program
2018-2020. The economic certainty and stability allowed me to become a full-time student
and successfully obtain my Master of Science degree.

To the University of Sonora for being a second home during my bachelors and masters pro-
grams. I want to thank all my professors that devoted to my education in physics. Specially
to professors Garcı́a, Yeomans, Montoya and Rosas, who invested more time and effort be-
lieving in me. To Prof. Álvarez for being so attentive and helping me so much during my
graduate studies, always looking for opportunities that enabled me to pursue a specialization
in astrophysics.

To my beloved family. You who’ve always been my pillar, blessing me with your love and
candour. You’ve never doubted me even when the lights went dimmer. Specially to Nana
who’s still looking out for me, and my sisters with whom I’ve shared so many fraternal
moments. To Ariadna, my dear confident and companion. Thank you all for your endless
patience and support. Let’s keep it strong.

Edgar M. Salazar

iii

Abstract
Cosmic Microwave Background photons are inverse Compton scattered by energetic elec-
trons in galaxy clusters and distorted by its bulk motion in a process known as the Sunyaev-
Zel’dovich (SZ) effect. Conventional methods that calculate cluster peculiar velocities re-
quire additional information like the thermal component (tSZ) or underlying electron density
ne to estimate each cluster’s optical depth τ , however observational measurements contain
large errors and biases. This work studies the feasibility of using deep learning regression
algorithms for estimating individual cluster peculiar velocities from the simulated kinematic
(kSZ) component signal, thus exempting the need of τ . This formalism is tested using the
Magneticum cosmological hydrodynamical simulation. Both tSZ and kSZ, along with ne

maps were generated at z = [1.04− 1.32]. Trials with a simple convolutional neural network
yielded prediction error standard deviations as low as σe = 11.019 km s−1; whilst both meth-
ods implementing τ ’s explicit calculation yielded standard deviations of 81.569 km s−1 using
tSZ and 87.527 km s−1 for ne. The neural network provided reliable predictions for study-
ing LSS velocity fields using the pairwise velocity estimator v12, in addition to improved
correlation compared to conventional methods.

Keywords: peculiar velocity, optical depth, kinematic Sunyaev-Zel’dovich effect, neural net-

work

iv

Resumen
Fotones de la radiación cósmica de fondo sufren dispersión Compton inversa causada por
electrones energéticos en cúmulos de galaxias, y distorsión por su movimiento de bulto en
un proceso conocido como efecto Sunyaev-Zel’dovich (SZ). Métodos convencionales para
calcular velocidades peculiares de cúmulos requieren información adicional como la compo-
nente térmica (tSZ) o la densidad de electrones subyacente ne para estimar la profundidad
óptica τ de cada cúmulo, sin embargo, las mediciones observacionales contienen grandes er-
rores y sesgos. Este trabajo estudia la factibilidad de utilizar algoritmos de regresión por
aprendizaje profundo para estimar velocidades peculiares de cúmulos individuales a par-
tir de la señal simulada de la componente cinemática (kSZ), exceptuando ası́ la necesidad
de τ . Este formalismo es probado usando la simulación cosmológica hidrodinámica Mag-
neticum. Ambos mapas tSZ y kSZ junto con ne son generados a z = [1.04 − 1.32]. Prue-
bas con una red neuronal convolucional simple arrojaron desviaciones estándar del error de
predicción tan bajas como σe = 11.019 km s−1; mientras que ambos métodos implementando
el cálculo explı́cito de τ resultaron con desviaciones estándar de 81.569 km s−1 utilizando tSZ
y 87.527 km s−1 para ne. La red neuronal proveyó predicciones confiables para estudiar cam-
pos de velocidades a gran escala (LSS) utilizando el estimador de velocidades por pares v12,
además de una correlación mejorada comparada con los métodos convencionales.

Palabras clave: velocidad peculiar, profundidad óptica, efecto Sunyaev-Zel’dovich cinemático,
red neuronal

v

Contents

Abstract vi

List of Figures viii

List of Tables ix

List of Symbols x

List of Acronyms xi

Introduction 1

1 Cosmology 4
1.1 The Cosmological Standard Model . 4
1.2 Cosmic Background Radiation . 8
1.3 Peculiar Velocities . 11
1.4 Sunyaev-Zel’dovich Effect . 12

1.4.1 Compton Scattering . 12
1.4.2 Inverse Compton Scattering . 13
1.4.3 Inverse Compton Power . 14
1.4.4 Non-Relativistic Limit: Kompaneets Equation 16
1.4.5 Sunyaev-Zel’dovich Effect . 19
1.4.6 Relativistic Limit . 22

2 Deep Learning 25
2.1 Supervised Learning . 25
2.2 Artificial Neural Networks . 29
2.3 Gradient Descent and Back-Propagation . 32
2.4 Convolutional Neural Networks . 38

vi

3 Network Design & Velocity Estimation 41
3.1 Magneticum Simulation . 41
3.2 Network Design . 44
3.3 Training Tests . 46

3.3.1 Catalogue Signal . 46
3.3.2 Systematic Distortions . 46
3.3.3 DNN vs CNN . 47

3.4 Cross-Validation . 51
3.5 Deep Learning Predictions . 53
3.6 Optical Depth Estimation . 55
3.7 Model Analysis . 58
3.8 Pairwise Velocity Estimator . 61

Conclusions 62

Bibliography 65

Appendix A - Moment Generating Function 66

Glossary 67

vii

List of Figures

1.1 History of the universe . 5
1.2 COBE, MAP and Planck sky surveys . 8
1.3 Sunyaev-Zel’dovich effect distortion to CMB black-body spectrum 10
1.4 Fractional frequency change of the scattered photon 14
1.5 Thermal Sunyaev-Zel’dovich spectrum . 19
1.6 Kinetic Sunyaev-Zel’dovich spectrum . 21
1.7 KSZ relativistic correction to first order in Θ 24

2.1 Supervised learning scheme . 29
2.2 Artificial neuron and neuron layer schematics 31
2.3 Sample DNN to explain back-propagation 35

3.1 SZ maps from the Magneticum simulations 42
3.2 Sample kSZ and tSZ images . 43
3.3 Peculiar velocity and mass selection frequency histograms 43
3.4 TensorFlow example fragment . 45
3.5 Systematic distortions example . 47
3.6 Radial mapping over a sample kSZ image 51
3.7 Model training results for all datasets . 54
3.8 Scaling relation method for optical depth estimation. 56
3.9 Sample electron density image . 57
3.10 Peculiar velocities retrieved by optical depth estimation methods 58
3.11 Model error distributions and overlap index 60
3.12 Mean absolute relative error for each model 60
3.13 Pairwise velocity estimator . 61

viii

List of Tables

1.1 ΛCDM parameters from WMAP 9 and Planck PR3 7

3.1 Cosmological and simulation parameters of the Magneticum Simulation . . . 42
3.2 Model training results . 59

ix

List of Symbols

xj Feature, attribute or characteristic

X Instance or example

ŷ Target or label

y Prediction

X Instances dataset

Ŷ Targets dataset

Y Predictions dataset

f̂(X) Objective function

f(X,θ) Prediction function

θ Parameter

θ Parameter set

L(y, ŷ) Loss function (per sample)

φ Activation function

zW Weighted sum for fixed W

J(θ) Cost function

E[αn] Expectation value of the n-th moment of α

B Minibatch

g Minibatch gradient

A` Output set from layer `

Mm×n Matrices of shape m× n

x

List of Acronyms

ΛCDM Lambda-Cold-Dark-Matter.

AI Artificial Intelligence.
AN artificial neuron.
ANN artificial neural network.

BAO baryon acoustic oscillations.
BGD batch gradient descent.

CDM cold dark matter.
CMB Cosmic Microwave Background.
COBE Cosmic Background Explorer.

DL Deep Learning.
DNN deep neural network.

ESA European Space Agency.

FLRW Friedmann-Lemaı̂tre-Robertson-
Walker.

GD gradient descent.

ICM intra-cluster medium.

kSZ kinematic Sunyaev-Zel’dovich.

LF laboratory frame of reference.
LSS large-scale strucure.
LTU linear threshold unit.

ML Machine Learning.
MLP multilayered perceptron.

RF electron rest frame.

SGD stocastic gradient descent.
SPH smoothed-particle hydrodynamics.
SZ Sunyaev-Zel’dovich effect.

tSZ thermal Sunyaev-Zel’dovich.

WMAP Wilkinson Microwave Anisotropy
Probe.

xi

Introduction

Cosmology, as a formal discipline, is concerned with the study of large scale properties of
the universe as a whole. These are thought to be imprinted, for example, in the Cosmic Mi-
crowave Background (CMB) anisotropies; distortions produced by under- and over-densities
of matter at a period when radiation and matter were coupled. The CMB radiation field
permeates the universe and is deformed by effects such as: Doppler shift (earth’s relative mo-
tion), gravitational lensing (mass over-densities), gravitational redshift (Sachs-Wolfe effect),
bremsstrahlung and synchrotron radiation (from plasma clouds), inverse Compton scatter
(Sunyaev-Zel’dovich effects), and other more. In this sense, anisotropies contain information
about how the universe is and came to be.

In fact there’s some avail in studying CMB anisotropies directly. Take the Sunyaev-Zel’dovich
effect (SZ), for example, which describes the distortion process via inverse Compton scatter
caused by electrons in galaxy clusters. Thermal Sunyaev-Zel’dovich (tSZ) effect is due to the
random motion of hot electrons and its power spectrum (Zeldovich & Sunyaev, 1969, 1972)
is sensitive to matter density fluctuations characterized by cosmological parameters σ8 and
Ωm (Makiya et al., 2019). This makes it a powerful probe of the present day matter density.
A kinematic Sunyaev-Zel’dovich (kSZ) effect is caused by the bulk motion of the cluster and
its power spectrum is particularly useful to estimate galaxy cluster peculiar velocities at high
redshift(Sunyaev & Zeldovich, 1980). The velocity field is studied through ensemble statis-
tics such as bulk flows, velocity correlation functions, and the pairwise estimators. Although
kSZ is far weaker than tSZ, making it difficult to locate at low frequencies, both effects can
be separated using their different spectra. Furthermore, both signals are redshift independent.
This is a very desirable and uncommon feature that makes SZ a valuable cosmological and
cluster evolutionary diagnostic tool (Rephaeli, 1995).

The kSZ has been detected from CMB maps using pairwise momentum estimator to probe
for large-scale structure (LSS) at around 10 to 1000 h−1 Mpc showing substantial errors on
the bulk flow (Hand et al., 2012; Lavaux et al., 2013). Similar methods have detected kSZ in
real and Fourier spaces; by cross-correlating kSZ temperature map with velocity fields; and
others through CMB temperature dispersion (Planck Collaboration, 2016, 2018b; Schaan
et al., 2016; Hill et al., 2016; Soergel et al., 2016; Calafut et al., 2017; Sugiyama et al., 2018).

1

In order to estimate peculiar velocities from kSZ, the optical depth of the cluster must be
measured, however it contains large errors and biases that affect the estimation. For instance,
Lindner et al. (2015) report an average uncertainty of 30% and Mittal et al. (2018) forecast
24% in observations. Additionally, using emission-weighted temperature in the optical depth
measurement may cause bias (Diaferio et al., 2005). The optical depth also varies between
simulation models with or without star formation and feedback (Flender et al., 2016, 2017).
The signal and large errors in optical depth measurements make the kSZ peculiar velocity
calculation imprecise.

Recent work has been done to calibrate methods using simulated SZ signal as a probe for
cosmology and calculate peculiar velocities, using computational techniques to estimate and
analyse optical depth and comptonization. For example, Soergel et al. (2018) have shown
promising results in obtaining pairwise velocity statistics with kSZ by applying map filtering
to the signals and relied on tSZ to estimate average optical depth. But then again, the core
problem with using kSZ for estimating peculiar velocities for individual clusters is that the
optical depth must be computed from observational data, which has very large errors, and/or
coarse statistical analysis from additional signals that cause large dispersions.

An alternative method for estimating peculiar velocities directly from kSZ can be found in
Deep Learning (DL) algorithms. These are designed to perform complex analyses in a data-
driven manner instead of the explicit programming of the physical processes, allowing the
development and calibration of models using simulation data. DL algorithms for classifi-
cation and regression tasks, are merely a subset of Machine Learning (ML) methods that
make Artificial Intelligence (AI) an active field of research. Some ML methods like Gaussian
processes, decision trees, nearest neighbour algorithms and support vector machines have
been used in astrophysical context. In the study of kSZ, these methods give the possibility
to overlook optical depth estimation and compute peculiar velocities directly. Therefore, an
automatized computer program can predict and improve the estimation of peculiar veloci-
ties for single galaxy clusters from simulated signal maps. However, model interpretability
becomes difficult as the algorithm is numb to the physical situation.

The objective of the present work is to implement a DL algorithm to process simulated kSZ
signal maps and correctly predict individual cluster peculiar velocities. In order to achieve
this the following actions were taken:

• Review of the pertinent theory, derived and presented in orderly fashion to situate the
reader within the boundaries and reach of both SZ and DL.

2

• Implement the DL technique called supervised learning for regression analysis using
TensorFlow API libraries.

• Test the methodology using simulated signal samples extracted from the Magneticum
Simulation and generated using a light-ray tracing code (SMAC) for both thermal and
kinetic SZ effects.

In chapter 1 the reader will find a review of the current cosmological theory and its model
known as ΛCDM. CMB radiation is presented as the experimental finding that supports the
current model, and the SZ effect is studied as one of the most relevant effects known to
produce anisotropies. This chapter lays out a background to study the physics and relevance
of the SZ effect in CMB analysis; addresses the explicit derivation of Zeldovich & Sunyaev
(1969) results starting from the basics of Compton scattering and the Boltzmann equation in
the non-relativistic Thomson limit. At the end of the chapter, the relativistic limit is briefly
discussed to show the sufficiency of the non-relativistic approach when working with kSZ
measurements.

Chapter 2 provides the necessary concepts of Machine Learning that will allow a better com-
prehension of the field and its analysis tools, along with the introduction of a formal notation.
It covers core concepts of Neural Networks, learning algorithms, and the particularities of
convolutional neural networks. A notation section and glossary for this chapter can be found
on pages x and 73 respectively.

Chapter 3 contains a general description of the Magneticum Simulation and the selection
of kSZ signal maps. Extensively resorting to the notation introduced in chapter 2, the net-
work design choice is discussed followed by the construction of tests meant for exploration
purposes. Next, model cross-validation method for regression analysis and model accuracy
parameters are described. Results for all selected DL training tests come after in section 3.5.
The methodology for estimating optical depths studied by Soergel et al. (2018) is replicated
(section 3.6) in order to estimate peculiar velocities and compare with DL training. Further-
more, the direct computation of optical depth is also performed from electron density maps
extracted from the same simulation box. Section 3.7 is dedicated to compare all model’s error
distributions, and section 3.8 presents a pairwise velocity estimator as the final test for model
predictability power.

Final remarks and conclusions on this work are found in page 62.

3

Chapter 1 − Cosmology

This first chapter introduces the reader to cosmology by briefly presenting the current stan-
dard model and how it describes the observable universe. A quick review of CMB obser-
vations manifest the relevance of this relic radiation in cosmology studies. Then, peculiar
velocities of galaxy clusters are discussed as probe for cosmology parameter estimation. The
last section on this chapter provides a detailed derivation of SZ effect equations that serve
for peculiar velocity estimation. Focused on proving the validity of both SZ equations, a
detailed walk-through starting from inverse Compton scatter and the Kompaneets equation
is provided. Two concepts relevant for SZ signal analysis are introduced: comptonization
parameter and optical depth. Finally, some arguments are presented to justify that working
with a non-relativistic approach is sufficient to comprehend the implications and usefulness
of SZ effect.

1.1 The Cosmological Standard Model

The prevalent cosmological theory explaining how the observable universe came to be is
called cosmological inflation. It depends on two assumptions: the universality of physical
laws1 and the cosmological principle2. It describes how the universe expanded from an im-
measurable hot, dense, nearly homogeneous mixture of photons and matter tightly coupled,
to an expanding structure. Universe evolution has been theorized to have several stages: in-
flation, recombination, structure formation and expansion (see Fig. 1.1). The first stage is
called cosmic inflation, where the universe expanded exponentially and it is believed to be
the reason why the universe seems to be isotropic and flat. Although initial conditions of
the early plasma are difficult to establish because density fluctuations are seeded by quantum
fluctuations in the field driving inflation (Baumann, 2009). The small perturbations propagate
through the plasma collisionally like acoustic waves producing under- and over-densities in
the plasma itself with simultaneous changes in density of matter and radiation. Cold dark
matter (CDM)3 doesn’t share in these pressure-induced oscillations, but does act gravitation-
ally, either enhancing or negating the acoustic pattern for the photons and baryons (Hu &

1This is the underlying principle in the theory of general relativity which has already passed stringent tests.
2Can be derived from the Copernican principle and has been confirmed by CMB observations.
3Non-relativistic matter with little or null interaction with radiation and ordinary matter.

4

Time

Scale a(t)

10−34 s 3 min 380,000 yr 13.7 Gyr

Redshift
104 1,100 25 6 2 0

Energy
1015 GeV 1 MeV 1 eV 1 meV

?

In
fla

tio
n

reheating
BBN

recombination
reionization

galaxy formation

neutrinos
gravity waves

density fluctuations

Cosmic Microwave Background

Lensing

Quasars

Lyα

BAO
LSS21 cm

Ia

Figure 1.1: History of the universe. Key events and their associated time and energy scales (adapted
Fig. 2 from Baumann, 2009). The question mark at the origin represents all unknown processes
occurred at inflation. Acronyms: BBN (Big Bang Nucleosynthesis), LSS (Large-Scale Structure),
BAO (Baryon Acoustic Oscillations), Lyα (Lyman-alpha), Ia (Type Ia supernovae), 21cm (hydrogen
21 cm-transition).

White, 2004). During inflation, all elementary particles and antiparticles were produced. At
some point the process of baryogenesis took place producing an imbalance of matter and an-
timatter, leading to an excess of quarks and leptons over their antimatter counterparts. What
led to baryogenesis is still to be determined. In fact, processes occurred during inflation
are mostly speculative, e.g. string scale, grand unification, (super) symmetry breaking and
baryogenesis.

Later came nucleosynthesis; a period of cooling and density decrease when plasma reached a
point where quarks and gluons combined to form baryons. Electrons and baryons where able
to stably recombine and form atoms, mostly in the form of neutral hydrogen. At recombi-
nation photons decouple from the baryons as the plasma becomes neutral, and perturbations
no longer propagate as acoustic waves: the existing density pattern becomes “frozen”. This
snapshot of the density fluctuations is preserved in the CMB anisotropies and the imprint of
baryon acoustic oscillations (BAO) observable today in large-scale strucure (LSS) (Eisen-
stein & Hu, 1998). Recombination produces a largely neutral universe which is unobservable
throughout most of the electromagnetic spectrum. During this era, CDM begins gravitational

5

collapse in over-dense regions. Baryonic matter gravitationally collapses into these CDM
halos, and so begins the formation of the first radiation sources such as stars. Radiation from
these objects reionizes the intergalactic medium (Switzer, 2016), thus ending the cosmic dark

ages and beginning the cosmic dawn.

All this took place around the first 400 million years since inflation started. During the final
stages structure continues to grow and merge under the influence of gravity thus forming
the vast cosmic web of dark matter density now observed (LSS). As the universe continues to
expand, a negative pressure (thought to be some kind of Dark Energy) increasingly dominates
over-opposing gravitational forces, and so the universe expands.

Einstein introduced the cosmological parameter Λ to the field equations in order to fit a static
universe, but Alexander Friedman (1922) explored the idea of space curvature characterized
by a radius of curvature k, where k = 0 is for flat space-time; k = 1 for a closed universe; and
k = −1 for the opposite. He proposed a solution considering a homogeneous and isotropic
space based on the Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric as an exact so-
lution. This metric assumes that the spacial coordinates are scaled by a dimensionless scale
factor a(t), which is related to the Hubble parameter (expansion rate) and cosmological red-
shift by H(t) = ȧ(t)

a(t)
and a(t) = 1

1+z
(assuming a(t0) = 1) respectively.

As described by General Relativity and the FLRW metric, the Lambda-Cold-Dark-Matter
(ΛCDM) model is a parametrization of the inflationary theory and encompasses the existence
of radiation, ordinary matter (baryonic), cold-dark matter, and a negative pressure or soft
density of empty space (coded in the Λ parameter) which is responsible for the observed
acceleration in the Hubble expansion. The standard ΛCDM model further considers that both
contribution of radiation density and neutrino mass are negligible. Equation (1.1) gives the
evolution of the Hubble parameter at time t as a result of density parameters Ω

H2 = H2
0

(
(Ωb + Ωc) a

−3 + Ωk a
−1 + ΩΛ a

3(1+w)
)

(1.1)

where Ωm ≈ Ωb+Ωc is the total matter density of the universe (baryons and CDM); Ωk is the
curvature density parameter; ΩΛ is the cosmological constant density for negligible neutrino
mass (w = −1); a(t) the scale parameter; and H0 is the Hubble parameter at t0. Its common
practice to use the reduced Hubble constant h parameter to express the current expansion rate.
Related to the Hubble constant by H0 = 100 h km s−1 Mpc−1, a value of h = 0.7 indicates
that a galaxy located 1 Mpc away from the observer at t0 recedes at 70 km s−1.

6

Table 1.1 contains the latest results (Hinshaw et al., 2013; Planck Collaboration, 2018a) for
ΛCDM parameters. The first three specify the corresponding density parameters assuming
the total density Ω = 1. Curvature fluctuation amplitude measures the deviation of k from
a flat space-time. In this model, field fluctuations are the root cause of the observed CMB
anisotropies which are characterized by the primordial scalar perturbations as a power law re-
lation∝ kns−1, thus ns is a critical parameter that indicates the strength of CMB anisotropies
on all angular scales. The reionization optical depth provides a measure of the line-of-sight
free-electron opacity to CMB radiation. Assuming instantaneous and complete reionization
at zreion; it is computed as the integral of the electron density times the Thomson cross section
over the geometrical path length computed between redshifts z = 0 (now) and zreion. Lastly,
the amplitude of matter density fluctuations parameter σ8 tells how matter is distributed on
scales around 8 h−1 Mpc and defined as the RMS of the z = 0 density perturbations.

Making the explicit correspondence between cosmological observables, such as temperature
fluctuations (e.g. WMAP4) or galaxy density inferred in a galaxy survey (e.g. SDSS5), and
LSS is crucial for constraining inflation predictions. More on CMB anisotropies is discussed
in the next section.

Table 1.1: ΛCDM parameters from WMAP 9 and Planck PR3 derived from multiple sources. WMAP
reports ΩΛ as a fit parameter whilst Planck as derived, and the acoustic scale θ of BAO instead as a fit
parameter.

Parameter Name WMAP 9 Planck PR3

Ωbh
2 Baryon density 0.022 23(33) 0.022 42(14)

Ωch
2 Cold dark matter density 0.1153(33) 0.119 33(91)

ΩΛ Dark energy density 0.7135(95) 0.6889(56)
∆2
k Curvature fluctuation amplitude [ln(1010∆2

k)] 3.195(94) 3.047(14)
ns Spectral index 0.9608(80) 0.9665(38)
τ Reionization optical depth 0.081(12) 0.0561(71)

Derived Parameters

Ωm Matter density 0.2865(96) 0.3111(56)
H0 Hubble constant 68.76(84) 67.66(42)
σ8 Amplitude of matter density fluctuations 0.820(14) 0.8102(60)

4Wilkinson Microwave Anisotropy Probe.
5Sloan Digital Sky Survey.

7

1.2 Cosmic Background Radiation

G. Gamow (1946) realized that after the recombination period, where electrons and protons
became bound for the first time, the universe should be filled with a black-body radiation
field. Two decades later, this radiation was first measured by Penzias & Wilson (1965) in
the microwave regime wavelength of 7.34 cm, from which they inferred a black-body tem-
perature of 3.5(10) K in accordance to Gamow’s theory. In 1992, the Cosmic Background
Explorer (COBE) outer space probe took precise measurements of the same spectrum detect-
ing anisotropies. It was able to determine a mean temperature of 2.7 K with a precision of
0.005% (NASA, 2016) corresponding to an almost perfect fit to the black-body spectrum the-
orized in the inflationary model. It also provided an estimate to the magnitude of anisotropies,
around 105 times smaller than the average temperature of the radiation field.

The Wilkinson Microwave Anisotropy Probe (WMAP) operated from 2001 to 2010 providing
high resolution measurements of the ΛCDM parameters (see Table 1.1). These results esti-
mate the age of the universe at 13.76(11) Gyr (thousand million years), and the data is very
well fit for a universe dominated by dark energy. In year 2009 the European Space Agency
(ESA) launched the Planck probe (Planck Collaboration, 2015) with even higher resolution,
being the first to distinguish details in the structure of the CMB that were not distinguishable
before. Measurements have found that in fact CMB is isotropic and has a thermal black-body
temperature of 2.725 48(57) K (Planck took this measurement from Fixsen (2009) with neg-
ligible impact on their results). Figure 1.2 shows how measurement resolution from outer
space probes of temperature density contrast ∆T/T has improved over the years. Although
it might seem as if the spectrum is not isotropic, anisotropies are very small with variations
smaller than a few µK (Wright, 2004).

(a) COBE (b) WMAP (c) Planck

Figure 1.2: Comparison between CMB density contrast sky surveys improving over 20 years6. The
scale is of order ∆T/T ∼ 10−5, where blue is cooler and yellow/red is hotter than the average
temperature T . Images retrieved from http://www.nasa.gov and https://www.cosmos.esa.int.

8

http://www.nasa.gov
https://www.cosmos.esa.int

As mentioned before, CMB is a field of photons that went out of thermal equilibrium with
matter in the early universe after it became transparent, around zreion ≈1,100. This is often
called the last scattering, referring to when photons were scattered by hot plasma electrons
for the “last time”, constituting the surface of the last scatter, i.e. CMB. For the most part,
this field is homogeneous and isotropic, meaning that early universe distribution of matter
and radiation is also homogeneous and isotropic. However, matter under- and over-densities
present at recombination caused fluctuations in the radiation field through their gravitational
perturbations, thermodynamic fluctuations in the density of radiation coupled with matter,
and through Doppler shifts due to motions of the surface of the last scatter (Birkinshaw,
1999). The angular power spectrum ∆T (n̂)

T0
= a`mY`m(n̂) 7 is an important tool in CMB

statistical analysis. It describes the cosmological information contained within the millions
of pixels of a CMB map in terms of a much more compact data representation.

For example, the monopole and dipole terms are related to the radiation’s average temper-
ature and earth’s relative motion with respect to the CMB rest frame, respectively. Higher
order multipoles are more complex contributions of several effects that deform the spectrum
such as: gravitational lensing produced by mass distribution inhomogeneities; and gravita-
tional redshift known as Sachs-Wolfe effect, where radiation’s frequency shifts due to gravity
wells. Other sources of radiation also contribute, like the well known bremsstrahlung and
synchrotron radiation produced by charged particles; radiation emitted from stars and ab-
sorbed by dust clouds (just to mention some); as well as scattering effects like regular and
inverse Compton. All these (and more) give the anisotropies observed (see Fig. 1.2) and
contain information on the mass distribution around the universe and LSS. In this sense,
anisotropies contain information about how the universe is and came to be.

The most likely sources of perturbations to CMB are galaxy clusters with masses that often
exceed 1014 M� and radii around Mpc. The total gas fraction is around 16% with ∼13%
in the hot intra-cluster medium (ICM) and the remaining 3% in stars in the cluster galaxies.
The remaining∼84% of the mass is a dark matter halo. Gas densities in cluster centres range
from as much as 10−1 to 10−3 particles per cm3 in peaked clusters to the non-peaked ones.
This is in stark contrast to the mean cosmic density of baryons of about 10−8 particles per
cm3 (Peterson & Fabian, 2006).

The ICM is plasma that is nearly fully ionized due to the high temperatures created by the
deep dark matter gravitational potential. It consists mainly of ionized hydrogen and helium

7Assume Einstein summation convention for repeated indices.

9

and strongly emits X-Ray radiation, primarily due to bremsstrahlung process. Free electrons
in the medium can also scatter low energy CMB photons and cause distortions to its spectrum.
This is known as the Sunyaev-Zel’dovich effect (SZ).

Few years after Penzias and Wilson’s measurements, Zeldovich & Sunyaev (1969) were able
to find an analytical expression for the distortion of the CMB spectrum produced by the
scattering of thermal electrons in the non-relativistic approximation studied by Kompaneets
(1956). This is formally known as the thermal Sunyaev-Zel’dovich (tSZ) effect and it’s the
result of inverse Compton scattering of low CMB photons by thermally distributed hot elec-
trons in massive clusters of galaxies (LaRoque et al., 2002). Figure 1.3a shows the CMB
black-body spectrum and how it is distorted by the SZ effect. TSZ manifests as an increment
in the high frequency part of the CMB spectrum and as a decrement in the low frequency
region, with a crossover frequency of 217.4 GHz (see Fig. 1.3b).

Additionally, a kinematic Sunyaev-Zel’dovich (kSZ) contribution in the spectrum, is caused
by the ICM bulk radial motion with respect to the CMB rest frame (Doppler shift). This effect
shifts the CMB black-body spectrum to a slightly lower (higher) temperature for receding
(approaching) velocities from the observer with its minimum (maximum) drop (raise) at the
crossover frequency (Birkinshaw, 1999). This makes the measurement of kSZ effect to be
around the 217 GHz mark. Because tSZ signal is much more intense than kSZ (approx. 102,
see Fig. 1.3b) this makes it harder to detect kSZ alone.

100 101 102 103
100

101

102

103

ν [GHz]

I
(ν
,T

)
[M

Jy
sr

−
1
]

CMB
CMB + SZ effect
217.4 GHz

(a) CMB black-body spectrum and distorted spectrum
by SZ effect.

101 102 103

−0.5

0

0.5

ν [GHz]

∆
I
(ν
,T

)
[M

Jy
sr

−
1
]

Thermal
Kinematic
217.4 GHz

(b) Spectral form of both thermal and kinetic SZ ef-
fects if T = 2.725 K (Rephaeli, 1995). kSZ was am-
plified to ease visualization.

Figure 1.3: Sunyaev-Zel’dovich effect distortion to CMB black-body spectrum

10

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/

The most interesting aspect of kSZ is that it provides a method for measuring the line-of-sight
peculiar velocity of an object at large distance, provided that the velocity and thermal effects
can be separated, as they can using their different spectral properties. Further discussion is
found in section 1.4.5 when the proper solutions are showed.

1.3 Peculiar Velocities

Peculiar motion refers to the movement of an object relative to a reference frame at rest. As
galaxies are typically found in groups or clusters, they have significant gravitational effects
on each other. The peculiar velocity field is therefore sensitive to mass fluctuations on large
scales, thus a powerful tool for constraining cosmological parameters.

However, the measurement precision of the velocity field is limited by the error in radial
distance measurement, which tend to have a non-Gaussian error distribution that may bias
the results. More so, peculiar velocity errors tend to be proportional to the radial distance
which in turn have fractional observational errors typically around 20%. For these reasons,
a single peculiar velocity measurement is not a good approximation to a cluster’s velocity.
Statistical ensembles (especially of low-order moment statistics) may be a good estimator of
the cosmic velocity field and therefore a good tracer of the mass distribution in the Universe.

Many recent studies have focused on the bulk flow, which is the lowest order statistic of the
velocity field and is generally thought of as the average of peculiar velocities in a volume.
Its calculation is typically done by two approaches: a maximum likelihood estimate (MLE)
and minimum variance (MV). A drawback from MLE is that, even though it basically re-
duces the entire data to the bulk flow vector components, since the particular data and error
distribution in the surveys analysed are unique to each catalogue it is difficult to compare
between independent surveys. Regarding MV, which minimizes the differences between the
actual observational data and an “ideal” survey that may be designed to probe a volume in a
particular way, it easily lends itself to direct comparisons between independent surveys.

Another approach to study LSS velocity field is the pairwise velocity statistic v12(r) intro-
duced by Ferreira et al. (1999). It takes the mean peculiar velocity difference between galaxy
pairs at a distance r. Since only the line-of-sight component of the velocity is observed
vi ≡ r̂i · vi, rather than the full three-dimensional velocity vi, it is not possible to compute
v12 directly. The pairwise velocity estimator weights each pair by the factor cij ≡ r̂ij ·(rj+ri)

and sums over all pairs at fixed separation r = |rj − ri|.

11

v12(r) =
2
∑

(vj − vi) cij∑
c2
ij

(1.2)

On very large scales, v12(r) is proportional to Ω0.6σ2
8 , and on intermediate scales the de-

generacy is removed and Ω and σ8 can be measured separately (Juszkiewicz et al., 1999).
This work limits to the estimation of v12(r) given in Eq. (1.2) as a test for peculiar velocity
estimation methods in ensemble statistical analysis (see section 3.8).

1.4 Sunyaev-Zel’dovich Effect

CMB is the dominant electromagnetic radiation field in the Universe, and Compton scattering
is one of the main physical processes that couples radiation and matter. Scattering of CMB
photons by free electrons can have important observable effects, for instance, the SZ effect.
This section contains a revision of Compton scattering as a means to justify the Thomson
scattering approximation (Rybicki & Lightman, 1985; Peebles, 1993) at the electron’s rest
frame; succeeded by a derivation of the Kompaneets equation for the non-relativistic limit of
thermal scattering, and the obtention of the SZ equations (Kompaneets, 1956; Zeldovich &
Sunyaev, 1969, 1972; Sunyaev & Zeldovich, 1980; Rephaeli, 1995; Birkinshaw, 1999).

1.4.1 Compton Scattering

Consider a single scatter process e0 + γ0 −→ e1 + γ1 as seen from the laboratory frame of
reference (LF) S at earth’s surface. The subscript 0 refers to the initial state before scat-
tering; and 1, to a single scatter process. The photon will have four-momenta given by
P0 = c−1ε0 (1, n̂0) and P1 = c−1ε1(1, n̂1), where ε = hν and n̂ is a unitary vector; and
the electron, Q0 = γm (c,v) and Q1 = γ1m(c,v1), where v̂ is the velocity measured from
S. Note that the subscript 0 will not be necessary as shown below. Four-momentum conser-
vation states

P0 +Q0 = P1 +Q1 (1.3)

Using the Minkowski norm invariance it’s possible to express the final state in terms of the
initial state by taking the norm squared on both sides of Eq. (1.3), getting P0 ·Q0 = P1 ·Q1.
Multiplying Eq. (1.3) by P1 from the left on both sides and considering the previous result,
evaluates to the equivalent explicit expression

c−2ε1ε0 (n̂1 · n̂0 − 1) + c−1ε1γm (n̂1 · v − c) = c−1ε0γm (n̂0 · v − c) (1.4)

12

This expression is independent of the electron’s final state, i.e. it does not affect the scattered
photon, which is valid only for the single scatter. In reality the electron most likely won’t
be at rest after the scatter but fixing the reference frame at the initial position suffices for
describing the photon’s energy change. Introducing the scattering angle cosϕ01 = n̂1 · n̂0

between the incoming and the outgoing photon directions; and the angles with respect to the
axis defined by the electron velocity v cos θ0 = n̂0 · v̂ and v cos θ1 = n̂1 · v̂; and solving Eq.
(1.4) for the scattered energy ε1 gives

ε1 = ε0
1− β cos θ0

1− β cos θ1 +
ε0

γmc2
(1− cosϕ01)

(1.5)

The change in the photon’s frequency is due to regular Compton scattering by an electron
with energy E = γmc2 and velocity β = v

c
, from an angle θ0 to an angle θ1 measured from

LF. Changing to the electron rest frame (RF) S ′ means taking β = 0, with E ′ = mc2

ε′1 (ε′0,Ω) = ε′0
1

1 +
ε′0
E ′

(1− cosϕ′01)

(1.6)

where ϕ′01 is the angle of deflection of the photon measured from the direction of incidence;
Ω is the solid angle defined by ϕ′01. The corresponding transformations between reference
frames are simply ε′ = εγ (1− β cos θ) and ε = ε′γ (1 + β cos θ′); the angle transformation
law relative to the electron’s velocity is cos θ′ = cos θ−β

1−β cos θ
; and the deflection angle is given by

cosϕ01 = cos θ1 cos θ0 + sin θ1 sin θ0 cos(φ0−φ1), where φ1 and φ0 are the azimuthal angles
of the scattered photon and incident photon in S.

1.4.2 Inverse Compton Scattering

Since photons can come from anywhere, ϕ′01 ∈ [−π, π], energy is lost from the recoil except
for purely forward scattering, as Fig. 1.4. This means that at RF a photon will always cede
energy by regular Compton scattering with an outgoing energy ε′1 6 ε′0. Energy loss is big for
very energetic photons with ε′0 � mc2, as the outgoing frequency is very small at big angles.
On the other hand, for low energy photons and mildly relativistic or non-relativistic electrons
ε′0 � mc2 � E the scattering is almost elastic ε′1 → ε′0. This limit recovers Thomson
scattering, which is also appropriate for the SZ effect and causes considerable simplifications
in the physics and mathematics.

13

−π −π/2 0 π/2 π
0

0.5

1

ϕ′
01

ε′ 1
/ε

′

hν′ � mc2

hν′ ≈ mc2

hν′ � mc2

Figure 1.4: Fractional frequency change of the scattered photon measured from RF.

Whenever the moving electron has sufficient kinetic energy compared to the photon, net
energy may be transferred from the electron to the photon. The outgoing photon’s energy
(frequency) is higher and it’s said to be up-scattered. This process is called inverse Compton
scattering. The working conditions will be taking β → 1 and γ � 1 for relativistic electrons,
but maintaining low energy photons ε′0 � γmc2 so that the scattering is Thomson in RF but
inverse Compton in LF.

Photons can come from any random direction but the outgoing photon is strongly beamed
in the direction of the velocity so cos θ′1 ≈ 1. From Eq. (1.6), typical scattering angles of
π/2, taking into account the considerations previously made for inverse Compton scatter, and
working back to LF quantities it’s possible to approximate the photon’s energy by

ε1 ≈ ε0γ (1 + β cos θ′1) (1 + β cos θ0) ∼ γ2ε0

Although a coarse estimation, it shows that even if the incoming photon’s energy in RF is low,
as long as the electron has a large kinetic energy, the outgoing photon can greatly increase
its energy in LF. Because γ � 1, the up-scatter can give very large energies. The maximum
energy boost is around γ2ε0 < γmc2 = γ(511 keV) so the energy ε1 can be enormous and
the scattering is still Thomson in RF.

1.4.3 Inverse Compton Power

Let n(p) be the photon phase space distribution function (Lorentz invariant), and vdε be the
density of photons having energy in range dε 8. Then v and n are related by vdε = nd3p.
Because d3p = γd3p′, i.e. transforms as energy under Lorentz transformations the quantity

8In the following the subscript 0 is omitted for incoming or before scattering quantities.

14

vdε
ε

= v′dε′
ε′ is Lorentz invariant. The total power emitted in RF due to scattering is

P ′ = cσT

∫
ε′v′dε′ (1.7)

The integral’s kernel is the energy density of incident photons. Assuming that the change in
energy at RF is negligible compared to the change at LF is valid because the energy difference
in both reference frames is of order γ2. Also, the total emitted power invariance P = P ′

allows to express

P = γ2cσT

∫
(1− β cos θ0)2 εvdε

which refers solely to quantities in S (LF). For an isotropic distribution of photons the average
value over all directions of the term in parenthesis is 1 + 1

3
β2, thus

P = γ2cσT

(
1 +

1

3
β2

)
Uph with Uph =

∫
εvdε (1.8)

where Uph is the initial photon energy density, whose decrease rate is simply −cσTUph.
The net power lost by the electron and thereby converted into increased radiation is then
4
3
cσTγ

2β2Uph. Introducing the electron’s equilibrium temperature Θ = kT
mc2

, the thermal en-
ergy is related to β by 〈β2〉 = 3Θ for an electron cloud at absolute temperature T . So the
total power for a thermal distribution of non-relativistic electrons with number density ne at
equilibrium temperature T is

P = 4ΘcσTneUph (1.9)

The average energy of a photon due to ICM scatterings with thermal electrons at the non-
relativistic limit, and averaging over all angles:

∆ε′

ε′
≈ − ε′

mc2

On the other hand, the energy change from the power emitted per scattering divided by the
collision rate gives a net energy gain ∆ε

ε
∼ 4

3
β2 = 4Θ. Considering energy conservation in

the scattering process, the energy loss of electrons is equal to the energy gain of photons.
Thus the energy fractional change of the radiation field per scattering due to non-relativistic
electrons in thermal equilibrium must be:

∆ε

ε
= 4Θ− ε

mc2
(1.10)

15

If ε < 4Θ, the photon gain energy (inverse Compton); if ε = 4Θ, there is no energy exchange;
and if ε > 4Θ, the photon cedes energy (Compton).

1.4.4 Non-Relativistic Limit: Kompaneets Equation

Examine the evolution of photon phase space density n (ν, t) with frequency ν = h−1ε at
time t due to scattering from electrons. Assuming n to be isotropic, and if f (p) is the phase
space density of electrons with momentum p, then the Boltzmann equation states that the
change in photon occupation number of a radiation field n (ν, t) with respect to time due to
Compton scatterings is:

∂n

∂t
= − c

∫
d3p dΩ

dσ

dΩ

[
n(ν)f(p) (1 + n(ν1))− n(ν1)f(p1) (1 + n(ν))

]
(1.11)

considering the scattering events p + ν
 p1 + ν1 (Peebles, 1993). The first term inside
the brackets in Eq. (1.11) represents scattering out of frequency ν into frequencies ν1, and
the second term represents the opposite process. The factors 1 + n(ν) and 1 + n(ν1) take
into account stimulated scattering effects, that is: the probability of scattering from ν to ν1 is
increased by the factor 1+n(ν1). Considering photon number conservation from the radiation
field in scattering process, photons must obey Bose-Einstein statistics and tend toward mutual
occupation of the same quantum state.

The probability that photons are scattered into a solid angle Ω is the differential cross section
given by Klein-Nishina formula for relativistic electrons. For low photon energies ε � mc2

and non-relativistic electrons, elastic scattering dominates so Klein-Nishina formula reduces
to the differential Thomson cross section for unpolarized incident radiation:

dσT

dΩ
=

1

2
r2

0

(
1 + cos2 θ

)
(1.12)

where r0 = 2.818× 10−15 m is the classical electron radius and σT ≈ 6.6524× 10−29 m2

is Thomson’s cross section. A solution to Eq. (1.11) in the non-relativistic second order
approximation for thermal electron population (or Fokker-Planck approximation) was first
derived by Kompaneets (1956) considering that CMB photons are in thermal equilibrium
once they enter the ICM at an absolute temperature Θ. The electron phase space density
f (p), alternatively f(E) where E = p2/2m is given by

f(p) =
(
2πm2c2Θ

)−3/2
ne exp

[
− p2

2m2c2Θ

]
(1.13)

16

where ne is the electron space density and f (p) integrates to ne. The frequency shift due
to Compton scattering ∆ν is very small, such that both occupation number and electron
distribution after the scattering can be expanded in Taylor series of the small variable ∆ν.
Introducing the dimensionless frequency x and dimensionless energy transfer ∆ variables:

x =
hν

kT
and ∆ =

h∆ν

kT
(1.14)

where T is the radiation field temperature (CMB)9. An increase in frequency is expected due
to inverse Compton scattering and a corresponding decrease in electron energy10, so:

n (ν1) = n(ν) + ∆
∂n

∂x
+

1

2
∆2∂

2n

∂x2
+ · · · (1.15)

f(E1) = f(E)

[
1 + ∆ +

1

2
∆2 + · · ·

]
(1.16)

Using Eqs. (1.15) and (1.16) in Eq. (1.11):

∂n

∂t
=

(
∂n

∂x
+ n(n+ 1)

)
c

∫
dσ

dΩ
f(p) ∆ d3p dΩ ��>

I1

+
1

2

(
∂2n

∂x2
+ 2(n+ 1)

∂n

∂x
+ n(n+ 1)

)
c

∫
dσ

dΩ
f(p) (∆)2 d3p dΩ ��>

I2

It’s possible to anticipate (as expected) that the Bose-Einstein distribution n(x) = (ex+α − 1)
−1

is a steady-state solution since both terms involving derivatives vanish for this distribution,
and photon number conservation is assumed. Using the elastic limit differential cross sec-
tion in Eq. (1.12), the first integral I1 (in blue) can be calculated noticing that by defini-
tion it is the energy transfer rate, which is the average transfer times the number of colli-
sions σTnec∆ε/kT . The average energy transfer per collision of photons with energy ε is
given by Eq. (1.10), which can be rewritten in terms of x as ∆ε

kT
= Θ x (4− x), thereby

I1 = cσTneΘ x (4− x). The second integral I2 (in red) can be obtained by direct calculation
which gives 2cσTneΘ x2. From these results, the equation transforms to

∂n

∂t
=

ΘσTnec

x2

∂

∂x

[
x4

(
∂n

∂x
+ n(n+ 1)

)]
(1.17)

9Note the use of Θ for referring to the electron and ICM temperature, whereas the variable T is reserved
for radiation temperature only.

10It has been expressed in terms of the electron’s energy due to calculus simplification.

17

Equation (1.17) is the Kompaneets equation (Kompaneets, 1956; Weymann, 1965). Using
random walk arguments it’s possible to analyse what happens in the case of multiple scat-
terings by a dispersive medium. When photons co-exist in a region of size `, the repeated
scattering distort the original spectrum of photons, i.e. comptonization. The mean free path
of the photon due to Thomson scattering is λ = 1

neσT`
. If the size of the region ` is such that

λ−1 � 1, then the photon will undergo many collisions in this region, but if λ−1 � 1 there
will be few collisions.

The optical depth is defined as τ ≡ λ−1 = neσT`. If τ � 1 (optically thick, strong scattering)
then the photon undergoes N (� 1) collisions in travelling a distance `. From standard
random-walk arguments, N ' τ 2. On the other hand, if τ 6 1 (optically thin), then the
number of collisions is of order 1−e−τ ≈ τ , i.e. N ' τ . Therefore an estimate for the number
of scatterings is N ' max(τ, τ 2). The average fractional change in the photon energy per
collision is 4Θ, hence the condition for significant change of energy is 4Θ max(τ, τ 2) ' 1.
The optical depth requires knowing the electron density in the dispersive region. Typical
optical depths values for rich clusters are around 0.02− 0.03.

A measure for the distortion induced by a scattering region is the Compton−y parameter (or
simply comptonization) defined as

y =

∫
Θ dτ =

∫
ΘneσT d` (1.18)

where Θ and τ are, in general, functions of the path length measured by ` = ct. When y & 1,
the total spectrum and total photon energy is significantly altered (unsaturated comptoniza-
tion); whereas for y � 1, the total energy is not much changed (modified blackbody). This
parameter can be interpreted as being proportional to the electron gas pressure nekT .

The occupation number change is sometimes expressed as a function of y, so after integrating
both sides of Eq. (1.17) along the path length throughout the scattering region, considering
Eq. (1.18), one gets a complete solution to the Boltzmann equation:

∆n(x, y) =
y

x2

∂

∂x

[
x4

(
∂n

∂x
+ n(n+ 1)

)]
(1.19)

For black-body radiation, as it is the case of CMB, with temperature T the occupation number
of photons is actually n (x) = 1

ex−1
, which corresponds to the previous assumption that it is

Planckian.

18

1.4.5 Sunyaev-Zel’dovich Effect

Because n(x) constitutes a steady-state solution, the parenthesis in Eq. (1.19) vanish resulting
in ∆n = 0. However, CMB radiation field has its peak intensity at the low-frequency regime
making it possible to approximate ∂xn� n(n+ 1). By doing so, Eq. (1.19) simplifies to

∆n(x, y) =
y

x2

∂

∂x

[
x4∂n

∂x

]
(1.20)

and the photon occupancy change is readily solved.

∆n(x, y) = y
xex

(ex − 1)2

[
x coth

(x
2

)
− 4
]

(1.21)

Nonetheless occupation number is not an observable quantity but the spectral intensity. Given
that Eq. (1.19) has been integrated along the path length throughout the scattering region,
spectral intensity is given along the line-of-sight. Recalling the relationship between spectral
intensity and occupation number I = i0x

3n(x), the net change in intensity is

∆It = i0 y
x4ex

(ex − 1)2

[
x coth

(x
2

)
− 4
]

with i0 = 2
(kT)3

(hc)2
(1.22)

Taking the fractional change in intensity of CMB photons due to free electrons in the ICM,
thermal Sunyaev-Zel’dovich (tSZ) is

∆It
I

= y
xex

ex − 1

[
x coth

(x
2

)
− 4
]

or
∆Tt
T

= 2y
[x

2
coth

(x
2

)
− 2
]

(1.23)

101 102 103
−1

−0.5

0

0.5

1

ν [GHz]

∆
I t

(ν
,T

)
[M

Jy
sr

−
1
] tSZ

217.4 GHz

Figure 1.5: TSZ spectrum corresponding to y = 0.0005 with cut frequency at 217.4 GHz.

19

From x’s definition it turns out that the scale in frequency is around GHz such that the effect
is noticeable.

x = 1.762
(ν

100 GHz

)
(1.24)

Equation (1.22) has a zero at x0 = 3.83 or ν0 = 217.4 GHz. Furthermore, ∆It is negative
for values below x0 and positive for values above it. This means that intensity decreases in
the low frequency region of the spectrum, and increases in the high frequency region (see
Fig.1.5). In the Raleigh-Jeans limit tSZ temperature contrast approximates simply to −2y.

On top of the spectral distortion caused by scattering the contribution of the bulk motion
of the ICM relative to LF must be taken into account. Starting from the radiative transfer
equation (Birkinshaw, 1999):

c−1dI

dt
= jν − (αν,abs + αν,sca) I(k̂1) + αν,sca

∫
φ(k̂, k̂1)I(k̂)dΩ (1.25)

where jν is the emission coefficient; αν,abs and αν,sca are the absorption coefficients due to
simple absorption and scattering, respectively; and φ is the probability of scattering from an
angle µ = cos θ to an angle µ1 = cos θ1 specified by the wave vectors k̂ and k̂1 (given by
Chandrasekhar, 1950).

φ(µ, µ1)dµ =
3

8

[
1 + µ2µ2

1 +
1

2

(
1− µ2

) (
1− µ2

1

)]
dµ (1.26)

Considering the change in specific intensity solely by scattering, i.e. no emission nor absorp-
tion, and changing to a dependence on the optical depth along the path length in line-of-sight
direction, the transfer equation reduces to

dI

dτ
=

∫ 1

−1

φ(µ, µ1) (I − I1) dµ (1.27)

By integrating the left side of Eq. (1.27) it’s possible to rewrite it as a relativistic invariant ∆I
I

where I corresponds to the CMB radiation field spectrum just as before. Since the observer
at LF detects scattered photons along the line-of-sight, µ1 = 1.

I(τ, µ1)− I(0, µ1) = τ I(0, µ1)

∫ 1

−1

φ(µ, µ1)

(
I(0, µ)

I(0, µ1)
− 1

)
dµ

∆I

I
=

3

8
τ

∫ 1

−1

(
1 + µ2

)(ex − 1

ex′′ − 1
− 1

)
dµ

20

where x′′ = xγ2(1+β)(1−βµ). For small velocities (β � 1) the integrand can be expanded
in powers of β and the symmetry of the integrand ensures that only even powers of µ in the
expansion will appear in the result. Integration over all angles is easily done, so that the
kinematic Sunyaev-Zel’dovich (kSZ) equation is

∆Ik
I

= −τβ xex

ex − 1
or

∆Tk
T

= −τ v
c

(1.28)

Because Eq. (1.28) describes bulk motion, the velocity parameter β = v
c

and optical depth
τ represent the full ICM or galaxy cluster for that matter. Moreover, v is the line-of-sight
peculiar velocity because it depends on the observer’s relative motion to the ICM. In the low-
frequency regime both temperature contrasts for tSZ and kSZ depend on the comptonization
parameter y and optical depth τ , respectively. For this reason parameter estimates or mea-
surements are needed in order to study SZ effects (see chapter 3).

The peak intensity of kSZ is found at the cross-over frequency x0. However the relative
intensity of kSZ to tSZ is very small. In fact, the ratio of the brightness temperature changes
caused by the effects is

∆Tk
∆Tt

=
1

2Θ

v

c
= 0.085

(v

1000 km s−1

)(kT

10 keV

)−1

(1.29)

which is small for the expected velocities of a few hundred km s−1 or less, and typical cluster
temperatures of a few keV. This makes it very difficult to locate kSZ in the presence of tSZ at
low frequency. However, both effects may be separated using their different spectra. Indeed,
kSZ peak intensity change (Fig. 1.6) is at the same frequency where tSZ is zero (Fig. 1.5).

101 102 103
0

0.01

0.02

0.03

ν [GHz]

∆
I k

(ν
,T

)
[M

Jy
sr

−
1
] kSZ

217.4 GHz

Figure 1.6: KSZ spectrum corresponding to β = −0.0015 (v ≈ −450 km s−1) approaching to the
observer with maximum at the crossover frequency 217.4 GHz.

21

1.4.6 Relativistic Limit

It has been found that non-relativistic electrons produce tSZ and kSZ temperature contrasts
∆T
T

equal to −2y and −τβ, respectively, for low-energy photons. However, a proper treat-
ment of the most general physical situation is far more challenging as there’s no closed form
solution. Nevertheless it’s always essential to check for relativistic corrections to the classical
theory in order to decide which approximation is more convenient for the study at hand.

Using the exact probability distribution and relativistically correct form of the electron ve-
locity distribution (Maxwellian), Rephaeli (1995) calculated the resulting intensity change
in the limit of small optical depth to Thomson scattering, τ , keeping terms linear in τ . The
resulting frequency shift is

s = ln
(ν1

ν

)
= ln

(
1 + βµ1

1 + βµ

)
(1.30)

where β is the electron velocity in the CMB frame. The probability that a scattering results
in a frequency shift s is (Wright, 1979)

P(s, β) =
1

2γ4β

∫
es φ(µ, µ1)

(1 + βµ)2
dµ (1.31)

where φ(µ, µ1) is given by Eq. (1.26). Averaging over a Maxwellian distribution for the
electrons

P1(s) =

∫
β2γ5 exp

{
−γ−1

Θ

}
P(s, β)dβ∫

β2γ5 exp
{
−γ−1

Θ

}
dβ

(1.32)

Finally, the total change in photon occupation number along a line of sight to the cluster can
now be written as

∆nt(x) = τ

∫ ∞

−∞
[n(xes)− n(x)]P1(s)ds (1.33)

At a glance, this procedure already shows mayor differences to Eq. (1.21) integrated from
the Kompaneets equation. The most evident is the explicit dependence on the optical depth
instead of the comptonization parameter. The other major difference is that the problem now
is to solve an integral equation rather than a second order differential equation.

Regardless of how ∆nt(x) is calculated, the intensity change is ∆It(x) = i0x
3∆nt(x). In-

troducing the spectral functions h(x) and g(x), the non-relativistic intensity spectra for both
effects can be easily rewritten as ∆It = i0 yg(x) for tSZ and ∆Ik = −i0 τβ h(x) for kSZ.

22

The dependence on the cluster gas density ne is encoded on both y and τ parameters.

h(x) =
x4ex

(ex − 1)2 and g(x) = h(x)
[
x coth

(x
2

)
− 4
]

(1.34)

The exact relativistic calculation does not lead to a simple analytic solution so, in order to
obtain an approximate expression, the formal expression for ∆I = ∆It + ∆Ik needs to be
expanded in powers of (the small quantities) τ , Θ, and β. For the resulting expansion to be
accurate to within ∼2% for kT < 50 keV, Shimon & Rephaeli (2004) included terms up to
τΘ12, τ 2Θ5, and β2Θ4. However, since cluster velocities are expected to be generally below
1000 km s−1, terms quadratic in β can be ignored. Doing so gives the total intensity change
as the sum

∆I

i0
= τ

8∑

i=1

fi(x)Θi + τ 2

4∑

i=1

fi+8(x)Θi+1 − τβ

[
h(x) +

4∑

i=1

fi+12(x)Θi

]
(1.35)

where fi(x) = x3Fi(x), with Fi(x) defined in Shimon & Rephaeli (2004). The crossover
frequency x0 varies accordingly with Θ and τ :

x0 = 3.83
(
1 + 1.12 Θ + 2.08 Θ2 − 80.74 Θ3 + 1548.25 Θ4 + 0.8 τΘ + 1.18 τΘ

)
(1.36)

Consider, for example, a typical cluster temperature of 10 keV. Because kSZ is the signal
of interest for this work, the first order correction is in Θ regulated by the spectral function
f13(x) (retrived from Shimon & Rephaeli, 2004, and reworked for ease of presentation)

f13(x) = x3

[
−9

4

x

sinh2 x
2

+
47

20

x2 cosh x
2

sinh3 x
2

− 7

40

x3
(
2 cosh2 x

2
+ 1
)

sinh4 x
2

]

It goes without saying that the functional relationship between spectral intensity I and fre-
quency x is far more complicated, however the peak only rose by 10% and the cross-over
frequency is merely shifted to 222.1 GHz (see Fig. 1.7).

Be as it may, the theoretical description accuracy of the SZ effect surpasses the precision with
which the effect can be measured nowadays. In addition to observational errors, systematic
modelling uncertainties are relatively large. Thus, the impact of the relativistic treatment
for the purpose of measuring peculiar velocities introduces negligible differences. For this

23

reason, the first order approximation on β for the kSZ temperature contrast in Eq. (1.28)
suffices as a model for cluster peculiar velocities.

101 102 103
0

0.01

0.02

0.03

ν [GHz]

∆
I k

(ν
,T

)
[M

Jy
sr

−
1
]

Relativistic
Non-Relativistic
x0 = 222.1 GHz
xnr
0 = 217.4 GHz

Figure 1.7: Relativistic kSZ spectrum with first order correction in Θ.

24

Chapter 2 − Deep Learning

Machine Learning (ML) is the field of study that gives computers the ability to learn without
being explicitly programmed (Samuel, 1959). As the name suggests, ML is concerned with
the problem of how to construct computer programs that automatically improve with expe-
rience. Mitchell (1997) identifies three elements for the learning process: experience, tasks,
and performance measure. A computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E. Mitchell’s goal is not to analyse the meaning
of the English word “learning” as it is used in everyday language, but to define precisely a
class of problems that encompasses interesting forms of learning, to explore algorithms that
solve such problems, and to understand the fundamental structure of learning problems and
processes.

The present work aims to fit numerical values to images, meaning that the task to perform is
regression. And, because the data available is both image and desired numerical value (see
chapter 3), supervised learning is the most appropriate type of experience. This chapter will
introduce the pertinent general definitions and concepts required to work seemingly with ML.
The program’s performance can be evaluated with respect to the desired value, however this
is properly addressed in the next chapter.

2.1 Supervised Learning

The design of a learning system requires the following steps. Firstly, fix a task to perform,
which refers to the exact type of knowledge to be learned (e.g. play checkers, classify images,
learn how to drive, etc.). Next, choose a training experience (e.g. supervised learning).
The type of training experience can have a significant impact on the success or failure of
the learner, and it basically depends on the training examples available. Are they a direct
representation of the desired data? Do they provide a broad distribution of cases or situations?
In general, learning is most reliable when the training examples follow a distribution similar
to that of future test examples. Lastly, set a performance measure (e.g. percent of correct
classifications) to know how well the program is doing, whether it provides direct or indirect
feedback regarding the choices made by the performance system.

25

Although there are other types of learning experiences such as unsupervised and reinforced
learning, supervised learning is used for classification tasks that involve the prediction of
class labels (categorical data) and regression tasks that involve the prediction of a numerical
label. In supervised learning the target for every training example is known a priori and is
called hypothesis as it’s supposed to explain the corresponding one. This type of learning can
be implemented to automatize complex tasks of classification or regression, and thrives with
a large volumes of examples.

Consider the set of n real values xij (R are the real numbers), called features, representing an
instance Xi in Eq. (2.1). An instance is a training example or particular case of the data to
be fitted or classified. It can be anything from a set of points, images, words, measurements,
etc. Then, the instances dataset given by Eq. (2.2) is conformed by all available instances1.

Xi = {xij ∈ R | j = 1, n} (2.1)

X = {Xi | i = 1, N} (2.2)

Features in Xi can be arranged into different structures depending on how many dimensions
the instance has. For example, a full colour image (Xi) can be represented by a 3-D array
with every colour pixel being a different feature, and colour channels stacked in the third
dimension of the array. The concept of tensors are a natural option to represent arbitrary
dimensional arrays (TensorFlow, 2015). In fact, ML techniques exploit this concept and
represent all datasets, variables and procedures involved in a computation as tensors.

To every instance corresponds a known value, label or target ŷ representing the hypothesis.
A total of N pairs of the form instance-target complete the training set. These pairs are
expected to be good representations of the observations and follow a distribution similar to
future examples. Moreover, N is expected to be very large, of at least a few thousand. It is
common to find that complex examples require large datasets so if the example number is
small it may become difficult to train a reliable learning algorithm. In supervised learning
the targets dataset can be defined containing the a priori target label corresponding to every
instance in X:

Ŷ = {ŷi ∈ R | i = 1, N} (2.3)

1The index i is explicitly written for enumerating elements of a set. When omitted, the variable refers to
any arbitrary instance, feature or target.

26

When classifying amongst several categories, say ncat, each label can be encoded to an inte-
ger representing it, where the last category’s is ncat. Some algorithms have faster convergence
when the labels are in vectorized with the canonical base for Rncat , with each category corre-
sponding to a different base vector. For regression tasks the most obvious choice for the type
of information to be learned is a program or function that can process every instance in order
to produce a single real scalar. Call this objective function f̂ and use the notation f̂ : X 7→ Ŷ
to indicate that this function accepts as input any instance from the set of examples X and
outputs some value in the targets dataset Ŷ. Additionally, assume there’s a direct relation
between instance and target, and the objective function ideally represents it.

f̂ : X 7→ Ŷ

f̂(X) = ŷ
(2.4)

Because the explicit definition of f̂ is not known, therefore is not computable by a program,
it is said to have a non-operational definition. The goal of learning in this sense is to discover
an operational description of f̂ ; that is, it can be used by the program in order to evaluate
states and select the best fit. Thus, the learning task has been converted to the problem of
discovering an operational description of the objective function. However, it’s expected that
learning algorithms acquire only some approximation to the ideal function f̂ .

The function that is actually learned by the program is called prediction function, denoted
f . Representation of this function is a key design choice and, in general, involves a crucial
trade-off. On one hand, an expressive representation allows for a better approximation to the
objective function; on the other, more expressiveness implicates that the program will need
larger training datasets in order to choose between the different hypotheses it can represent.
Ultimately, a program achieves true knowledge when the prediction function is consistent
with the training dataset, i.e f(X) = f̂(X) for all X ∈ X, but this is practically not achievable
for very complex tasks.

The action of performing the learning task via f will output a single prediction y for every
instance. Defining the predictions dataset Y as the set of all predicted values:

Y = {yi ∈ R | i = 1, N} (2.5)

In order to compute f a parameter set θ is required . This set defines the choice of repre-
sentation and the expressiveness of f is embedded in the relationships between features and

27

parameters, which can be very complex as it’ll be shown later in sections 2.2 to 2.4. The pre-
diction function is a mapping from the instances dataset to the predictions dataset governed
by the parameter set:

f : X 7→ Y

f(X;θ) = y
(2.6)

Note that y depends directly on the choice of θ, which represents the current knowledge of
the task. From now on “learn” and/or “learning” will also refer to the determination of the
parameter set θ. A change in the parameter values modifies the prediction y and, in turn,
the set. This means that f can be evaluated with respect to every choice of θ and compared
for consistency with the training examples. In this sense, the predictions dataset is not fixed
until the end of the learning process when it becomes the model’s output. Hopefully, as the
program trains, predictions improve accordingly.

Equation (2.6) is written explicitly dependent of the parameter set to highlight the fact that
its output corresponds to that particular choice of values. There are many possible choices of
f to represent the objective function. For example, a large table specifying a value for each
input, or a set of rules to match with each state, or a parametric function with embedded data
features, or an artificial neural network. In practice, this can never be assured so it’s necessary
to monitor the training and stop when it has achieved a certain level of accuracy.

The quantification of goodness or badness for a particular set of parameters θ is done by a
performance measure, called loss function L. It maps each pair of prediction and target (y, ŷ)

corresponding to the same instance to a single real value representing a prediction score for
the current knowledge. It’s also commonly referred to as prediction error however the term
loss gives a more general description.

L : (Y, Ŷ) 7→ R

L (y, ŷ) = L (X, ŷ;θ)
(2.7)

The common approach is to select one which minimizes the error between training and pre-
dicted values, e.g. least mean squares. For categorical data, softmax cross entropy loss gives
the probability of an instance belonging to a category and checks if it’s equal to the target
category. The loss function is computed for every instance but a more general value can
quantify the total cost of the operation as the expected value of individual losses. To prevent
from fitting just training data, a regularization termR(θ) can be added to the cost as a penalty

28

Instance

Objective Function

Prediction Function

Truth

Prediction

Performance
Measure

Knowledge
(Parameter set)

Update
Knowledge Learn? End Task

Examples

Unknown

Design

yes

Figure 2.1: Supervised learning scheme for a single instance. Red nodes constitute the examples
datasets; green nodes, never known values; and blue, design choices. The instance is processed by the
objective and prediction functions. Although the former is unknown its output isn’t (given by ŷ). The
performance measure scores the current task and the algorithm uses it for knowledge updating.

that encourages the program to pick a simpler θ. There are other schemes like dropout meth-
ods (inverse jackknife) that allow to reduce the number of parameters and chance to over-fit.
The final step in learning, is to take this performance measure and update the program’s
knowledge of the task.

Figure 2.1 shows a chart for supervised learning process. For every instance both objective
and prediction functions output a target and a prediction value that are later compared by the
performance measure. Then, the learning algorithm takes place by updating the knowledge
of the task according to the performance measure. After that, a new prediction can be made
and scored once again by the performance measure. This process is repeated for all examples
in the training set until consistency is achieved, or (most likely) either some level of accuracy
is reached by the program or a certain amount of time has been invested.

2.2 Artificial Neural Networks

The study of artificial neural networks (ANNs) has been inspired in part by the observation
that biological learning systems are built of very complex webs of interconnected neurons.
To develop a feel of this analogy consider a few facts from neurobiology. The biological
neuron is comprised by a soma or cellular body and axons which connect to other neurons
soma. The membrane has a potential threshold (determined by the neuron) that an excitation
from external signals must exceed to produce a synapse. Inspired by the biological neuron,
McCulloch & Pitts (1943) proposed a simple model for an artificial neuron (AN) which
consists of one or several binary inputs computed as a linear combination, and one binary
output.

29

While ANNs are loosely motivated by biological systems in reality neurons are far more
complex and form networks beyond computational capabilities (to this date). Input signals
are not necessarily processed in a linear manner which adds another complication. Moreover,
neurons do not fire a single output but a spike train with encoded information. This model
has been known for a long time but has gained popularity in the last decade or two. With
improvements in techniques and technology, DL implementation for problem solving has
escalated exponentially with the AN at its core.

The AN model uses one of the simplest representations: a linear combination of inputs or
features. Conveniently extending the number of features in a single instance by fixing a new
input x0 to some real constant (usually 1), it becomes easy to write:

z (X;θ) =
n∑

j=0

xjwj (2.8)

where xj ∈ X for j = 0, n, and the parameter set is simply θ = {wj ∈ R | j = 0, n}.
The weights will determine the relative influence of the various features when computing the
prediction function value, whereas the product x0w0 provides a bias.

Equation (2.8) looks awfully similar to linear regression because the output is a function of the
weighted sum zW = z (X;θ). The main difference is an extra layer of complexity allowing
a neuron to modify its response behaviour. In analogy with the biological neuron membrane
potential threshold, an activation function φ(zW) receives the weighted sum as input then
outputs a single value representing that neuron’s response and, in doing so, simulates how a
neuron activates or fires. The output value is a prediction, i.e. the prediction function itself
f(X;θ) = φ(zW). Figure 2.2a is a sketch of an AN.

That’s all there is to an AN because the next step falls into the learning process. The loss
function L will take a single neuron output value, compare it to the target and give a score

that can be used to update the parameter set θ. Updating the parameter set is not trivial nor a
simple task and it will be covered in Section 2.3.

When ANs activity response is all-or-none it’s called linear threshold unit (LTU), which uses
the Heaviside or step function for binary output. Non-linear functions can be used depending
on the working model and the expressiveness desired. The most commonly used are sigmoid-
like functions: logistic function, tanh(x), arctan(x), erf(x), etc.; softmax, softplus, rectified
linear unit, and more. All these change the behaviour from a LTU to general AN.

30

x0

x1
...
xn

yφ(zW)

(a) Artificial neuron (AN) schematic. A vec-
tor with n entries (plus a bias) is input, then
the weighted sum zW is passed to the acti-
vation function φ, which returns a value y.

x0

x1
...
xn

y1

y2

y3

LTU block

φ1(zW1)

φ2(zW2)

φ3(zW3)

(b) Simple ANN schematic with three stacked neurons. Single
instance X fed to every LTU which process φ and outputs a value
f independent from the other all others. The networks output is
the ordered tuple yi = (yi1, yi2, yi3), and the parameter set in
this case is θ =

⋃
Wi.

Figure 2.2: Artificial neuron and neuron layer schematics.

The AN model is able to solve AND, NAND, OR and NOR logic gates classification tasks,
but fails with XOR (exclusive OR) and XNOR. It has been known since 1969 and illustrates
the necessity of using several neurons to solve more complex problems. One option would
be to make a sequence of neurons where the firsts output is sent to the next input and so on.
Or stack parallel neurons into a layer, all receiving the same input, and passing all outputs
as inputs for a next neuron, and so on. This is the base of DL. One thing to keep in mind is
that the concatenation of linear models is also a linear model, i.e. the network collapses into
a single neuron. To avoid this problem, activation functions must be used to remove linearity
between layers and distort the outputs.

Take the perceptron for example (see Fig. 2.2b). It’s a set of stacked LTUs where each one
is connected to all inputs (the simplest perceptron has only one LTU). The idea of learning
in a neuron is the same of that of biological neurons: when a neuron frequently activates
another, the connection between them is reinforced. Perceptrons are trained to reinforce only
those connections that give the correct result. The perceptron is capable of solving the XOR
problem with only two neurons because each added neuron represents an additional straight
line (a hyperplane in the most general case).

The perceptron is a linear classifier and so it does not give any information about the proba-
bility of an instance belonging to the output class due to the activation function. Also, it is not
capable of classifying data that is not linearly separable. To achieve this, one can couple sev-
eral perceptrons in concatenated layers, the resulting ANN is called multilayered perceptron
(MLP) and is deepened by each additional perceptron between input and output. Every layer
between input and output is called hidden layer and is a LTU fully-connected to the next one.

31

The most general case is reached when LTUs are replaced by arbitrary activation functions
and linearity is lost. These are called deep neural network (DNN), characterized by an arbi-
trary number of densely populated hidden layers, where each one can have a different activa-
tion function and the relationships between layers is not necessarily sequential (e.g. recurrent
neural network [RNN]).

2.3 Gradient Descent and Back-Propagation

Most deep learning algorithms involve optimization of some sort. This means minimizing
or maximizing some cost function J(θ) that measures the error when using the model. The
total cost of the operation can be taken as the expected value of per-instance losses.

J(θ) = EX,Y [L (X, ŷ;θ)] =
1

#(X)

∑

X∈X
ŷ ∈ Ŷ

L (X, ŷ;θ) (2.9)

where #(X) is the cardinality of the set. The linear regression algorithm, for example, uses
mean squared error (MSE) as cost, i.e. the loss function is L = (X ·W + w0 − ŷ)2. The
parameter set represents a model in itself so, in order to learn, the cost must be optimized
via differentiation with respect to every parameter and, because the cost is an error measure,
must be in fact minimized.

Why? The derivative gives the slope of a function at a certain point. The derivative is there-
fore useful for minimizing a function because it specifies how to scale a small change to the
input in order to obtain the corresponding change in the output. For linear regression, the cost
is somewhat easily differentiated because of its simple form. In general, however, most cost
functions cannot be optimized in closed form, requiring an alternative numerical procedure.

The derivative gives the slope, but the directional derivative tells the direction of greatest
change in a multidimensional space. Assume a function F (θ + αu), then the directional
derivative in direction of the unit vector u is ∂αF (θ + αu)|α=0, which simply evaluates to
uT · ∇θF (θ). To minimize the function F one must find the direction in which F decreases
the fastest.

min
(
uT · ∇θF (θ)

)
= min (||∇θF (θ)|| cosϑ)

where ϑ is the angle between u and the gradient. This expression simplifies to min (cosϑ),
which is minimized when u points in the opposite direction of the gradient. In other words,

32

the gradient points directly uphill and the negative directly downhill. This is known as the
method of steepest descent or gradient descent (GD).

The idea is to find the local gradient in the parameter space, move in the opposite direction of
the gradient to a new point assumed to be closer to a local minimum. The process is repeated
until convergence, when every element in the gradient is zero. In the context of DL, functions
may have many local minima that are not optimal, and many saddle points surrounded by
very flat regions making optimization and convergence very difficult to perform and achieve.
Therefore, one settles for finding a value of F that is very low, but not necessarily minimal in
any formal sense. GD proposes a new point θ′ given by:

θ′ = θ − ε∇θF (θ)

where ε is the learning rate, a positive scalar determining the size of the step. It’s possible
to choose ε in several different ways. One is to set ε to a small constant, while another is to
solve F (θ − ε∇θF (θ)) for several values of ε and choose that which results in the smallest
objective function value. The learning rate is a hyperparameter2 of a NN because it controls
how the algorithm will update parameter values throughout the learning process.

IF ε is large, the algorithm will quickly move around the parameter (multidimensional) space
but can overpass local minima or move away from one and never converge. If ε is very
small, the algorithm will be able to sweep thoroughly at the expense of higher iterations and
rendering inefficient the search for a local minimum. It is possible to improve ε dynamically
changing its value, making it bigger when the gradient is big and smaller when the gradient
is small.

As stated before, the function to be optimized in the context of DL is the cost J(θ). Meaning
that for every step of GD the per-instance loss is calculated for every instance in order to
know the goodness (or badness depending on the readers half-full half-empty view of things)
of the current model, and averaging over all losses. For the cost function in Eq. (2.9), GD
requires computing:

∇θJ(θ) = EX,Y [∇θL (θ; X, ŷ)] =
1

#(X)

∑

X∈X
ŷ ∈ Ŷ

∇θL (θ; X, ŷ) (2.10)

2The values of hyper-parameters are (in principle) not adapted by the learning algorithm itself.

33

The computational expense is of order N · #(θ) so, as the training sample size grows, the
time to take a single gradient step becomes unavoidably long. The insight in GD is that the
gradient is an expectation value, which can be approximately estimated using a small set of
samples. Imagine that the complete dataset X is sampled in non-intersecting minibatches of
instances B drawn uniformly.

B = {Xi′ ∈ X | i′ = 1,M, M < N} ⊂ X (2.11)

ŶB = {ŷi′ ∈ Ŷ | i′ = 1,M, M < N} ⊂ Ŷ (2.12)

The minibatch size M is usually very small compared to the total number of instances N ,
ranging from one to a few hundred. Also, M is held fixed as the training set size N grows
in order to let the computational effort stay fixed for a single cost estimation, increasing only
the number of minibatches. The estimate of the gradient is formed as:

g =
1

#(B)

∑

X∈B
ŷ ∈ ŶB

∇θL (X, ŷ,θ) (2.13)

using samples from the minibatch B. The stocastic gradient descent (SGD) algorithm then
follows the estimated gradient downhill:

θ ← θ − εg (2.14)

Optimization methods that use the entire training set are called deterministic or batch gradient
descent (BGD) methods because they process all of the training samples simultaneously in
one large batch. Methods that use minibatches or a single instance at a time are called mini-
batch stochastic gradient descent or simply SGD methods. The main advantage of BGD is
that the cost is calculated for all training instances, representing full knowledge of all known

possibilities3, but has serious memory issues for large datasets because the complete set must
be loaded in cache. SGD takes less memory but can take longer to converge because the cost
represents only the current minibatch. To minimize this problem, a large dataset is required
with lots of minibatches. Additionally, the most common approach is SGD with minibatches
and usually performs very similar to BGD. Memory issues are of great concern most of all
when working with high-resolution image data which can take a lot of memory per instance.

3This is a manner of speak because the idea is to use trained models to process both unknown and new
information.

34

The basis of a feed-forward NN have been laid out up to this point: inputs provide initial
information that flows forward through the network, then propagates up to the hidden units
at each layer and finally produces an output. This is called forward propagation and can
continue onward until it produces a scalar J(θ). The cost is needed to update all parameter
values, so the information has to flow backwards through the network in order to compute
the gradient. This backward pass is called back-propagation.

In a nutshell, back-propagation is an algorithm for determining how a single training instance
would like to nudge the parameters in terms of what relative proportions to those changes
cause the most rapid decreases for the cost function. Back-propagation enables to compute
the gradient of any function, not specific to the cost. Because the prediction is the composition
of functions (L ◦ f (X, ŷ)) [θ] applied to the input, there’s a chain of responsibility from the
output of a single neuron back to the input parameters.

Consider a DNN with L layers where the `-th layer has m` neurons. In the following, assume
that the activation function of the k-th neuron in the `-th layer is given by f`k (θ; X, ŷ) =

φ`k(z`k(θ)), i.e. is a function of the parameter set θ with a fixed instance. Note that the
parameter set θ contains all parameters from all neurons in the model, not only those corre-
sponding to the (`, k) neuron. Now, compute the loss for the ` layer.

First: call AL the output values for layer ` = L, which is clearly AL = y, with #(AL) = mL

the number of values needed to make a prediction for instance X. Layer L’s input values are
those outputted by the previous layer, i.e. AL−1, which in turn has inputs AL−2; and so on and
so forth. This is done recursively until ` = 1 where its inputs are given by A0 = X ∪ {x0}
with m0 = n + 1 (the bias x0 adds one parameter to the layer). Every layer has a bias

m0 = n+ 1

...

X ∪ {x0}

...

m1

A(1)

...

m2

A(2)

. . .

...

m`−1

A(`−1)

...

m`

A(`)

. . .

...

mL−1

A(L−1)

...

mL

y

Figure 2.3: Sample DNN to explain back-propagation. Blue and green nodes are input and output
(known) values; red nodes are hidden neuron layers; and yellow are the biases for every input. Note
how each bias is independent of the previous layer and how the output layer doesn’t have a bias value.

35

parameter independent from all other parameters in the network, except for the output layer.
Including A0, there are a total of L different sets defined as follows:

A` = {a`k′ ∈ R | k′ = 0,m`, m` ∈ N} (2.15)

Second: connect the k′-th neuron in layer `−1 to the k-th neuron in layer `. Then, all param-
eters in θ are identified by the (`, k, k′) tuple. In matrix form, the weighted sum operation
(like in Eq. (2.8)) between layers can be written as the matrix product Ω`A`−1, where Ω` is
the m` × m`−1 connection matrix4 between layers ` − 1 and `; and A`−1 is defined in Eq.
(2.15). A forward pass through the network satisfies the following relation of recurrence:

A` = {φ` (Z`) ∈ R | Z` = (Ω`A`−1)k ∈ R, k = 1,m`} ∪ {a`0} (2.16)

The parameter set for the network can be explicitly defined:

θ = {θ`kk′ ∈ R | ` = 1, L, k = 0,m`, k
′ = 0,m`−1}

= {Ω` ≡ (θ)`kk′ ∈Mm`×m`−1
| ` = 1, L}

#(θ) =
L∑

`=1

m` (m`−1 + 1)

(2.17)

And third: the loss function definition is fixed and according to Eq. (2.10), the derivative with
respect to a single parameter is the average over all derivatives of the per-instance loss for
each training example L. In this sense L is a random variable. Additionally, for very large
N , both expectation value and arithmetic mean converge to the same value.

Allowing the activation function to be defined for every neuron (most general although not
common case) so that φ`k = a`k, the (`, k, k′)-th component of the cost’s gradient is:

∂J

∂θ`kk′
= EX,Y

[
∂L
∂θ`kk′

]

= EX,Y

[
∂L
∂φ`k

∂φ`k
∂z`k

∂z`k
∂θ`kk′

]
with z`k =

m`−1∑

k′=0

θ`kk′ a(`−1)k′

(2.18)

Assuming all parameters in the same layer are independent, the last derivative in the expec-
tation value is simply a(`−1)k′ . The other two derivatives tell how by much L is modified by

4Mm`×m`−1
is the vector space of all matrices of shape m` ×m`−1.

36

a small change in the weighted sum. Call this layer loss or layer error:

δ`k =
∂L
∂φ`k

∂φ`k
∂z`k

(2.19)

It is a measure of the responsibility that the (`, k)-th neuron has in the final result (the loss),
and is common to all k′ parameters. By doing this, the gradient’s component is the expecta-
tion of the input value regulated (multiplied) by the layer error.

∂J

∂θ`kk′
= EX,Y

[
δ(`k) a(`−1)k′

]
(2.20)

Going back one more layer, the chain of responsibility for the k′′-th parameter belonging to
the (`− 1, k′)-th neuron dictates:

∂J

∂θ(`−1)k′k′′
= EX,Y

[
∂L
∂φ`k

∂φ`k
∂z`k

∂z`k
∂φ(`−1)k′

∂φ(`−1)k′

∂z(`−1)k′

∂z(`−1)k′

∂θ(`−1)k′k′′

]

= EX,Y

[
δ`k Ω`

∂φ(`−1)k′

∂z(`−1)k′
a(`−2)k′′

]

where an alternative definition to the connection matrix is Ω` = ∂z`k
∂φ(`−1)k′

. The error of that
layer is then

δ(`−1)k′ = δ`k Ω`

∂φ(`−1)k′

∂z(`−1)k′
(2.21)

With the set of equations: Eq. (2.19) for the layer loss, Eq. (2.20) for the derivative with
respect to a single parameter, and Eq. (2.21) as recurrence relation, the back-propagation
algorithm is complete and can compute the full gradient of the cost function either Eq. (2.10)
or Eq. (2.13).

A true GD step would take all the training instances and average the desired changes, but
that’s computationally slow. Instead most algorithms use minibatch gradients and compute a
training step with respect to each minibatch. It’s not going to be the complete gradient of the
function but it gives a good approximation and a significantly computational speed-up.

Together, back-propagation and GD complete the scope for parameter optimization in basic
DL algorithms. There are a lot of new algorithms that improve the efficiency in computing
the gradient and optimize the learning rate, yet these two sit at the base of most (and this
work’s) NNs.

37

2.4 Convolutional Neural Networks

Amongst the plethora of NNs, deep neural networks (DNNs) and convolutional neural net-
works (CNNs) are the most common and illustrative models. Both can solve a lot of very
complex problems and are simple enough to show the power of ML. At its most basic, both
models are implementations of the previous concepts: neurons, layers, optimization methods.
As it was previously discussed, a DNN is similar to a MLP, which is a classical type of NN
used for classification and regression tasks, with the difference in that MLP is feed-forward
while DNN can have loops and feedback from other layers.

One key advantage CNN has over DNN is in pattern recognition, which is done prior to
classification. It is typical to decompose a CNN into two sub-networks: the feature extraction
subnet, consisting of multiple convolution layers; and the decision making subnet, composed
of a couple of fully connected layers. By letting the program convolve a single input with
multiple filters, it can recognize various patterns which in turn are fed to different regions
of the decision making subnet. The classic example of decision making subnets are DNNs
because they are able to specialize regions of the net so that when the appropriate value is
fed to a particular region, all the subsequent neurons fire and give the correct answer. In this
context, the CNNs feature extraction subnet is an extension to the DNNs decision making net
enabling further enhancements.

The idea behind CNNs is to automatize a computer algorithm that can apply filters on grid-
like topologies and retrieve relevant information without the bias of human interaction. The
word “convolutional” indicates that the network employs the mathematical operation of con-
volution in at least one of its layers. The convolution is defined for any two functions for
which the following integral is defined over an interval of the continuous variable t (or sum
for a discrete variable):

F (t) = (I ∗K)(t) =

∫
I(t)K(t− a)dt (2.22)

In CNN terminology, the first argument I(t) is often referred as the input; the second, a kernel
or filter K(t); and the output F (t), a feature map. In practice, the multidimensional input is
usually zero everywhere but the finite set of points for which values are stored. This means
that the summation can be done over a finite number of array elements. Convolutions are
often performed on more than one axis at a time which makes it a powerful tool easily exten-
sible to higher dimensions. Technically speaking, in-practice implementation of convolution

38

is really a cross-correlation because the kernel is applied directly without flipping it, as it’s
the (rather confusing) case of convolution. Applying cross-correlation to a two-dimensional
discrete input, each element of the feature map is given by

Fα,β(t) =
∑

m

∑

n

Iα+m,β+n(t)Kmn(t) (2.23)

Cross-correlation is a more natural operation when dealing with matrix products because they
can be quickly performed with a graphics processing unit (GPU). Compared to the central
processing unit (CPU) which is optimized on serialized computations, the GPU is optimized
to work with 3-D arrays which are common in image and video processing as well as 3-D
modelling. For this reason most ML libraries implement cross-correlation but call it convo-
lution.

When a convolution is performed on an image, the filter K is swept across the full array and,
in doing so, generates a new feature map F that contains a pattern decoded from the input
I . One can have as many feature maps as filters are defined, and each filter will retrieve a
different pattern. This process usually constitutes a single convolutional layer. The following
step is to draw another set of filters to convolve with the previously extracted feature maps.
If this is repeated several times, then the total number of filters at the last convolutional layer
will be very large and, depending on the filter size, the amount of information to handle for a
single instance grows very quickly. Here becomes clear why CNNs incur in memory issues.

To reduce the information volume generated per convolutional layer, every layer can be ex-
tended by adding a “pooling” kernel P . This part of the layer is applied over the feature map
F obtained after the convolution operation. It sweeps each map with an identity kernel P that
takes the maximum or average value. By doing this, the next layer (either convolutional or
fully connected) will have less input values from a single feature map.

In addition to lessening the amount of data, pooling operations also help to decrease the
number of parameters needed in the network. Another way of achieving parameter count
reduction is via a “dropout” operation. During training, some number of layer outputs are
randomly ignored or “dropped out.” This has the effect of making the layer look-like and
be treated-like a layer with a different number of nodes and connectivity to the prior layer.
Dropout has the effect of making the training process noisy, forcing nodes within a layer to
probabilistically take on more or less responsibility for the inputs. At each training stage,
individual nodes are either dropped out of the net with probability 1− p or kept with proba-

39

bility p, so that a reduced network is left; incoming and outgoing edges to a dropped-out node
are also removed. Although dropout helps prevent over-fitting, this can also be achieved in
simple networks with low parameter count and adequate training time.

The feature extraction subnet is conformed by several layers made up with convolutional,
pooling and activation operations. At the end of the subnet, the program will have a set of
feature maps ready to be passed to a DNN which takes a list of features. Unless the final
pooling operation reduced all feature maps to 1 × 1 arrays (for monochromatic inputs), all
arrays must be “flattened” into a single 1-D array or vector. This flattening step is the nexus
between feature extraction and decision making subnets in every CNN. It’s also expected that
the feature extraction part is deep enough to decode the most information balanced with large
enough filters that allow to see better every region of the input.

It must be clear now that parameter counting is crucial when it comes to training NNs. Start-
ing with fully connected layers where it is usually very large because every neuron has the
same number of parameters as the others in the same layer. Increasing one neuron in a hidden
layer could mean adding hundreds, thousands, or even hundreds of thousands of parameters.
For example, if the input instance has 2562 attributes (a stretched 2562 pixel image) and the
receiving layer has 1,024 neurons, the amount of parameters between those two is over 67
million. Not only it means 67 million products will be computed, but also the same amount
parameters must be optimized! Remember: the goal of supervised learning is to find the
parameter set θ that gives the best representation of the objective function f̂ with the sim-
plest expressiveness. Conversely, too few parameters produce under-fit, which in turn means
ill-defined architectures with slow convergence or non at all. CNNs reduce the number of
parameters as well as the size of images via pooling operations whilst still learning patterns.
A single filter will have something like 9 or 25 parameters which are used for a convolution.
Only these parameters are optimized every training step. Consider a CNN having forty 3× 3

kernels spread into five layers, and pooling by a factor of two after each one. This CNN
introduce only 400 parameters and can reduce every image up to 32 times!

The main task for the programmer is to play around with the number of feature maps to gen-
erate per layer and pooling operations, the kernel’s sizes for every convolution and pooling,
depth of the decision making subnet, and the types of activation functions to use in order to
construct an adequate NN. All of the before mentioned are hyper-parameters for a CNN not
optimized by the algorithm. This much variability and non-standardized way of programming
NNs make ML methods interpretability a challenge and open field of active study.

40

Chapter 3 − Network Design & Velocity Estimation

In the past century, a new way to understand and predict natural phenomena via simulations
came into play. Simulations help science design experiments and scenarios whenever a phys-
ical test is impractical or not attainable for current technology. It also means it’s possible to
control and fine-tune every aspect of the physical situation. When it comes to cosmology, it
is the typical way of testing for cosmological parameters obtained from probe measurements
such as WMAP and Planck (for latest results see Hinshaw et al., 2013; Planck Collaboration,
2018a, and Table 1.1). One of the most used simulation codes is GADGET (GAlaxies with
Dark matter and Gas intEracT), a gravitational force simulator using N-Body and smoothed-
particle hydrodynamics (SPH) techniques that was first used for the Millennium Simulation
(Springel et al., 2000, 2005). Additionally, the Magneticum Simulation (Dolag et al., 2015)
aims to include the baryonic component to galaxy formation and distribution that dark matter
alone simulations cannot resolve, by modelling baryonic matter as a perfect fluid and solving
the hydrodynamic equations.

This chapter describes the simulation box from where the catalogue kSZ signal maps were
extracted. Then, the base NN architecture to train for peculiar velocities is defined, followed
by the exploration of some ideas to preprocess these maps for different and simpler NNs.
Finally, data analysis and model validation methods are presented and discussed along with
the obtained results.

3.1 Magneticum Simulation

The Magneticum Simulations are a set of state-of-the-art, cosmological hydrodynamical sim-
ulations of different cosmological volumes with different resolutions performed with an im-
proved version of GADGET 3 (Springel, 2005; Soergel et al., 2018). These simulations use
WMAP 7 cosmology parameters (Table 3.1 contains values extracted from Larson et al.,
2011) and rely on SPH to simulate the formation of cosmological structure. The simulation
covers the physical processes controlling galaxy formation, intra-galactic and intra-cluster
medium, as well as the detailed properties of galaxies including morphological classification
and internal properties. This also includes the distribution of different metal species within
galaxies and galaxy clusters.

41

Table 3.1: Cosmological and simulation parameters of Box 0 from Magneticum Simulation (available
at http://www.magneticum.org).

Ωm 0.272 Box size [h−1 Mpc] 2688
ΩΛ 0.728 Number of particles 2× 45363

Ωb 0.046 Dark matter particles mass [109 h−1 M�] mDM 13
h 0.704 Gas particles mass [109 h−1 M�] mgas 2.6
σ8 0.809 Particle softening [h−1 kpc] fp 10
ns 0.963 Star softening [h−1 kpc] fs 5

The present work makes use of Box 0 with over 100 thousand million particles (see Table 3.1,
and also Bocquet et al., 2016), making it the largest cosmological hydrodynamical simulation
performed to date1. Such a large box size is fundamental for kSZ signal analysis because it
only vanishes at scales r & 300 Mpc. Figure 3.1 shows both SZ maps from the Magneticum
simulation (Dolag et al., 2015; Soergel et al., 2018), ≈ 1600 deg2, determined by the size
of the simulation and the highest desired redshift. This is sufficiently large to match the sky
coverage of current high resolution CMB and LSS data2.

To create SZ maps, ideally, one would solve the lightcone equation for every particle, interpo-
lating their positions between snapshots for an observer at one corner of the simulation box.
Only gas particles within the lightcone would then contribute to the SZ map. This approach
is, however, not feasible for hydrodynamical simulations as the gas properties cannot be in-
terpolated safely between snapshots relatively far apart, as it’s the case for large simulations

40 30 20 10 0
0

10

20

30

40

x [deg]

y
[d

eg
]

−10

−5

0

5

10

∆
T
k
/T

(×
10

6
)

40 30 20 10 0
0

10

20

30

40

x [deg]

y
[d

eg
]

−7

−6

−5

−4

lo
g
1
0
y

Figure 3.1: SZ maps from the Magneticum simulations. KSZ signal on the left. For tSZ in the
right panel the logarithm of the Compton-y parameter is shown to increase the dynamic colour range
(available at http://magneticum.org/data.html#SZ).

1At the elaboration of this thesis and knowledge of the author.
2The effective overlapping sky area between DES Year 1 and SPT is around 1200 deg2.

42

http://www.magneticum.org
http://magneticum.org/data.html#SZ

2 1 0 1 2
2

1

0

1

2

R/Rvir

R
/
R

v
ir

−5

0

5

10

20

30

∆
T
k
/T

(×
1
0−

6
)

2 1 0 1 2
2

1

0

1

2

R/Rvir

R
/
R

v
ir

−9

−8

−7

−6

−5

−4

lo
g
1
0
y

Figure 3.2: Sample kSZ (left) and tSZ (right) images.

like this one. The SMAC code (Dolag et al., 2005)3 is a map making utility for idealized
observations. With this tool, it is possible to extract kSZ, tSZ, and electron density maps for
individual clusters (Figs. 3.2 and 3.9).

For the main analysis a total of 10,000 clusters from the redshift slice z ∈ [1.04, 1.32] were
selected. The size of a cluster image is set to be two times of its virial radius calculated using
the slice’s redshift instead of each individual cluster’s which means the size of the cluster
images is not perfectly normalized to the virial radius. This reduces computation expense
while keeping negligible effect on the results. Velocity and mass selections are shown in Fig.
3.3 exhibiting typical cluster values. A broader redshift selection up to z = 2.15 can be found
in Wang et al. (2020) however testing methods are similar.

−1000 −500 0 500 1000
0

100
200
300
400
500
600

v [km s−1]

13.75 14.00 14.25 14.50 14.75
0

200

400

600

800

1000

1200

log10(Mvir/M�)

Figure 3.3: Peculiar velocity and mass selection frequency histograms for the selected redshift slice.

3https://wwwmpa.mpa-garching.mpg.de/∼kdolag/Smac/

43

https://wwwmpa.mpa-garching.mpg.de/~kdolag/Smac/

3.2 Network Design

Before diving into very complex network architectures with a sophisticated design of feature
extraction convolutions and deep decision making subnets, consider the following argument
for how simple architectures can outperform deeper and more complex ones:

[The] depth of a CNN plays an important role in the discriminability power
the network offers. The deeper the better... While this approach has been useful,
there are some inevitable issues that arise when the network gets more complex.
Computation and memory usage cost and overhead is one of the critical issues
that is caused by the excessive effort put on making networks deeper and more
complex in order to make them perform better. [It] would be highly desirable
to propose efficient architectures with smaller number of layers and parameters
that are as good as their deeper versions... a simple architecture, with minimum
reliance on new features that outperforms almost all deeper architectures with 2
to 25 times fewer parameters. (Hasanpour et al., 2016)

They tested a simple CNN architecture with CIFAR-10, CIFAR-100 (Krizhevsky, 2009),
MNIST (LeCun et al., 2010), and SVHN (Netzer et al., 2011) datasets, achieving an accu-
racy of 95.32%, 73.42%, 99.72% and 98.21% respectively. Their architecture has good per-
formance and is simple enough to understand and implement with Machine Learning (ML)
libraries.

TensorFlow is an Application Programming Interface (API) developed and maintained by
Google™, distributed in the form of software libraries designed as a platform for ML intended
to simplify its implementation. A TensorFlow computation is described by a directed graph

composed of a set of nodes and represents the data-flow computation. These graphs are
typically constructed by clients (users of the API) in one of the supported frontend languages,
such as Python (TensorFlow, 2015). Take for example Fig. 3.4, where a code fragment to
construct and then execute a TensorFlow graph using Python is shown, including the resulting
computation graph. The NN chosen to train the regression task for kSZ images and peculiar
velocities was fully coded using the latest TensorFlow 2.0 for Python 3.8.

The base CNN is composed by six layers that work with monochromatic images. It employs
a simplistic design with only four convolutional layers and one hidden layer. The first two
convolutions are 16 × 16 with max pooling; the next two have 5 × 5 without pool; and one
hidden layer connecting the feature extraction convolutional subnet to the decision making
neuron (subnet). Convolution stride is set to 1 × 1 and kernel stride is always set to the

44

import tensorflow as tf

b = tf.Variable(tf.zeros([100]))
W = tf.Variable(tf.random_uniform([784, 100], -1, 1))
x = tf.placeholder(name="x")
relu = tf.nn.relu(tf.matmul(W,x) + b)

with tf.Session() as sess:
sess.run(relu, feed_dict:{"x": input})

x W

MatMul b

Add

ReLu

Figure 3.4: Example TensorFlow code fragment and its corresponding computation graph.

kernel shape. Per-instance loss is measured by the mean squared error (MSE) and prediction
accuracy by the coefficient of determination (Eq. (3.19) below).

The main reason for using this over-simplified network is because kSZ signal is monochro-
matic so one could expect for the signal strength to give the correct correlation to the peculiar
velocity. Also the feature extraction subnet of the CNN will specialize in the overall signal
distribution rather than pattern recognition as it is the case with object classification tasks. A
single hidden layer with non-linear activation is also expected to provide an appropriate (and
yet simple) level of discriminability for the signal extracted distribution. Other caveats that
may arise are left to the reader’s consideration.

The NN is trained using samples from instances datasets X0 with #(X0) = 10, 000. This
means that the dataset contains all kSZ images from the redshift slice z. In the following it
will be assumed that i counts from 1 to 10,000 unless specified otherwise.

X0 = {Xi ∈M256×256 |Xi is the kSZ signal of a cluster belonging to z} (3.1)

where each pixel in the image is a matrix element so that Xi = (xi)jk ∈ M256×256. Also, X0

constitutes the catalogue signal denoted by the subscripted zero. The corresponding targets
dataset Ŷ and predictions dataset Ŷ0 constructed as follows:

Ŷ = {v̂i ∈ R | v̂i is the peculiar velocity of a cluster belonging to z} (3.2)

Y0 = {vi ∈ R | vi is the predicted peculiar velocity of a cluster belonging to z} (3.3)

Henceforth, all v̂ ∈ Ŷ are also called catalogue velocities, whilst any v ∈ Y0 is a predicted
velocity. The next section describes how the instances set is processed by CNNs and DNNs
in order to produce a prediction for any inputted SZ signal map. Both NNs have only one
output neuron whose value v must match the target v̂ (up to an arbitrarily small error).

45

3.3 Training Tests

For the remaining of this work the term “model” is used to refer indistinctly to the set of
choices: input dataset, network type (CNN or DNN), and set of outputs from the NN; as well
as the parameter set representing the current knowledge. A total of six different models are
tested in order to explore various NN options and signal preprocessing. It’s noteworthy that
these are arbitrary choices and the reader is encouraged to find better and practical models.

3.3.1 Catalogue Signal

The first test is with the full signal on an as-is basis, i.e. feed the full dataset X0 to a (well

defined) CNN and expect it to correctly train. This will function as the reference model with
which all other models are compared.

In general, this model is bulky and slow with high-resolution images because the first convo-
lutional layer takes as much matrix products as 2562 times the number of filters, where each
product has 162 elements. This has to be done for every training instance, i.e. 10,000 times
every epoch (see section 3.4 on how), just for the first convolution . For this reason pooling
layers and low parameter count play very important roles in downscaling and simplifying the
network. Also GPU acceleration is crucial (and basically essential) to reduce training time.

3.3.2 Systematic Distortions

The simulated images are high resolution idealized observations with little to none system-
atic errors. To simulate observational conditions the image can be distorted using different
filters. For example, a white noise filter added to X simulates background noise introduced by
measurement instruments. Another example is with software processing (common practice
nowadays) and softening techniques that produce anti-aliased images to reduce noise. These
distortions are basic assumptions of probable error sources and encompass limited examples.
With these ideas in mind, the following datasets are proposed:

X1 = {Xi + white noise |Xi ∈ X0} (3.4)

X2 = {Xi + gaussian blur |Xi ∈ X0} (3.5)

The white noise maps are composed by drawing samples from a uniform distribution propor-
tional to the background of each cluster image at a ratio of 80%. The resulting image has an
increase in sharpness and slight loss in homogeneity. The blur was achieved using multidi-

46

Original Noise Gaussian Blur

−5

0

5

10

20

30

∆
T
k
/T

(×
1
0−

6
)

Figure 3.5: Distortions to a kSZ signal example. The original (far left) belongs to X0; white noise
(middle), to X1; and Gaussian blur (right), to X2.

mensional Gaussian filter with kernel standard deviation σg = 4 in all dimensions. The last
was picked in order to reduce the overall sharpness of the signal whilst maintaining certain
resolution, i.e. without incurring in a low-resolution scheme.

The instances datasets X1 and X2 are to be trained with the same CNN architecture as X0. The
idea is to compare with the reference and see if the added noise alters the NNs performance.
Figure 3.5 shows how the sample instance in Fig. 3.2 is modified by these transformations.

3.3.3 DNN vs CNN

It has been discussed how CNNs can be better than DNNs for image processing. But does
it hold true for kSZ signal? In section 2.4 the CNN was presented as the composition of a
feature extraction subnet (convolutional) and a decision making subnet (usually a DNN). In
other words, an enhancement to DNN. In this context, a comparison between them is not
totally unfair but rather natural. However, the data input shape is different for both cases so
it will be necessary to think of ways to transform or vectorize the kSZ signal in order to feed
the deep network.

One idea is to “stretch” each image into a vector. This can be done by stacking each row
of the array next to each other in arbitrary, but consistent, order. The resulting vector size
is the direct multiplication of the row length by the number of rows. For kSZ maps that
would mean a vector with 65,536 entries! One must realise immediately that there are too
many input values. To optimize computational expense the image can be downsampled and
then stretched. It doesn’t matter if the patterns are now segmented throughout the vector be-
cause DNNs specialize different parts of the network via thresholds. Although downsampling
looses resolution it enables ease of use for DNNs. The downsample mapping for a squared

47

matrix of size p is defined as:

down : Mp×p →M p
k
× p

k

down (Xi, k) = (fi)α,β
(3.6)

where k is rescale factor, α, β = 1, p
k
, and

fi,α,β =
k∑

m=1

k∑

n=1

xi, (α−1)k+m, (β−1)k+n (3.7)

Definition (3.7) sweeps the input matrix Xi without overlapping, i.e. taking stride steps
of size k. The downsampling can be understood as a pooling layer taking the sum of all
elements or convolving with a kernel of ones. After reducing input size, the resulting matrix
is vectorized.

vec : Mp×p → Rp2

vec (Xi) = (xi11, . . . , xi1p, xi21, . . . , xipp)
T

(3.8)

For images of size p = 256, downsampled by the factor k and then vectorized according to
(3.8), defines a new mapping called Fd which in turn gives

X3 =



Fd(Xi)

∣∣∣∣∣Xi ∈ X0,
Fd : M256×256 7→ R(256

k)
2

, k = 2d, d 6 8 ∈ N

Fd = vec(down (Xi, k))



 (3.9)

This is rather difficult to illustrate with a sample map as it is very large, so consider the
following matrix H:

H =




1 1 1 1 1 1

1 2 2 2 2 1

1 2 3 3 2 1

1 2 3 3 2 1

1 2 2 2 2 1

1 1 1 1 1 1




(Ex. 1)

Performing the appropriate change in Fd definition for this example to take a 6 × 6 matrix,
the application of F1(H) will output a vector with 9 entries

F1(H) = (5, 6, 5, 6, 12, 6, 5, 6, 5)T (Ex. 2)

48

Another approach is to assume that each pixel of a cluster image is a random variable re-
alization with a probability distribution of some sort. This means there’s a finite non-zero
probability that a pixel has the observed value due to some underlying physics. Then, the
estimation of the first statistical moments yield some information about the overall distri-
bution on the image. The next dataset is obtained by calculating the first four moments of
each image, plus appending the minimum and maximum value to determine signal lower and
upper bounds. Only with the first four moments one cannot completely reconstruct the cor-
responding probability distribution function, but serve as good approximations4. The idea is
to encode every instance into a smaller vector containing only the most relevant point values
that represent the original images.

X4 =

{
M(Xi)

∣∣∣∣∣Xi ∈ X0,
M : M256×256 7→ R6

M = (min, max, E, Var, Skew, Kurt)T

}
(3.10)

The corresponding values for H given in (Ex. 1) are:

M(H) = (1.0, 3.0, 1.55, 0.47, 0.84, −0.50)T (Ex. 3)

A third option is a radial distribution mapping intended to represent the amount of “informa-
tion” that a single image contains. Let Aw be a squared array of side 2w, with w ∈ N, where
the only elements different from zero are the 4(2w − 1) values located along the edges. The
mean of non-zero values from Aw represents that particular slice (e.g. (Ex. 4) below).

〈Aw〉 =
1

4(2w − 1)

∑

aij ∈Aw

aij (3.11)

The information in each pixel is encoded in both |aij| and sign(aij). This way, large values
of |〈Aw〉| indicate the presence of strong signal, whilst sign(〈Aw〉) may be related to signal
direction. On the contrary, small values of |〈Aw〉| won’t contribute much, indicating the lack
of signal and/or small contribution or relevance.

The idea is to map the whole instance X by taking all possibleAw concentric to X ranging w.
If the instance is of size p×p, then w = 1, p

2
. The complete operation of mapping an instance

will output a vector that will be used as the full representation of Xi through the mapping S.

4A mathematical justification concerning moment generating functions (MGF) that serve as arguments for
the next dataset is found in Appendix A.

49

This vector will have p

2
possible slices, so for kSZ images that means 128 elements.

X5 =
{

S(Xi) |Xi ∈ X0, S : M256×256 7→ R128, S = (〈A1〉, . . . , 〈A128〉)T
}

(3.12)

As w increments, so does the size of the slice and further away from the centre of the image
is, i.e. it’s possible to establish a direct relationship between w and Rvir. In this sense, S

is a mapping of radial signal. Because each image is 2Rvir per side, Rvir is at w = p
2
. In

consequence, the distance in h−1Mpc each slice is from the centre is simply r = 2w
p
Rvir, or

equivalently:
r

Rvir

=
2w

p
for p = 256 ⇒ r

Rvir

=
w

128

Plotting 〈Aw〉 vs w allows to analyse the expected behaviour.

• Over-densities in the image will produce humps for mainly positive values, and valleys
for negative ones: signal with different directions will have different signs.

• At the centre of the image (small w) signal is stronger so the mapping will have large
values and produce pronounced humps. Away from the centre (largew) signal is fainter
or null, so the curve flattens.

• Over-densities farther than Rvir are flattened.

Following on the example matrix H defined in (Ex. 1), of size 6 × 6, only three concentric
slices are possible with w = 1, 2, 3.

A1 =

[
3 3

3 3

]
A2 =




2 2 2 2

2 0 0 2

2 0 0 2

2 2 2 2


 A3 =




1 1 1 1 1 1

1 0 0 0 0 1

1 0 0 0 0 1

1 0 0 0 0 1

1 0 0 0 0 1

1 1 1 1 1 1




S(H) = (3, 2, 1)T (Ex. 4)

In this case the strongest signal is located at the centre and fades linearly. Figure 3.6 shows a
complete mapping S(X) ∈ X5 of the sample kSZ signal in Fig. 3.2 as a function of distance
to the centre r. The mapping works as intended: it’s mainly positive at the centre and it faints
as distance grows. Two negative regions can be identified: one peaking at around 1.38 Rvir

and the tail. Finally a hump crests over the negative regions which corresponds to the bright
spot at the top left corner (see Fig. 3.2). The impact reduction of signal outside the virial

50

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

10

20

r/Rvir

S
(×

10
−
6
)

Figure 3.6: Radial mapping over a sample kSZ image in Fig. 3.2.

radius is key because the associated catalogue velocity mainly corresponds to the signal at
the centre.

All three X3, X4 and X5 are tested with the same decision making DNN appropriately tuned
for input shapes. Due to the nature of the inputs fed to every DNN some tweaks to the
activation functions are needed to further separate any linear relations between input features.
Nonetheless, the output neuron’s activation stayed fixed for both architectures.

3.4 Cross-Validation

In order to train every model the cross-validation method randomly assigns data points X ∈ X
to two non-intersecting sets T and V, called training set and test set, respectively.

X = T ∪ V T ∩ V ≡ ∅ (3.13)

Ŷ = ŶT ∪ ŶV where ŶT ∩ ŶV ≡ ∅ (3.14)

Y = YT ∪ YV YT ∩ YV ≡ ∅ (3.15)

Every time an instance is fed forward through the network’s computational graph (section
2.1 and Fig. 3.4), a comparison between the prediction v ∈ YT and the target v̂ ∈ ŶT is
done internally in order to estimate the loss (supervised learning). At the very last epoch the
algorithm performs the final optimization over the parameter set and ends the learning task.
This endmost θ represents the final knowledge of the task and is the model itself, and the
output is simply YV.

To test the reliability of the trained model a holdout cross-validation method is implemented.

51

The size of each set is arbitrary with typical train-to-test ratio at about 80/20%. Habitual
cross-validation involve multiple runs averaged together (k-fold T and V), but in holdout a
single run is performed. This means less computation time but can result in unstable predic-
tive accuracy since it’s not smoothed by the average of multiple iterations. A workaround is
to train with the same fixed sets and average over an ensemble of complete trainings in order
to better represent the general behaviour. This method is known as Monte Carlo Dropout and
is a Bayesian approximation of Neural Networks to Gaussian processes (Wang et al. (2020),
see Gal & Ghahramani (2016) for a detailed review). For an ensemble size of N there is one
Yj

V = {vij} for every complete training j. The ensemble’s predictions are then the average
over all trainings YV = 〈Yj

V〉, where each element’s mean and dispersion are computed as
follows:

vi =
1

N

N∑

j=1

vij , σ2
i =

1

N

N∑

j=1

(vij − vi)2 (3.16)

Each training step is delimited by an update of the parameter set. There can be as much
training steps as there are samples in T (SGD), but remember that a full sweep through the
complete training set constitutes a single epoch. Balancing the number of training steps (or
batches for that matter) and epochs is key to a reliable training.

An ideal model, consistent with the objective function, will precisely predict all values. Then,
a scatter plot of v vs v̂ should graph a perfectly straight forty-five degree line, because every
prediction hits the target value (truth). In practice, all pairs (v̂, v), are expected to fall around
the identity line in this plot due to numerical and unknown error sources. These residuals are
the distance from a prediction to its target.

E = {ei = vi − v̂i | ∀ (vi, v̂i) ∈ (YV, ŶV)} (3.17)

The expectation value E[e] = µ̂e is the mean prediction error (MPE) where small values are
better, indicate less dispersion and, ideally, tend to zero.

µ̂e =
1

#(E)

∑

e∈E
e (3.18)

The algorithms accuracy is measured by the coefficient of determination R2 (R-squared) that
measures how well observations fit the model dividing the squared covariance between the
two variables by their variances. A value of R2 = 0 means that the dependent variable (in
this case v) cannot be explained by the independent variable (in this case v̂), i.e. totally

52

uncorrelated. Conversely, if R2 = 1, the dependent variable is totally explained by the
independent one. So the accuracy measure over V is the value of R-squared at the final
validation step.

R2 =
E
[
(v − v̄)

(
v̂ − ¯̂v

)]2

σ2
v σ

2
v̂

(3.19)

Formally speaking the independent variable is X via (2.6), nonetheless it’s equivalent to
consider v̂ as the independent variable given how supervised learning trains. In other words,
how much of v is explained “by the fact that X is the input” and “by the fact that v̂ is the
target”, mean the same thing in this case.

3.5 Deep Learning Predictions

Following the validation method in section 3.4, model training predictions are presented in a
v − v̂ plot in order to show the capacity of every DL model to reproduce the corresponding
target value to every training instance. The expected behaviour of this plot is of course a
45◦ angle straight line (1:1 scale) for which the slope is computed via uncertainty weighted
linear fit. The test set is obtained through the holdout method for cross-validation. Lastly, an
ensemble size of 10 is averaged for each model to provide better statistics on its behaviour.

Training with catalogue images only using the holdout method gives a test sample of 2,000
clusters. Figure 3.7 shows the prediction results YV for all datasets and transformations
explored in the section 3.3. Error bars obtained from Eq. (3.16) turned to be very small at
the scale presented in the figure so they are omitted for ease of visualization. However, it’s
important to remark that the uncertainty weighted linear fit is very sensitive to small errors
but not so with large deviations because every weight is proportional to σ−1

i . An ensemble
size of 10 was sufficient to reduce the uncertainties quite a lot.

All models were trained for the same amount of epochs (full dataset passes) to evaluate con-
vergence at the same time. CNNs had to train in small batch sizes (SGD) due to memory
limitations but DNNs could take the full dataset every epoch (BGD). Moreover, the cardinal-
ity of θ for DNNs is around 10% of that of CNNs. Using GPU acceleration also on DNNs
caused a training time reduction down to∼14% of CNNs time for X3 and X5, and to∼3% for
X4. This huge difference is merely due to convolution layers which are generally slow and
increase the number of parameters to optimize, and not because of batch training schemes.

Both slope and R-squared are within good agreement with the ideal line for the first three

53

−1,000

−500

0

500

1,000

R2 = 0.999

m = 0.984

Y0 (Catalogue)

R2 = 0.989

m = 0.965

Y1 (White Noise)

−1,000

−500

0

500

1,000

R2 = 0.987

m = 0.998

Y2 (Gaussian Blur)

R2 = 0.939

m = 0.936

Y3 (F3(X))

−1,000 −500 0 500 1,000

−1,000

−500

0

500

1,000

R2 = 0.865

m = 0.833

Y4 (M(X))

−1,000 −500 0 500 1,000

R2 = 0.936

m = 0.929

Y5 (S(X))

v̂ [km s−1]

v
[k

m
s−

1
]

Figure 3.7: Training on all six datasets. Catalogue peculiar velocity is along the horizontal axis whilst
the model predicted velocity, along the vertical. The solid line is the ideal relation and the dashed line
is the uncertainty weighted linear fit with slope m. No error bars are shown to ease visualization. See
section 3.3 for the explicit definition of all datasets.

54

models that were trained as CNNs. At a glance all three exhibit the same precision however,
the overall dispersion in the catalogue clean signal X0 is smaller than the other two cases.
Nonetheless, the model proves itself robust enough to oversee these noises.

DNN performance on the other hand was surprisingly good. Remember that DNNs are con-
ceptually inferior to CNNs. The datasets X3 and X5 encode the signal radial distribution and
give acceptable results. This indicates that radial distribution in the perpendicular plane must
be useful to the network in order to better find a relation with the peculiar velocity. X4 is the
worst of all, but it doesn’t necessarily mean it’s conceptually bad. What can be deduced from
these three models is that the proposed DNN architecture performs better with radial profiles
than few statistical measures of the signal. This can be further improved by optimizing each
network to the input particularities.

3.6 Optical Depth Estimation

The method for estimating peculiar velocities directly from Eq. (1.28) requires to know the
optical depth τ for each individual cluster. Soergel et al. (2018) estimate this via a linear
relation between kSZ and line-of-sight cluster velocity. To provide a point-estimate of aver-
age the kSZ signal 〈Tk〉 they use two types of filters f : average (AVG) and adaptive (AP),
in order to estimate 〈Tk〉 with aperture equal to the virial radius of each cluster. Then fit
for 〈Tk〉 − v where the slope is τ̄f . This yields the effective optical depth of the cluster
sample in the respective redshift slice and is readily done in Fig. 3.8a. The obtained opti-
cal depths differ considerably with τ̄avg = 0.009 58(3) and for the adaptive filter less than
half τ̄ap = 0.004 13(1). However, as Soergel says, “it is not a priori clear that this is also
the correct quantity to use for the pairwise kSZ measurement... as internal gas motions or
correlations between velocity and optical depth could cause a bias.”

Because the optical depth of CMB photons through clusters is not directly observable for
an individual cluster, Battaglia (2016) explore inference of an average optical depth within
a fixed aperture for a given cluster using a power-law scaling relation. Again, Soergel et al.
(2018) use this relation for the observable Compton−y parameter obtained by applying the
AVG and AP filters to tSZ maps. For every redshift slice in their selection of maps they take
ten mass bins and compute the average ȳ over all clusters in each bin. Then fit for the optical
depth according to the following scaling relation:

55

−1,000 −500 0 500 1,000

−10

0

10

v [km s−1]

〈T
k
〉[
µ

K
]

AVG
AP

(a) Determination of the optical depth with filtered kSZ
Tk and line-of-sight v for the redshift slice. The optical
depth is determined from the slope of the relation us-
ing Eq. (1.28). AVG filter leads to significantly larger
scatter and a slightly steeper slope than AP.

−2.5 −2 −1.5 −1 −0.5
−5.8

−5.6

−5.4

−5.2

ln ȳ
ȳ0

ln
τ̄

Fit
AP

(b) Scaling relation fit. The circular markers and error
bars denote the individual mass bin estimates for ȳ and
τ̄ ; the solid line is the scaling relation fit to them.

Figure 3.8: Scaling relation method for optical depth estimation.

ln τ̄ = ln τ̄0 + α ln
ȳ

ȳ0

(3.20)

where the normalization constant is set to ȳ0 = 10−6, which is a typical value for the aperture-
averaged Compton−y parameter for the clusters in the sample; so that τ̄0 is also representative
for the typical aperture-averaged optical depth. Orthogonal regression for α and ln τ̄0 is
performed using the binned estimates for τ̄ (with AP filter) and corresponding ȳ shown in
Fig. 3.8b. The fitted values for Eq. (3.20) obtained for the selected redshift are α = 0.39(2)

and ln τ̄0 = −4.90(4). These results differ from those reported by Soergel et al. (2018),
however this is likely due to the cluster mass selection for the current redshift slice (see Fig.
3.3). Using the scaling relation to calculate individual cluster optical depths τ̄i, a new set of
predictions denoted by Y6 is defined:

Y6 =

{
vτ,i ∈ R

∣∣∣ vτ,i = − c
τ̄i

〈
∆Tk
T

〉

i

}
(3.21)

According to Eq. (1.18) the optical depth τ is integrated over a path length ` at a specific
location in space. For a single cluster, τ can calculated by averaging the electron density
within the virial radius.

56

oº o0

(; o
o o

o

τ =
1

πR2
vir

∫ Rvir

0

∫ `

−`
σTne d`dr (3.22)

This is only possible for simulation data because the electron density maps can be generated
and extracted directly, however it is not observable. Figure 3.9 below is the corresponding
electron density ne to the sample map in Fig. 3.2 as retrieved from the simulation via SMAC
and normalized to the viral radius.

Similarly to Soergel et al. (2018), kSZ signal is also averaged over the same space using
the AP filter so that the peculiar velocity is simply the quotient between average signal and
average optical depth. The path length integration limits are set at |`| = 100 h−1Mpc giving
a total integration distance of 200 h−1Mpc. The corresponding predictions dataset is

Y7 =

{
vne,i ∈ R

∣∣∣ vne,i = − c
τi

〈
∆Tk
T

〉

i

}
(3.23)

Results for Y6 and Y7 are shown in Fig. 3.10. Compared to the catalogue training, it’s
clear that neither provide the same accuracy and low dispersion as Y0. Both DL and direct
computation methods present strong correlation with the true peculiar velocities, however
the direct methods exhibit even larger biases in magnitude. Surprisingly enough the scaling
relation velocity predictions Y6 have a very tight slope value despite being estimated after
several approximations which make it prone to large errors. However, the fitting process
contains ensemble statistics for the complete redshift slice tSZ spectrum so it might help

2 1 0 1 2
2

1

0

1

2

R/Rvir

R
/R

v
ir

0

1

2

3

4

5

n
e

[1
0
−
2

g
cm

−
2
]

Figure 3.9: Sample electron density image.

57

−1,000 −500 0 500 1,000

−1,000

−500

0

500

1,000

R2 = 0.922

m = 1.012

Y6

v̂ [km s−1]

v
[k

m
s−

1
]

−1,000 −500 0 500 1,000

−1,000

−500

0

500

1,000

R2 = 0.910

m = 0.857

Y7

v̂ [km s−1]

Figure 3.10: Peculiar velocities retrieved by optical depth estimation methods. Y6 optical depth was
computed using the scaling relation after fitting Eq. (3.20); and for Y7, the direct integration in Eq.
(3.22). Catalogue peculiar velocity is along the horizontal axis whilst the model predicted velocity,
along the vertical. The solid line is the ideal relation and the dashed line is a simple linear fit with
slope m.

with individual cluster estimations. Counterintuitively electron density integration did not
provide very good predictions.

3.7 Model Analysis

Table 3.2 collects all results for every model from Figs. 3.7 and 3.10. The mean prediction
error µ̂e was calculated using Eq. (3.18) and σe is simply the standard deviation of residuals
(see Eq. (3.17)). Also, µe is the mean predictions error computed with bootstrap method and
providing the 95% confidence interval. Considering that typical cluster velocities are up to
1000 km s−1 and almost normally distributed around zero (see Fig. 3.3), the mean prediction
error does not provide a significant bias information. However, dispersions are appreciable
high for DNN models and direct methods method. This indicates that the fit is not as good as
it would seem from just considering the first two columns. Finally, a quick check on the ratio
of wrongly predicted signs give an idea of how well every model can determine the direction
of every cluster.

Deviations from the target value are expected due to statistical and systematic errors produced
anywhere from the simulation process and extraction of the SZ signal to numerical errors in

58

the network and design decisions. Although R-squared and MPE are useful point values
to quantify the goodness of a model, they do not provide any information regarding error
distribution and systematic biases.

To test for systematics the mean-centred residuals distribution P (e − µ̂e) is to be analysed.
Particularities are not really important for the discussion but how distributions compare be-
tween them is. The overlap index η is a similarity test for two distributions by measuring
the area of juxtaposition between them. Let fA(x), fB(x) ∈ Rn be normalized distribution
functions defined over real intervals for x denoted by [a1, a2] and [b1, b2] respectively:

η(A,B) : Rn × Rn → [0, 1]

η(A,B) =

∫

Rn

min [fA(x), fB(x)] dx
(3.24)

When η = 1: a1 = b1, a2 = b2, and fA ≡ fB. For 0 < η < 1 both distributions overlap in
some interval [c1, c2], where c1 = max(a1, b1), c2 = min(a2, b2), and nothing in particular
can be said about the shapes of fA and fB. Lastly, when η = 0, the distributions do not
overlap at any point x, and so either a2 < b1 or b2 < a1. To ensure all distributions overlap
one must take the mean-centred distributions.

The mean centred error distributions were smoothed using kernel density estimation (KDE).
With Fig. 3.11 it becomes evident that in fact Y1 and Y2 are almost identical even in their
error distributions. Another case like this is with Y3 and Y5 with a slight bias to the left caus-

Table 3.2: Model training results. The mean prediction error estimation µe is computed through
bootstrap method to provide 95% confidence interval, with bounds indicated by super- and subscripts.
The last column contains the percentage of correct velocity sign predictions.

Model m R2 µ̂e [km s−1] σe [km s−1] µe [km s−1] sign [%]

Y0 0.984 0.999 0.976 11.019 0.961 1.902
0.011 0.80

Y1 0.965 0.989 2.494 29.937 2.417 5.405
−0.376 2.00

Y2 0.998 0.987 −2.249 33.674 −2.224 0.694
−5.193 2.30

Y3 0.936 0.939 −1.355 71.668 −1.312 4.879
−7.361 5.25

Y4 0.833 0.865 0.002 107.071 −0.012 9.080
−9.704 9.10

Y5 0.929 0.936 0.195 73.791 0.191 6.889
−5.961 5.55

Y6 1.012 0.922 −0.212 81.569 −0.413 6.832
−6.975 6.95

Y7 0.857 0.910 2.123 87.257 2.103 9.767
−5.961 6.95

59

−200 −100 0 100 200

10−3

10−2

10−1

e− µ̂e

lo
g
1
0
P

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

0.008

0.005

0.013

0.008

0.013

0.008

0.010

0.008

0.293

0.154

0.023

0.120

0.028

0.047

0.005

0.293

0.382

0.026

0.279

0.034

0.061

0.013

0.154

0.382

0.212

0.879

0.287

0.404

0.008

0.023

0.026

0.212

0.228

0.504

0.399

0.013

0.120

0.279

0.879

0.228

0.323

0.459

0.008

0.028

0.034

0.287

0.504

0.323

0.739

0.010

0.047

0.061

0.404

0.399

0.459

0.739

0

0.2

0.4

0.6

0.8

1

η
(A

,B
)

Figure 3.11: Normalized mean centred error distributions per model (left). Error distribution for Y0 is
very sharp and all others very flat so the log10 P facilitates the visualization. The overlap index (right)
is displayed with a colour map.

ing under-shoot. The overlap η, on the other hand, doesn’t reflect this fact quite notoriously,
but this is rather a numerical problem due to the histograms resolution even after KDE.

Lastly, the absolute relative error expectation value was computed by setting lower bounds
for the catalogue velocities in order to remove the influence of small velocities in the average
error. For catalogue velocities, the effect is not perceptible as the errors are already very low,
around 12% and down to 5% after removing velocities lower than 20 km s−1. In general, this
lower bound ensures a reduction to the half or more of the mean absolute error. This estimator
is not stable at higher bounds due to the decreasingly number of data points (see Fig. 3.3).

100 101 102 103
0

0.5

1

v̂low [km s−1]

E

∣ ∣ ∣ ∣v
−
v̂

v̂

∣ ∣ ∣ ∣

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Figure 3.12: Mean absolute relative error for each model. The horizontal axis gives the lower velocity
bound in estimating the relative error expectation value.

60

3.8 Pairwise Velocity Estimator

As it can be seen in sections 3.5, 3.6 and 3.7, individual cluster peculiar velocities have very
large uncertainties. For this reason ensemble statistics are more convenient than individual
cluster velocity analysis, and also are related directly to cosmological parameters. And so the
final test to all models is the pairwise estimator v12(r) defined in Eq. (1.2) (see section 1.3).

Figure 3.13 shows the peculiar velocity statistic calculated for catalogue velocities, DL train-
ing prediction, and the conventional methods. A complete overlap between the DL prediction
and the target indicates that this technique provides reliable peculiar velocities for cosmolog-
ical statistical studies. Direct optical depth estimation methods are not far behind but clearly
do not provide the same accuracy to the true pairwise velocity. The pairwise statistics for
models Y1 and Y2 follow Y0 very closely, so they aren’t shown in the figure. Same goes for
Y3 and Y5 for being very similar to Y7. This might be happening due to similar dispersion
and sign correlation values.

−400

−300

−200

−100

0

v 1
2
(r

)

Ŷ (v̂)
Y0 (v)
Y6 (vτ)
Y7 (vne)

0 50 100 150 200 250 300 350 400 450 500

−50

0

50

r [h−1 Mpc]

∆
v 1

2
(r

)

Figure 3.13: Pairwise velocity estimator for peculiar velocities retrieved by three different methods
compared to the true estimator computed from the catalogue velocities v̂ ∈ Ŷ. DL peculiar velocities
were selected for the lowest dispersion CNN model trained with the full kSZ catalogue map; vτ
were retrieved from the fitted scaling relation for the optical depth; and vne , from the integrated
electron density. The difference ∆v12 is measured with respect to the pairwise estimator computed
from catalogue peculiar velocities v̂.

61

\

\

·-·:· ·:-

Conclusions

The Sunyaev-Zel’dovich effect is instrumental to the study of large-scale structure velocity
fields. Conventional methods that extract peculiar velocities form KSZ require several steps,
such as signal filtering and mostly optical depth estimation. However, this process is prone
to large errors (introduced by filters and approximated models), which in turn make peculiar
velocity prediction inaccurate. On the other hand, Deep Learning (DL) neural network algo-
rithms (NN) are state-of-the-art techniques in regression and classification tasks. Therefore,
this work tested the feasibility of using NNs to estimate peculiar velocities from the kinematic
SZ signal.

The simplistic convolutional NN (CNN) architecture design choice provided excellent results.
Training with the catalogue signal directly from the Magneticum Simulation (Box 0) yielded
the lowest error mean dispersion of σe = 11.019 km s−1 compared to all other tests. In
contrast, the two conventional methods implemented in section 3.6 gave higher values at
81.569 km s−1 using the thermal SZ effect (Soergel et al., 2018), and 87.527 km s−1 using
the direct integration of the electron density (see Eq. (3.22)). In consequence the hypothesis
proposed is accepted because the DL algorithm outperformed all other choices and improved
the conventional computation of peculiar velocities. One major disadvantage for NN use is
model interpretability. Nonetheless, Machine Learning is an active field of research and a lot
of methods and techniques are under active development and exploration.

CNNs resulted to be the fittest for image processing although bulky, with ∼ 106 parameters;
slow, around several hours to train; and with high memory demand, i.e. low count of sam-
ples per batch due to the feature extraction part of the net. In a word: expensive. DNNs
are generally lightweight, with < 105 parameters; fast, taking 3-14% training time compared
to CNN’s; and inexpensive, even allowing full dataset per batch. DNNs performance is not
far behind CNNs despite the image transformations explored in section 3.3 being rudimen-
tary. Further optimizations to DNNs design could in fact match the results for the catalogue
training or even outperform it. Considering CNNs have better convergence these would be
better implementations to train models intended for library distribution. On the other hand,
DNNs dispersion is very close to conventional methods but quicker to implement and train
than CNN, which makes them better to get quick results and exploration purposes.

62

The neural network provided reliable predictions for studying LSS velocity fields using the
pairwise velocity estimator v12, in addition to improved correlation compared to conventional
methods. Both struggle at lower scales however DL training turned out scale-independent (as
Fig. 3.13 shows). This makes it a very desirable tool for cosmological analysis.

A direct application of this methodology for signal regression can be for cluster catalogue
simulators who would use the largest cosmological simulations and train models to fit par-
ticular parameters for individual clusters. These models can then be distributed as compiled
libraries so that small collaborations can test their own small simulation boxes for those pa-
rameters. Consistency checks between simulations could also be possible. The ultimate goal
would be to train this type of models with simulations and use them with observational data
in order to provide estimates for the desired cosmological parameters.

63

Bibliography

Battaglia N., 2016, Journal of Cosmology
and Astroparticle Physics, 2016

Baumann D., 2009, TASI Lectures on Infla-
tion, arXiv e-print (arXiv:0907.5424)

Birkinshaw M., 1999, Phys. Rep., 310, 97
Bocquet S., Saro A., Dolag K., Mohr J. J.,

2016, MNRAS
Calafut V., Bean R., Yu B., 2017,

Phys. Rev. D, 96, 123529
Chandrasekhar S., 1950, Radiative Transfer,

1 edn. Oxford University Press, Oxford
Diaferio A., et al., 2005, MNRAS, 356, 1477
Dolag K., Hansen F. K., Roncarelli M.,

Moscardini L., 2005, MNRAS, 363, 29
Dolag K., Remus R.-S., Teklu A. F., 2015,

Proceedings of the International Astro-
nomical Union, 11, 292

Eisenstein D. J., Hu W., 1998, ApJ, 496, 605
Feller W., 2008, An Introduction to Probabil-

ity Theory and its Applications, 2nd edn.
No. v. 2 in Wiley publication in mathemat-
ical statistics, Wiley India Pvt. Limited

Ferreira P. G., Juszkiewicz R., Feldman
H. A., Davis M., Jaffe A. H., 1999, ApJ,
515, L1

Fixsen D. J., 2009, ApJ, 707, 916
Flender S., Bleem L., Finkel H., Habib S.,

Heitmann K., Holder G., 2016, ApJ, 823,
98

Flender S., Nagai D., McDonald M., 2017,
ApJ, 837, 124

Friedman A., 1922, Zeitschrift für Physik, 10,
377

Gal Y., Ghahramani Z., 2016, arXiv preprint
(arXiv:1506.02157)

Gamow G., 1946, Phys. Rev., 70, 572
Hand N., et al., 2012, Physical Review Let-

ters, 109, 1
Hasanpour S. H., Rouhani M.,

Fayyaz M., Sabokrou M., 2016

(arXiv:1608.06037)
Hill J. C., Ferraro S., Battaglia N., Liu J.,

Spergel D. N., 2016, Phys. Rev. Lett., 117,
051301

Hinshaw G., et al., 2013, ApJS, 208, 19
Hu W., White M., 2004, Scientific American,

209
Juszkiewicz R., Springel V., Durrer R., 1999,

The Astrophysical Journal, 518, L25
Kompaneets A. S., 1956, Zhurnal Eksperi-

mentalnoi i Teoreticheskoi Fiziki, 31, 876
Krizhevsky A., 2009, Master’s thesis, Univer-

sity of Toronto
LaRoque S. J., Carlstrom J. E., Reese

E. D., Holder G. P., Holzapfel
W. L., Joy M., Grego L., 2002
(arXiv:astro-ph/0204134)

Larson D., et al., 2011, ApJS, 192
Lavaux G., Afshordi N., Hudson M. J., 2013,

MNRAS, 430, 1617
LeCun Y., Cortes C., Burges C., 2010, ATT

Labs, 2
Lindner R. R., et al., 2015, ApJ, 803, 79
Makiya R., Hikage C., Komatsu E., 2019,

arXiv e-prints (arXiv:1907.07870)
McCulloch W. S., Pitts W., 1943, Bulletin of

Mathematical Biophysics, 5, 115
Mitchell T. M. T. M., 1997, Machine

Learning, 1 edn. McGraw-Hill Sci-
ence/Engineering/Math, New York

Mittal A., de Bernardis F., Niemack M. D.,
2018, Journal of Cosmology and Astropar.
Phys., 2018, 032

NASA 2016, Cosmic Background Explorer
Netzer Y., Wang T., Coates A., Bissacco A.,

Wu B., 2011, NIPS Workshop on Deep
Learning and Unsupervised Feature Learn-
ing

Peebles P., 1993, Principles of Physical Cos-
mology, 1st edn. Press, Princeton Univer-

64

http://dx.doi.org/10.1088/1475-7516/2016/08/058
http://dx.doi.org/10.1088/1475-7516/2016/08/058
http://arxiv.org/abs/0907.5424
http://dx.doi.org/10.1016/S0370-1573(98)00080-5
https://ui.adsabs.harvard.edu/abs/1999PhR...310...97B
http://dx.doi.org/10.1093/mnras/stv2657
http://dx.doi.org/10.1103/PhysRevD.96.123529
http://dx.doi.org/10.1111/j.1365-2966.2004.08586.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09452.x
http://dx.doi.org/10.1017/S1743921315010467
http://dx.doi.org/10.1017/S1743921315010467
http://dx.doi.org/10.1086/305424
http://dx.doi.org/10.1086/311959
http://dx.doi.org/10.1088/0004-637X/707/2/916
https://ui.adsabs.harvard.edu/abs/2009ApJ...707..916F
http://dx.doi.org/10.3847/0004-637x/823/2/98
http://dx.doi.org/10.3847/1538-4357/aa60bf
http://dx.doi.org/10.1007/BF01332580
http://arxiv.org/abs/1506.02157
http://dx.doi.org/10.1103/PhysRev.70.572.2
http://dx.doi.org/10.1103/PhysRevLett.109.041101
http://dx.doi.org/10.1103/PhysRevLett.109.041101
http://arxiv.org/abs/1608.06037
http://dx.doi.org/10.1103/PhysRevLett.117.051301
http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.1038/scientificamerican0204-44
http://dx.doi.org/10.1086/312055
https://ui.adsabs.harvard.edu/abs/1956ZhETF..31..876K
http://arxiv.org/abs/astro-ph/0204134
http://dx.doi.org/10.1088/0067-0049/192/2/16
http://dx.doi.org/10.1093/mnras/sts698
http://dx.doi.org/10.1088/0004-637X/803/2/79
http://arxiv.org/abs/1907.07870
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1088/1475-7516/2018/02/032
http://dx.doi.org/10.1088/1475-7516/2018/02/032

sity, Princeton, N.J.
Penzias A. A., Wilson R. W., 1965, ApJ, 142,

419
Peterson J., Fabian A., 2006, Physics Re-

ports, 427, 1
Planck Collaboration 2015, A&A, 594, A1
Planck Collaboration 2016, A&A, 586, 1
Planck Collaboration 2018a, A&A
Planck Collaboration 2018b, A&A, 617, 1
Rephaeli Y., 1995, ARA&A, 33, 541
Rybicki G. B., Lightman A. P., 1985, Ra-

diative Processes in Astrophysics. Wiley-
VCH Verlag GmbH & Co. KGaA, Wein-
heim, Germany

Samuel A. L., 1959, IBM Journal of Research
and Development, 44, 207

Schaan E., et al., 2016, Phys. Rev. D, 93,
082002

Shimon M., Rephaeli Y., 2004, New Astron-
omy, 9, 69

Soergel B., et al., 2016, MNRAS, 461, 3172
Soergel B., Saro A., Giannantonio T., Efs-

tathiou G., Dolag K., 2018, MNRAS, 478,
5320

Springel V., 2005, MNRAS
Springel V., Yoshida N., White S. D. M.,

2000, New Astronomy, 6, 79
Springel V., et al., 2005, Nature
Sugiyama N. S., Okumura T., Spergel D. N.,

2018, MNRAS, 475, 3764
Sunyaev R. A., Zeldovich Y. B., 1980, MN-

RAS, 190, 413
Switzer E. R., 2016, https://lambda.gsfc.nasa.

gov/education/graphic history/univ evol.
cfm

TensorFlow 2015, Google, http:
//www.tensorflow.org

Wang Y., Ramachandra N. S., Salazar E. M.,
2020, Peculiar Velocity Estimation from
Kinematic SZ Effect using Deep Neural
Networks, Manuscript submitted for pub-
lication.

Weymann R., 1965, Physics of Fluids, 8,

2112
Wright E. L., 1979, ApJ, 232, 348
Wright E. L., 2004, in Freedman W. L.,

ed., Measuring and Modeling the Universe.
p. 291 (arXiv:astro-ph/0305591)

Zeldovich Y. B., Sunyaev R. A., 1969,
Ap&SS, 4, 301

Zeldovich Y. B., Sunyaev R. A., 1972, Com-
ments on Ap&SS, 4, 173

65

http://dx.doi.org/10.1086/148307
https://ui.adsabs.harvard.edu/abs/1965ApJ...142..419P
https://ui.adsabs.harvard.edu/abs/1965ApJ...142..419P
http://dx.doi.org/10.1016/j.physrep.2005.12.007
http://dx.doi.org/10.1016/j.physrep.2005.12.007
http://dx.doi.org/10.1051/0004-6361/201527101
https://ui.adsabs.harvard.edu/abs/2016A&A...594A...1P
http://dx.doi.org/10.1051/0004-6361/201526328
http://dx.doi.org/10.1051/0004-6361/201525830
http://dx.doi.org/10.1051/0004-6361/201731489
http://dx.doi.org/10.1146/annurev.aa.33.090195.002545
https://ui.adsabs.harvard.edu/abs/1995ARA&A..33..541R
http://dx.doi.org/10.1147/rd.441.0206
http://dx.doi.org/10.1147/rd.441.0206
http://dx.doi.org/10.1103/PhysRevD.93.082002
http://dx.doi.org/10.1016/j.newast.2003.08.003
http://dx.doi.org/10.1016/j.newast.2003.08.003
http://dx.doi.org/10.1093/mnras/stw1455
http://dx.doi.org/10.1093/mnras/sty1324
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478.5320S
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478.5320S
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/10.1016/S1384-1076(01)00042-2
http://dx.doi.org/10.1038/nature03597
http://dx.doi.org/10.1093/mnras/stx3362
http://dx.doi.org/10.1093/mnras/190.3.413
http://dx.doi.org/10.1093/mnras/190.3.413
https://lambda.gsfc.nasa.gov/education/graphic_history/univ_evol.cfm
https://lambda.gsfc.nasa.gov/education/graphic_history/univ_evol.cfm
https://lambda.gsfc.nasa.gov/education/graphic_history/univ_evol.cfm
http://www.tensorflow.org
http://www.tensorflow.org
http://dx.doi.org/10.1063/1.1761165
http://dx.doi.org/10.1086/157294
http://arxiv.org/abs/astro-ph/0305591
http://dx.doi.org/10.1007/BF00661821
https://ui.adsabs.harvard.edu/abs/1969Ap&SS...4..301Z

Appendix A - Moment Generating Function

The following theorems refer to moment generating functions (Feller, 2008).

Theorem. If a random variable X possesses a moment generating function MX(t), then

∃ E[Xn] such that |E[Xn]| <∞ ∀ n ∈ N

where E[Xn] the n-th moment of X . Furthermore:

E[Xn] =
dnMX(t)

dtn

∣∣∣∣
t=0

Theorem. If two random variables X1 and X2 have the same moment generating functions,
i.e., if MX1(t) = MX2(t) for all t, then both have the same distribution.

For any continuous random variable, its probability distribution function (PDF) is also con-
tinuous and well behaved.

Lemma. If X is a continuous random variable for which all moments E[Xn] are known,
then the probability distribution function is determined completely and can be reconstructed.

66

Glossary

Notation Description Page
List

activation function Emulates a neuron’s response. 31

back-propagation The flow of information is directed from output
to input. Backward pass starts from the cost com-
putation back to the first hidden layer, while cal-
culating all gradients.

36

cost Performance measure. Scores the full error when
using a model.

29, 33

feature Represent some quality or quantity of the in-
stance. Characteristic or attribute of an instance.

27, 31

forward propagation The flow of information is directed from input to
output. A single instance completes a forward
pass through the network, where cost and predic-
tion values are calculated.

36

hidden layer Layer between input and output. 32

hyperparameter Controls certain aspect of the behaviour of the
learning algorithm and are arbitrarily set by the
user.

34

hypothesis Explains an example. Known a priori. Target
value for the objective function.

27

instance A particular case, example or single occurrence
of the data.

27

instances dataset Contains all available examples (instances). 27, 46

67

Notation Description Page
List

knowledge Parametric representation of the task to perform.
Parameter set θ.

26

layer Stack of parallel neurons. 32

learning Process in which a computer program improves
its performance at a given task overtime with ex-
perience. Determination of the best parameter set
θ that represents the knowledge of the task.

26, 29

learning rate Step size for the optimization algorithm. 34

loss function Score function measuring the goodness of the
current parameter set.

29

minibatch Subset of the instances dataset. 35

objective function Holds the true relationship bewteen instance and
target. It is unknown.

28

parameter set Represents the knowledge of a task. 28, 33

prediction Model output value. 28

prediction function Maps a training example to a value y. 28

predictions dataset Contains predicted values corresponding to all
available examples.

28, 46

supervised learning Machine learning algorithm in which a program
learns a function that maps an input to an output
based on example input-output pairs.

27

targets dataset Contains target values or hypothesis correspond-
ing to all available examples.

27, 46

test set Contains a subset of the instances and targets
datasets not used during training but to compute
accuracy parameters.

52

68

Notation Description Page
List

training set Contains a subset of the instances and targets
datasets used during training.

52

69

	Abstract
	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	Introduction
	Cosmology
	The Cosmological Standard Model
	Cosmic Background Radiation
	Peculiar Velocities
	Sunyaev-Zel'dovich Effect
	Compton Scattering
	Inverse Compton Scattering
	Inverse Compton Power
	Non-Relativistic Limit: Kompaneets Equation
	Sunyaev-Zel'dovich Effect
	Relativistic Limit

	Deep Learning
	Supervised Learning
	Artificial Neural Networks
	Gradient Descent and Back-Propagation
	Convolutional Neural Networks

	Network Design & Velocity Estimation
	Magneticum Simulation
	Network Design
	Training Tests
	Catalogue Signal
	Systematic Distortions
	DNN vs CNN

	Cross-Validation
	Deep Learning Predictions
	Optical Depth Estimation
	Model Analysis
	Pairwise Velocity Estimator

	Conclusions
	Bibliography
	Appendix A - Moment Generating Function
	Glossary

