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ABSTRACT

We explain in some detail the geometric structure of spheres in any dimen-
sion. Qur approach may be helpful for other homogeneous spaces (with other
signatures) such as the de Sitter and anti-de Sitter spaces. As a particular
case we consider the 1-Sphere. Assuming the light path as a 1-Sphere (circle)
in vacuum we develop the corresponding special theory of relativity. We show
that the derived metric reproduces time dilation and the length contraction
of the special theory of relativity. We argue that this is an interesting result
from which one can derive both the Schwarzschild and the de Sitter metrics.

Moreover, using a Lagrangian approach we set the bases for a future work
towards a theory for black holes and cosmology models as unified concepts.
From this formalism we show that one can derive the field equations for both
the FRW-cosmological model and the Schwarzschild black hole solution from
a first order Lagrangian of a constrained system, which is derived from the
Einstein -Hilbert action.

Keywords: Spheres, Poincaré-Conjecture, Relativity, Cosmological models,
Kaluza-Klein theory, Black holes.
July, 2014
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CHAPTER 1

INTRODUCTION




Higher-dimensional spheres S¢ are of great importance in both mathemat-
ics and physics. In mathematics, for instance, one can find the statement that
the only parallelizable spheres over the real are S*, 5% and S7 (see Refs. [1]-
[10]) and also that any simply connected compact manifold over the real must
be homeomorphic to S¢ (generalized Poincaré-conjecture) (see Refs. [11]-[15]).
Topologically, the relevance of several spheres emerges trough the Hopf maps
§3 5, 52 57 5, g1 and §%5 E 68 [4], with fibers S, $° and S7 respec-
tively. Of course these fiber spaces are deeply related to the normed division
algebras; real numbers, complex numbers, quaternions and octonions (see Ref.
[10]). Surprisingly, there is also an intriguing relation between N-qubit the-
ory and the spheres S, 5% and ST [16]-[18] (see also Ref. [19]). Moreover,
the sphere S® is of great relevance in Bott periodicity theorem (see Ref. [10]
and references therein). In physics, one meets with S® in the Friedmann-
Robertson-Walker cosmological model (see Ref. [20] and references therein),
while in supergravity and superstring compactification (see Ref. [21] and ref-
erences therein) one learns that one of the most interesting candidate for a

realistic Kaluza-Klein theory is S7 or the corresponding squashed sphere S7
[22].

In particular, the 1-sphere S* emerges trough the Hopf map S°® G (see
Ref. [4]). Of course this result is closely related to the complex numbers. Sim-

ilarly, the Hopf maps S” T, 5% and 8§15 5., 98 are related to quaternions and
octonions (see Ref. [8]-[10]). Even more surprising is that S* is related to 1-
qubit theory (see Refs. [16]-[19]). Physically, S! is, of course, connected to one
of the fundamental forces, namely electromagnetism. In fact, in terms of a five
dimensional theory, S' provides one of the most interesting realistic Kaluza-
Klein theory via a spontaneous compactification of one space dimension. Of
course, cosmologically one meets with S% x S! in the Friedmann-Robertson-
Walker cosmological model type (see Ref. [20] and references therein) in a five
dimensional theory.

Historically, the circle is an old mathematical system. But, perhaps, Tales
de Mileto (624- 547 BC) gave the first serious steps in the mathematical struc-
ture of S*. In the Elements of Euclides (325-265 BC) one finds some of the
properties of S'. In fact, Menaechmus (380-320 BC) is famous for the discov-
ery that S is a conic section. Moreover, considering a path of a point on the
circumference of a circle as the circle rolls without slipping along a straight
line one obtains one of the most famous curves in the history of mathemat-
ics: the cycloid. The curve was named by Galileo (1564-1642) in 1599. But it
seems that Nicholas de Cusa (1401-1464) was the first to study it seriously and
Marin Mersenne (1588-1648) gave the formal definition of a cycloid. Personne



de Roberval (1602-1675) in 1628 showed the area under the curve being 3mwa?.
It is worth mentioning that Torricelli also found the correct value of the area.
From modern perspective one can say that the cycloid is the result of a relative
motion of a point on the circumference of a circle (see Ref. [21] and references
therein). More general a trochoid is the word created by Gilles de Roberval
for the curve described by a fixed point as a circle rolls along a straight line
in the z-axis direction. As a circle of radius a rolls without slipping along a
horizontal direction, the center of the circle moves parallel to the z-axis, and
every other point P in the rotating plane rigidly attached to the circle traces
the curve called the trochoid. Let b, the radius inside the circle (by < agp), on
its circumference (by = ag), or outside (by > ay), the trochoid is called curtate,
common, or prolate, respectively.

It is worth emphasizing the interesting result that light can travel not only
describing a straight line but also in a circular path, that is a S' (see Refs.
[39] and [41] and references therein). This result must be understood as a
possible vacuum topological solution of the Maxwell theory. The idea emerges

by combining the Hopf map S$* 5, 2 with the Maxwell equations. These
comments refer to empty space since it is well known that light can travel in
a cycloid path in a medium with index n. So our idea of considering light
traveling in S* is not empty but may be justified by these previous works.
The new idea that we would like to add is to see light traveling in S' from
the point of view of a rest frame: A-observer. So, we are interested to see
what will be the scenario for a B-observer which is looking S! traveling with
constant velocity v along the r-direction.

In this thesis we would like to explain the geometry structure of any higher-
dimensional sphere S¢. Our method is straightforward and can be applied to
any spacetime with #-time and s-space signatures. We explain how to obtain
the de Sitter space in spherical coordinates. In particular, we explain the
geometry structure of the 1-dimensional sphere S*. We discuss how the devel-
opment of the special theory of relativity can be obtained when one changes
the Pythagorean theorem for a horizontal-vertical light paths to a light mov-
ing in S* at rest: the A-frame or A-observer. The advantage of this is that
both the time dilation and the length contraction arise as particular cases of
a parent cycloid. Moreover, in a generalized context we show that one may
be able to obtain not only the Schwarzschild solution but the de Sitter (or
anti-de Sitter) metric as well. As it is known, an object moving in a circle
in the rest A-frame must describe a parent cycloid in the non rest B-frame.
This is true if the A-system is moving with constant velocity v much less than
c. But if the system is moving near the velocity of light the curve must be a



generalized parent cycloid. In the case of light moving in S* with radius by
one must compare it with a reference frame moving also in S! but with radius
ag < by.

One may expect that the above comments about higher dimensional spheres
can be linked to cosmological and black holes scenarios. In particular, this
may be done by taking advantage of the recently approaches of the Friedman-
Robertson-Walker (FRW) cosmological model and the Schwarchild balck-holes
solution in terms of a first order Lagrangian of constrained systems, which is
obtained from the Einstein-Hilbert action. Traditionally, in (1+3)-dimensions
the FRW cosmological model is described by the S®-sphere while the black-
holes solutions is associated with the S2-sphere. This two particular cases are
genaralized for higher dimensions by introducing higher dimensional spheres.
In this sense one needs a specific criteria for selecting exceptional spheres and
this in turn implies exceptional cosmological and black-holes solutions. The
main motivation of this Thesis is to work towards a unified theory for cos-
mology, black-holes and spheres. For this purpose we first review the higher-
dimensional spheres formalism putting special emphasis in the 1-sphere S'.
Moreover, we discuss the possible unification of cosmology and black-holes in
higher dimensions. We would expect that the complete formalism presented in
this work may be helpful to obtain a unified theory for cosmology, black-holes
and spheres as a final goal.

Moreover we generalize such formalism showing that the FRW-cosmological
model and the Schwarzchild balck-hole solution arise as a limit cases of our
more general first order Lagrangian formalism which is also derived by using
higher dimensional Einstein-Hilbert action.

Our approach may be physically interesting for a number of reasons. First
it may allow in a consisitent way to unfied the concepts of FRW-cosmology
and the black-hole solution. Second, one may use the complete mathematical
tools of Lagrangians for constrained systems to study a number of symetries
underliying the FRW-cosmology and the Schwarchild solution. Third, a unify
treatment of cosmlogical and black-holes may be of particular interest in the
context of string theory or M-theory. This is because M-theory predicts among
other things that our universe may be a brane world and it appears attractive
to explore whether M-theory also considers a brane-world/black hole corre-
spondece.

Technically this thesis is organized as follows. In Chapter 2, we discuss the
structure of higher dimensional spheres starting with a constrained system.
In particular, we present the Riemann curvature tensor, the Ricci tensor and
the scalar curvature for homogeneous spaces (section 2.1). In section 2.2, we
derive the De Sitter metric in spherical coordinates. In Chapter 3, section 3.1,
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we briefly review the usual mechanism to derive the time dilation and length
contraction of special relativity. We show that in this case the Pythagorean
theorem is a key concept. In section 3.2, we also derive the time dilation and
length contraction but now assuming that the light path is a circle. Moreover,
we derive the Schwarszchild and the de Sitter formalism from this approach.
In Chapter 4, section 4.1, we focus on the particular case of a (1 + D + d)-
cosmological model. In section 4.2, we discuss the Schwarzschild solution from
the point of view of a constrained system. In section 4.3 we review the general
case of (n + D + d)-cosmological model. In section 4.4, we show that the
((14-1)+ D+d)-cosmological model is reduced to the FRW-cosmological model
and to the black-hole solution in (1 + D)-dimensions. Finally, in Chapter 5,
we make some final remarks about this work.



CHAPTER 2

HIGHER DIMENSIONAL SPHERES
(THE GEOMETRIC STRUCTURE)




2.1 Spheres as a constrained system

Let us consider coordinate = with A = 1,2, ...,d+1. We define the S¢ sphere,

with constant radius rg, through the constraint

b T d d
I_z:rJ&ij + +1:I: A e TS,

where the §;; is the Kronecker delta and i = 1,2, ..., d.
We shall be interested in the line element

ds? = dedzBé 45 = daid?6;; + da? T dz?.
i

From (1) one obtains

! = £(r2 — 2276;;)1/2.
Thus, taking the differential of (3) gives
(:I:)Tid.f(‘}(ilj
(12 — 2" 220,:) Y2

So, substituting (4) into (2) leads to

d,;[‘d+l .

(z'd2?6;;) (xFdx'dy)
(?'(2, — -Tr-'rsé'rs)

ds® = dz'dz?é,; +
This expression can be rewritten as
ds® = dzida’ Uiis
where

.I'T-mj

(r2 — 272%0,5)

gij = 0ij +

Here, we used the expression 2¥6;; = z;.
By using (7) we shall calculate the Christoffel symbols

i 1 .
k= 59 Gk + Gj1k — Gkij)s

and the Riemann tensor

Ry = 85 — O + T I8 2 T2,

First, let us observe that

(1)

(2)



1 2Ij$k$l

Kl = ; O ; I 10
9ikl (Tg — IPIq6pq) [5.?1‘7"‘](' + 0pZ; + (Tg - Il'rl'slsrs)] ( )
One finds that the Christoffel symbol (8) becomes
= : 9" (giz;)- (11)
BT (12 — 2 x%0ss)" 4
But since
ij ij i
97 = (6" — —), (12)
o
one finds that
i g’
Kl = % (13)
o
By substituting this result into (9) yields
Rijt = gim R = Gim|On(457) — O1(2257) + (257 (%57
(14)
— (g™ (2],
Simplifying (14) gives
T T 1
Rijki = i[O (2~ 5:(%2 ) + 2" 2" (gurgit — Gragix)]- (15)

TS L 7’0

Now, taking the derivatives in the first and second terms in (15) one sees that

1 1
R = ﬁgim[(gjlfs?_gjk(s;n)"'xm(gﬂ.k_ij,l)+ﬁ$mxn(9nk9j1_gnlgjk)]' (16)
0 0

Using (10) one notes that (16) becomes

Rﬂ.}kl p—rt ;lg(g‘lkgj[ gl[gjk) + § 39222'11-:1‘35 )(5Jk$1 == é]lljk)
(17)
+2ﬁ—g’“$m:€”(9nkgﬂ — YniGik)-

But, one finds that



m(gjkm — 05%k) + %$n(9nkgﬂ — gniik)

= 1 ; T 1 JE 1 n\ g
= "QT—ro(roéxrxsﬁrs)(éka 5;1»3.&) 4= ?—%‘[ﬂ?k(l T —g——(rﬂ_l_%gérs)l‘nx )53,5

(18)
——.’L‘g(l == mﬂfnl‘n)éjk}
= ru(rﬂ—alrrmsérs)(ajkml — 5j1$k) -+ ijs_w(éﬂmk = 6jk$£) = (.
Thus, (17) is reduced to
1
Rijit = = (9951 — 9ugix)- (19)

2
7o
We recognize in this expression the typical form of the Riemann tensor for any
homogeneous space.

From (19) one learns that the Ricci tensor R = g% R,z is given by

d—1)g;
Ry = ( P )ng, (20)
o
while the scalar curvature R = ¢?' Rj; becomes
dd—1
R:i—yl. (21)
o

Usually the theory is normalized in the sense of setting 7§ = + = 1. In this
case (21) leads to

R=kd(d-1). (22)

As we shall explain in the next section the above procedure can be generalized
to no compact spacetime. In such case one obtains that (22) can be generalized
in such a way that k = {—1,0,1}.



2.2 Higher dimensional De Sitter space-time

Now suppose that instead of the constraint (1) we have
.TZJJ??U -+ l‘d+1$d+l = 715, (23)

where we changed the Euclidean metric d;; = (1,1,..., 1) by the Minkowski
metric 7;; = (—1,1,...,1). Note that in this case the constant ri can be

positive, negative or zero. Accordingly, the line element (2) is now given by

ds® = dedaBn 45 = da'dain,; + da™ de™. (24)

It is not difficult to see that all steps to calculate the Christoffel symbols and
the Riemann tensor components of the previous section are exactly the same.
At the end, it can be shown that such quantities are

- gkzmi -
Ta==" (25)
p
and
1 .
Riju = ﬁ(gikgﬂ — Gagik) (26)
0

respectively. Here, the metric g;; is now given by

Lilj

9ii = Miz T E—zzon) (27)
where z; = n,;27.

It is worth mentioning that one can even consider a flat metric 7,; =
(=1,...,—1,....1,1) with t-times and s-space coordinates and the procedure is
exactly the same, that is, equations (23)-(27) are exactly the same, with the
exception that now one must take the corresponding flat metric 7,;.

Just to show that our result agree with the de Sitter space-time in spherical
coordinates let us consider the reduced spacetime

ds® = dx'dx’ g;;, (28)

obtained by using (23). Substituting (27) into (28) yields

Ty

det'= (nij +

)da'dx’. (29)

(g — & i)

This expression can be rewritten as

10



I|
(7‘3 o mr‘rsnrs)

ds® = [(r§ — 2™ 2" N ) + Tix;)da’da’ . (30)

By expanding z™z"1,,, = —a%2® + 2°2%8,,, with a,b running from 1 to
d — 1, one learns that (30) leads to

ds’ = P 5y[(rd + 2%2° — 2°2%0,43) (—dx®dz® + dxcdz6.q)

(31)
+2%2%dz%dz? — 22°dx’2°dz’d, + 2 a°dadr B 0.4).

Now, considering that r* = 292%,, one finds that (31) can be written as

dS2 = (_T(Qﬁ—_m‘)lm[(rg -+ .TO.’L'O — 7'2)(—d$0d$0 -+ d?"z + ?,.Qdﬂd—?)

(32)
+2929%d20%dx? — 22%x rdr + r2dr?].

where, dQ2%~? is a volume element in d — 2 dimensions. This can be simplified
in the form

d82 = E;g-{-—:rﬂlrng)[_(rg — ?"Q)d.'l'ﬁdl'o + (T'g —+ H?U.TU)d?"z — Qx()dxord.r}

(33)
4r2d0-2.

Now, with the intention of getting a line element with the same form as
the line element for black holes, we considered the change of variable

20 = f(t)(13 = 1?)V2 (34)
Also

i = f()(rf 12— LI (35)

Consequently, one obtains

dzdz® = f2(t)(r2 — r2)dt: — 2f'(t) f(t)rdrdt + %
8 —r

2%dz’ = f(t) f'(t)(r2 — r®)dt — f2(t)rdr. (37)

11



Substituting (34), (36) and (37) into (33) vields
ds® = rgbms [ (1 — 1) (1) (% — 12)de? — 2f(2) f (t)rdrdt

LRI (1 4 f(8) (0 — r2))dr? (39)

7o
=2(f()f'(t)(r2 — r®)dt — f2(t)rdr)rdr)] + r2dQ2.
It is not difficult to see that this expression can be simplified in the form

d.52 = _ flz(t)

2 _ 2} 2 0 g2 p2409-2
a +f2)(r0 %) +___(rg ey r* + r<d) (39)
Now, writing f(t) as
f(t) = sinh(t/ry), (40)
one finally discovers that (39) can be written as
2 d 2
ds? = —(1 — —5)dt2 + ——— + r2dQ2. (41)
: = 1_ 7
0 — =

"o

This expression is, of course, very useful when one considers black-holes or
cosmological models in the de Sitter (or anti-de Sitter) space.

12



CHAPTER 3

THE 1-SPHERE AND RELATIVITY
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3.1. Special relativity from the Pythagorean theorem

Let us now derive time dilation and length contraction from a light path
along a vertical and horizontal trajectories as described by an observer A at
rest, which is moving with constant velocity v with respect a ground observer
B. First, we assume that the light is moving vertically in the frame of the
A-observer. But the light path for the B-observer will have two component:
one vertical and one horizontal. The point is that considering together the
result of the two observers A and B a rectangular triangle is formed. So one
can apply the Pitagoras theorem in order to have the relation

A = v* ¢ + 4, (42)
From this expression one gets the time dilation formula
i
p=—0 (43)
=%

Hidden in this derivation is the fact that light velocity c is the same for both
A-frame and B-frame.
Similarly, if according to the A-observer the light path is moving forward

and backward horizontally a distance Lg the total time of the round light trip
1s

to = 2Lg/c. (44)

However, for the B-observer, in the forward case, we must have

cta=L+viy (45)

and

CtB=L—’UtB, (46)

in the backwards case. So the total time of the round trip for the B-observer
is given by

L L
= .
e—i 4+ (47)
Thus, one gets
2L
= 2L/ = (48)
L=

14



But, in order to derive the length contraction

v?
L=1/1- Lo, (49)

traditionally one considers the vertical result (43) and the formula (44). The
formulae (43) and (49) are, of course, two of the corner stone in the special
theory of relativity.

15



3.2. Black Hole solution from a cycloid light path

Suppose now that A-observer, which is at rest, does not separate the light
path as vertical or horizontal but instead it assumes that the light is moving in
a circular path. A circle is in a sense a synchronized combination of both verti-
cal and horizontal paths. The question arises; what will be the light trajectory
for a B-observer which sees the frame A-observer moving at v velocity in the
horizontal direction? One may anticipate, of course, that for the B-observer
the light trajectory will be prolate cycloid (also called trochoid, in general).
Our main goal here, however, is to establishing the connection of the light
traveling in a circle with the light traveling horizontal or vertical direction of
the previous section.

The first thing that one must mention is that the derivation of the length
contraction of the previous section is in fact not completely correct because
one is using a vertical result in the sense of time dilation in an experiment
where the light path is moving in the horizontal direction with the respect the
A-observer. The correct picture arises when one assumes that with respect
the A-observer the light path corresponds to a circle instead of to separate
horizontal and vertical trajectories. So the A-frame may use the equations

Xo = —bpcosf (50)
and
Yo = bosend, (51)
which lead to the light element
P+ XE+YE=0. (52)

Substituting (50) and (51) into (52) one obtains the expression

—c2t2 + b2 =0, (53)
which yields

cty = b(). (54)

Now we would like to describe the trajectory described by the light with

respect to a ground B-observer, when such trajectory corresponds to a circle
with respect to the A-observer. The light path equations are in this case

X = vt — bcosf (55)

16



and

Y = bysend. (56)
The light velocity can be obtained from

—FE+ XY =0 (57)
Substituting (55) and (56) into (57) one finds that

—c*t? 4 (vt — bcos #)? + (bgsend)? = 0. (58)
We shall now consider two particular cases: (1) when ¢ = 5 and (2) when
§ = m and 6 = 27. In the first case one sets # = 7 in (58),
—8 + (wt)® + (bp)* = 0, (59)
which in virtue of (54) leads to

—c* " 4 = 0. (60)
Hence one gets
t
P S, (61)
1-%

We recognize in this expression the time dilation (43).
In the second case, one sets, in (58), # = 7 and 6 = 27. From (58) one
obtains that
—AE+ (vt + b2 =0 (62)

and

—c*t3 + (—vty + b)* = 0, (63)

respectively. Considering the total time ¢t = #; +t,, these expressions will lead

to the length contraction
v?
b=14/1-— C—Qbo. (64)

Thus, we have shown that from (58) one can obtain the time dilation formula
(61) and the length contraction expression (64) as a particular cases. In the
infinitesimal case (61) becomes

17



dt = : (65)
While (64) leads to
v?
db = 1~ . (66)

So, one may expect that in the most general case the key equations (65)
and (66) can be combined in such a way that the general line element becomes

2 2
ds* = —(1— T'—,A,)(:le‘2 + ;2 4 rodfie 2, (67)
: (1-%)
where we identify the radius of the circle b with r, and add the usual spherical
element r2d29=2. It is important to mention that d2?=? refers to an expansion
of terms in 2-form diferentials.
Now, considering the escape velocity
o2 QGﬂf[’ (68)

r

and substituting it into (67) one finds

2GM dr®
ds® = —(1-— 2 )Czde =t _(:L_T‘TGM) +72dQ, (69)
r

which is of course the Schwarzschild line element for black-holes in higher
dimensions. Here, however, one may follow another route. This is because the
light path is a circle and therefore one has

ag

) = 70

v=3 (70)
and
bo

= 71

e ()
Substituting these equations into (67) one discovers that
2 d 52
ds? = —(1— 0)2d2 + — T 4 r2400-2, (72)
b (1-3)
: bg

which one recognizes as the line element of the De Sitter (or anti-De Sitter)
metric (41).
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CHAPTER 4

COSMOLOGY AND BLACK HOLES
(TOWARDS A UNIFIED THEORY)

19



4.1 (1 + D + d)-dimensional Cosmological Model

Consider a universe described by the line element

ds? = —=N*(t)dt* + a*(1)d”Q + b (t)d"E, (73)

Where the dP€) and d?T correspond to a D-Dimensional and d-dimensional
homogeneous spaces with constant curvature k; = 0,£1 and k; = 0,£1 re-
spectively.

Using (73) we find that the Einstein-Hilbert action in D = 1+s dimensions,
with s = D + d can be written as

1
= /d%/——g(ﬁ — 2A), (74)
where V, is an appropiate volume constant. Thus (74) becomes (See App. A)

S = — [dtNaP¥*{2DN~2a"*a — 2DN~3Na'a+ D(D — 1)N2a~2a’
+D(D — 1)kya~2 + 2dN~2b"1h — 2dN—-3Nb~b + d(d — 1) N~2b~2p?

+d(d — 1)ksb~2 + 2dDN~2a~ab~'b — 2A}.
(75)
Here, we have performed a volume integration over the space-like coordinates.
The action (75) can be rewritten as

S = — [ dt{[2(2DN~1aP'b% + 2dN"1aPb?'b) — D(D — 1)N~'aP b4
—d(d — 1)N-1aPp—2p2 — ngN—la_D—ldbdhlbl

+D(D — 1)k; NaP~2b? + d(d — 1)ka NaPb4=2 — 2ANaPb%}.
(76)
Since a total derivative does not contribute to the dynamics of the classical
system we can drop the first term in (76). Thus (76) simplifies to

S = [dt{N"1aPb¥[D(D — 1)a~2a* + d(d — 1)b26* + 2dDa~'ab=1}]
(77)
—D(D — 1)k NaP~2b — d(d — 1)k;NaPb%2 + 2ANaPb4}.

One can show that the field equations for the cosmology model in 1+ D +d
follows from (77) [56].

20



4.2 Schwarzschild D— dimensional space-time

Let us start with

ds? = —e/™)(dz®)? + ") (da)? + ¢ (2") iy (6" )dE e, (78)

or more specifically

ds? = —e/")(dt)* + ") (dr)? + ¢ (r) i (£")dE dE’, (79)

where ds? corresponds to the line element for a spherically symmetric sta-
tic black hole solution in a D— dimensional space-time MP”, and the metric
(€ *) refers to a (D — 2)-dimensional maximally spherically symmetric space
( homogeneous space) with curvilinear coordinates €' that are independent of
time t and r. Also, greek indices u,v = 0,1,2,...,D — 1 while latin indices
i,j = 2,3,4,...,D — 1. Here, we have specified the functional form for f, h
and ¢ in terms of r (or ') and considered the speed of light ¢ = 1.

Using (78) it is easy to show that the resulting field equations are (see App.
B)

D=2) ¢'
Ry = %f”‘i‘%fﬂ—}l’f’h"“( - )%ff=0,

Ru = -3/ -2+ 4fH+(D-2) (350 - %) =, (80)

o

Ry = 3¢ (W —f)—o¢"—(D-3)¢* +k(D—-8)e"=0.

(in relativistic units G = ¢ = 1),where k = +1, depending if g;; refers to
a positive or negative curvature. Here, we used the notation A’ = ‘é—f‘ and
A" = % for any function A = A(r).

Thus, the Ricci scalar R = g""R,, is given by

2

R = e*(D-2) [% () — 28 - (- 3) %f] b (—fr ~ L2 4 LR

+{(D—2) (D—3)%

o}

(81)
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Consequently, up to total derivative, the higher dimensional Einstein-Hilbert
action

§=> | . /3R, (82)

2 MD

where g denote the determinant of g,,. That is

V=g=e79""/5, (83)

Thus, considering (81) and (83), (82) becomes

§ =2 [0 VIO H{@PPF)(D - 3)% +25 %))
(84)

+Q{k(D — 3)Fo'P~91].

Here, we used the notation F = e and Q = e%. Note that the case D = 2
is exceptional. Similar conclusion can be obtained in the case of D = 3. For
our purpose it turns out convenient to assume that D —2 # 0 and D — 3 # 0.
Observe that in (84) €2 acts as auxiliary field.
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4.3 (n+ D + d)-dimensional Cosmological Model

Now we consider a more general line element

ds® = gap(z®)dz?dx® + a®(2€)dPQ + V*(2°)d?%, (85)

where the indices A, B run from 1 to n. Here, the expressions d”Q = §,,(2?)dzdz®
and d?Y = §;;(2%)dx'dz? correspond to a D-dimensional and d-dimensional ho-
mogenous spatial spaces, with constant curvature k; = 0,+1 and k, = 0, £1,
respectively. ‘

For the line element (85) we have the Hilbert-Einstein action in (n+ D+d)-

dimensions 1
S =— f d" P+ /—g(R — 2A), (86)

Vbtd
Using (85) the action (86) is reduced to (see App. C)

S = — [d"z\/gaPb*{—2Da'D40*a — D(D — 1)g*8a=201a05a
—2db™D 484 — d(d — 1)g*Pb—28,4bgb (87)

—2Dd(b~'a"1)g*P04a08b+ R+ a 2R+ b~ 2R — 2A}.

which can be rewritten as

S = — [ d"z\/g{Da(2Da” 104 ab? + 2db*104ba?)
_D(D — 1)g*BaP—208 1005 — d(d — 1)g*BaPb-20,bdzb (88)

—2Dd(aP~1b%1)gABd,4adpb + aPb*(R + a 2R + b~2R — 2A)},

where D, is a covariant derivative associated with gag. Dropping the total
derivative in (88) one obtains

S = [d"z/ga”b{D(D — 1)g*Pa=28,4a0pa + d(d — 1)g*Pb20,4b0gb
i ) (89)
+2Dd(a01)gAB4adpb — (R +a=2R + b=2R — 2A)}.

Here, R, R and R are the curvature scalars associated with 9a5(x°), Gap(z?)
and g;;(z*), respectively.
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Now, it is worth mentioning that (89) is invariant under the duality trans-
formation

a — L
b — = (90)
4D 4d

gap — an—2bn-2gup.

provided that n # 2 and R+a2R+b2R—2A = 0. What appears interesting
from our analysis of the invariance of (89) under the duality transformation
(90) is that the case n = 2 is distinguished among any other n value. In other
words, from duality point of view two time physics turns out to be a singular
case. In some sense duality symmetry is playing analogue role in several time
cosmological physics as the Weyl invariance in p-brane physics (see [65] and
references there in).
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4.4 FRW-Cosmology/Black hole reduction

A particular case of the equation (85) is expressed by the line element

ds® = —N*(t)dt? + a®(t)dPQ + b?(t)d°x, (91)

Which as you noticed it was already analized in Section 4.1 and the obtained
Einstein-Hilbert action was

S = [dt{N"1aPb[D(D — 1)a~2a* + d(d — 1)b=2b* + 2d Da~'ab=b]
(92)
—D(D — 1)kyNaP~2b? — d(d — 1)k;NaPb%2 + 2ANaPb?},

The problem with (91) is that it can be obtained from (85) by choosing
g11(z€) = —N? and g15(2€) = g91(2€) = 0 and gz2(z€) = 0. This means
that the 2-dimensional metric g4p(z®) in (85) is singular. So, the question
arises, starting from the action (89) and assuming detgag(z“) # 0 how can
one obtains the action (92)7 The answer to this question may be solved by

performing a different kind of projection. Let us rewrite the ansatz (85) in the
form

ds® = gap(z!, z%)dzda® + a?(z!, £%)dPQ + b% (2}, 2%)d?%, (93)
Let us assume that gio(z',2?) = go1 (2, 2?) = 0. This leads to

ds® = g (z',2°)dr'dz’ + goa (2, 2%)da?dz’® + a*(z*,2%)dPQ + b% (2}, 22)d°S.

(94)

By performing the projections gi;(z',2°) — gy1(2') = —N?*(z!) and

gaa(z',2?) = 0, a*(z',2%) — a*(a?!) and also b*(z!,2%) — b%(z!') one see
that the line element (94) becomes

ds® = —N*(z')dz'dz" + a®(z!)dP+'Q + ¥ (z")d’z. (95)

Here, we have defined d”*'Q = dz?dz? + dPQ and it refers to an expansion
of terms in 2-form diferentials. Therefore, one has discovered that (95) has
exactly the same form as (91) and therefore the action (92) follows, provided

one makes the extension
1 0 ;
e ( e ) | (96)
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For the black hole case by making the reductions gy (z* :cz) — g1 (2?) =
—ef@) and gy (!, 22) — gao(2?) = "), a?(x!, 2?) — ©?(x?) and b?(z!, z?)
b?(x?), with 22 = r, the line element (94) becomes

ds? = —ef (dz")? + e"Mdr? 4 % (r)dPQ + b*(r)d?. (97)

with its corresponding action

S = (D2—2) fﬂ,fD \/E[Q—l{((f)(Dwm}—)((D B 3) o2 4 2}., cb")}

(98)
+Q{k(D — 3)Fo!P}.

already obtained in Section 4.2. Here, by convenience we choose d = 0. From
this action one can obtain the field equations whose solution corresponds to
the the well known higher dimensional Schwarchild black-hole solution, namely

Byt e — | a0 (99)
———)(dz — :
©oD72(r) 1- ﬁ) v

In this section we showed that the Einstein-Hilbert action in n + D + d-
dimensions can be reduced to the action (89) which contains the dynamics of
both cosmology and black holes. ‘

ds® = —(1 -
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CHAPTER 5

FINAL REMARKS

ar

aimensional qubits (see Kets. [16]-[17] for details). =
It is also known that the 1-qubit state is related to the Hopf map as follows
(see Refs. [16]-[19] and references therein):

535, g2 (102)

So, the 1-sphere becomes in this case the fiber of such a map. This means
that one may be able to link the relativity theory with (102) and therefore
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It is known that some of the most interesting generalizations of spheres are
the squashed spheres in supergravity and pseudo spheres in oriented matroid
theory. The idea of squashed spheres arises in attempt to find a realistic
Kaluza- Klein theory. In fact the typical spontaneous compactification in
eleven dimensional supergravity is given by M* x S7. But S” is isomorphic to
SO(8)/SO(7) which implies that instead of the group U(1) x SU(2) x SU(3)
of the standard model, the transition group is SO(8). Thus, one uses the
concept of spontaneous symmetry braking in order to make the transition
S0(8) — U(1) x SU(2) x SU(3). One possibility to achieve this goal is to
assume that the symmetry braking induces the transition S7 — S7, where
S7 is the squashed seven sphere [22]. The simplest example of this process is
provided by the squashed S* sphere [31]. In this case the original metric

d82:(71 + 03 + O3, (100)

with invariant group SO(4) is broken to the form

ds® = a1 + 03 + Mo, (101)

where A # 1 and 01,05 and o3 have quadratic form. When A = 1 (101) is
reduced to the line element of S3, that is to (100). The idea is to get the
reduction SO(4) — U(1) x SU(2) by the process of symmetry braking.

There are important topological aspects related with the present approach
of higher dimensional spheres. Mathematically, it may be interesting to link
our work with the Bott periodicity theorem (see Ref. [10] and references
therein). Moreover, we would like also to describe an application of Division-
algebra/Poincaré-conjecture correspondence in qubits theory. It has been men-
tioned in Ref. [16], and proved in Refs. [17] and [18], that for normalized qubits
the complex 1-qubit, 2-qubit and 3-qubit are deeply related to division alge-
bras via the Hopf maps, S° L. 5%, 85" 2, 5 and 55 2 S8, respectively. It
seems that there is not a Hopf map for higher N-qubit states. Therefore, from
the perspective of Hopf maps, and therefore of division algebras, one arrives to
the conclusion that 1-qubit, 2-qubit and 3-qubit are more special than higher
dimensional qubits (see Refs. [16]-[17] for details).

It is also known that the 1-qubit state is related to the Hopf map as follows
(see Refs. [16]-[19] and references therein):

-] (102)

So, the 1-sphere becomes in this case the fiber of such a map. This means
that one may be able to link the relativity theory with (102) and therefore
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}f{.? I % ‘/41)

with 1-qubits. This kind of program may eventually be important to study
light paths in different topological contexts (see Refs. [39]-[41] and references
1 _ oa

therein). In the general case, one has the Hopf maps S° =z, SE.B Z, 5
and S'® = S8 [4].

Now, considering the 2-qubit as a guide one notices that S* plays the role

fad 3
of fiber in the map S’ 58 Thus, in principle one may think in a more
il 3

general map M’ 2, M* leading to a more general 2-qubit system which
one may call 2-Poinqubit (just to remember that this is a concept inspired by

Poincaré conjecture.) At the end one may be able to obtain the transition
2-Poinqubit— 2-qubit. Of course one may extend most of the arguments

developed in this work to the other Hopf maps §° 5, 5% and 8% =, g8,

It is interesting to mention that recently a correspondence between the
division algebras, Hopf maps and the Poincaré conjecture has been established
[15]. Let us briefly mention how such a correspondence arises. Geometric
parallelizability of S¢ means the “flattening” the space in the sense that

Ri(Qm) =0, (103)

where

R = Sy — %, + O, Q0 — Q% (104)

3l

is the Riemann curvature tensor, with

0, =ThL+T5 (105)

Here T}, denotes the torsion tensor.

It can be proved that, for homogeneous space, from the condition (103)
can be obtained the first and the second Cartan-Shouten equations (see Ref.
[30])

THTj = (d — 1)rg s, (106)

and

T:fﬂij?k = (d — 4)rg *Tugx, (107)

respectively. It turns out that (106) and (107) can be used eventually to prove
that the only parallelizable spheres are S', 5% and 57 [5].
Now, we would like to generalize the key constraint (3) in the form

2t = p(a'), (108)
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where ¢ is an arbitrary function of the coordinates #*. In this case, the metric

Tig = "5:';' +: a:"paj‘r?: (1{]9}
while the inverse 4% is given by
e Fod e
R 110
? 1+ Fpdep (H10)
The Christoffel symbols become
, Loty :
s (111)

T 140700

After lengthy but straightforward computation one discovers that the Riemann
tensor R, obtained form (111) is

1

am[;(aiwajﬁ? — Gupdipp). (112)

Rim = TG oo

One can verifies that in the particular case

@ = (1 — 2'eld;) 2, (113)
(19) follows from (112).
Let us now consider the Ricei flow evolution equation [14] (see also Refs.
[11]-[13] and references therein)
5')'5_,' B
g —2R;;. (114)
In this case the metric 7,;(f) is understood as a family of Riemann metrics
on M?. It has been emphasized that the Ricci flow equation is the analogue
of the heat equation for metrics 7;;. The central idea is that a metric 4;
associated with a closed simply connected manifold M* evolves according to
(114) towards a metric g;; of S*. Symbolically, this means that in virtue of
(114) we have the metric evolution 7,; — g;;, which in turn must imply the
homeomorphism M? — 5%,
The question arises whether one can introduce the parallelizability concept
into (114). Let us assume that M? is a parallelizable manifold. We shall also

assume that M” is determined by the general constraint (108). It has been
proved that {114) can be generalized to
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— — _aTeTL (115)

It is worth mentioning that by considering the transition M* — 5% one
finds that even in special relativity one may have that the evolution process

@V, vy, v:) = /€ — (v2 + 02 + v?) may be understood as the transition C —

c of the light velocity (see Ref. [15] for details). This means that the light
velocity ¢ is not a given constant but it is obtained as a result of evolution
transition. It is also worth mentioning that the cycloid idea has been used in
different context to develop an alternative hypothesis of special relativity [43].

It is also known that S plays an important role in oriented matroid theory
[32]-[33] ( see Refs. [34]-[35] and references therein) it may be interesting for
further research to explore the full connection of the present work and oriented
matroid theory.

Let us now discuss some physical scenarios where the division-algebra/Poincaré-
conjecture correspondence may be relevant. Let us start by recalling the Ein-
stein field equations with cosmological constant A,

Ry — -_.I;‘y',-_,-R +Ay; =0. (116)
1t is known that the lowest energy solution of (116) corresponds precisely to
5% (or to S% in general). In this case the cosmological constant A is given by
A= % From quantum mechanics perspective One may visualize M® as an
excited state which must decay (homeomorphically) to 5%, according to the
Poincaré conjecture. Symbolically, one may write this as M? — 5%,

In Ref. [15] it is observed that the transition M® — 5% may be applied in
two important scenarios: special relativity and cosmology. In the first case the
evolution process ¢(v;, vy, v:) — \/ ¢® — (vZ + vl +v?) may be understood as
the transition C — ¢ of the light velocity (see Ref. [15] for details). While in the
second case the standard Friedmann-Robertson-Walker universe corresponds
to a time evolving radius of a S* space that can be modified in M?®*. Thus,
at the end the acceleration may produce a phase transition changing M* to a
space of constant curvature which corresponds precisely to the de Sitter phase
associated with S°.

Moreover, in Ref. [15] it was proposed the complex generalization

au

f.—a:l = —2Ru; (117)
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of (114). Here, the metric ,; and the Ricci tensor R;; are may be complexified,
Vi; — ¥y; and Ry; — Ry, respectively. The idea is now to consider the evolving
complex metric ;.

Eventually, one may be interested in a possible connection of the Poincaré
conjecture with oriented matroid theory [32] (see also Refs. [33]-[38] and ref-
erences therein). This is because for any sphere S¢ one may associate a poly-
hedron which under stereographic projection corresponds to a graph in R4,
It turns out that matroid theory can be understood as a generalization of
graph theory and therefore it may be interesting to see whether there is any
connection between oriented matroid theory and Poincaré conjecture. In fact
in oriented matroid theory there exist the concept of pseudo-spheres which
generalizes the ordinary concept of spheres (see Ref. [32] for details). So one
wonders if there exist the analogue of Poincaré conjecture for pseudo-spheres.

Finally in this work we have studied duality symmetries in Kaluza-Klein
n + D +d dimensional cosmological models. We first briefly reviewed the case
1+ D+d cosmological model. We wrote the action of this model in such a way
that the duality symmetry becormes manifest. In section 4.3, we studied, from
the point of view of duality, the more general case of a n+ D+ d cosmological
model. We discovered that, except for the case n = 2, the Einstein-Hilbert
action in n+ D +d dimensions is invariant under the duality symmetry a — %
and b — }. We studied the 2+ D+ d cosmological model in some detail finding
an explicit classical solution. One of the interesting features of the 2 + D +d
cosmological model is that, in spite of lacking a duality symmetry, it leads to
a universe in which the second time can be considered as a compact time-like
dimension, while the first usual time behaves as an open dimension. It turns
out that this kind of solution was already anticipated by Bars and Kounnas
[49].

It is clear from the present results that the traditional Friedmann-Robertson
Walker cosmological model is contained in the 2 + D + d cosmological model.
The question arises whether other traditional cosmological models such as the
different Bianchi models are also contained in the 2+ D + d model. The really
interesting problem, however, is to find a mechanism to decide whether the
2+ D + d model is the correct model of the universe. Experimentally, it is an
interesting possibility because presumably the second time is shrinking to zero
in the first stage of the evolution of the universe, leading after that to the usual
evolving universe. Theoretically, one becomes intriguing why duality is broken
in the case of two times cosmological model, distinguishing the 2+ D +d model
of other n+ D +d models. In this work we tried to understand classically this
interesting feature of the 2+ D +d cosmological model but bevond of finding a

32



consistent solution with the present evolution of our universe there seems not
to be a clear reason why the duality symmetry is broken.

An open problem for further research is to quantize the n+ D +d cosmolog-
ical model. In this case it may be interesting to see what are the consequences
of the duality symmetry in the corresponding Wheeler-de Witt equation and
in the associated state of the universe.
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APPENDIX A

Considering the 1 + D + d dimensional metric g,3, with a, 3 =0,1...,1 +
D + d, the only nonvanishing elements are

goo = —N?,
9i; = a*(t)gi, (A1)

gab = U*(t)Jab,

where the metric g;; corresponds to the D-dimensional homogenous space,
while g, is metric of the d-dimensional homogeneous space.
We find that the only non-vanishing Christoffel symbols

1 1/
Fi;ﬁ = 59“ (gua.,@ + GvB.a — grxg's’.u) (A2)
are
IY = N%aag,
o = a7lad,

ry, = N-IN,

w = Dk (A3)
I% = N~2bbjn,

re, = b1b62,

b = Th

Using (A3) we discover that the only non-vanishing components of the Rie-
mann tensor

R

v

=Lugin — Do+ Tielop < UapTha (A4)

are
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Ry, = (N~2ai— N3Naa)j;,
to = (—a7'd+N'Na7la)s;,
Ry, = Rj’kl + N=2a2(8,g50 — 61d;x),
Rl = (N72bb— N73Nbb)gas,
00 = (=blb+ N-INb1h)82,

o4 = R&,+ N20%(6%G6a — 0%Gtc),

b = N % labb8,ga,
Ry, = N~2aab 'b8};.
From (A5) we get the non-vanishing components of the Ricci tensor R, =
R
Ryw = —Da'a+ DN-'Na'a—db~b+dN-1Nb1h,

Ri; = (N~ 2ai— N-3Naa+ (D-1)N-2a2+ dN*zadb_li))g}ij G é»jj,
Ry = (N72b— N3Nbb+ (d— 1)N~26% + DN~2a~1abb)jns + R,y

(A6)
Thus, the Ricci scalar R = ¢ R, is given by

R = 2DN~2¢7'i—2DN-3Na'a+ D(D — 1)N~2a~242 + D(D — 1)k,a~?
+2dN 271 — 2dN3Nb~1b + d(d — 1)N 267262 + d(d — 1)kob™2

+2dDN~2a~1ab=1b.
(A7)
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APPENDIX B

For a D— dimensional static black hole the nonvanishing elementos for the
metric g, are

goo = —elt),

g = e, (B1)

Gi; = ¢2(7")§z‘j (fk),
where the metric §;; (€*) determines a (D — 2)-dimensional maximally

spherically symmetric space and 7,7 = 2,3,...,D — 1.
The non-vanishing Christoffel symbols

1
P;B = 59#1}(911&,5 + Gusie = GuBw) (BQ)
are
Fgl = %f":
Tge = %f’ﬁ’f_h,
Fil = %hl'.
(B3)
Fiij - %‘ﬁ'e
Ff%‘k - f‘j‘k-

Using (B3) we discover that the only non-vanishing components of the Rie-
mann tensor
R.u - ]_"!J

vaf vi.c oo v

=~ Diap + T8 PTg— PEaIEs (B4)
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Ry = =ipr=1feylpy,

Boig = & (%f" + %fﬂ . %f’h’) i

R?Dj = —%f’ehhcbab’éij,

Ry = 3f'e'%8, (B5)
Ry; = e (3hod — 6d") gy,

. l Oﬁ’ d).” =,
R, = (-éh'—_ N —) 5,

@ [
i i 2 —h(si~ i~
Gkl = Rjkl — ¢e h(‘skgﬂ — 01G5k)-
From (B5) we get the non-vanishing components of the Ricci tensor Ry, =
RO’ .
pov?

= ’ D-2) ¢
R = el (3f"+1f2 = 1w+ 228 p),

Ry = =4 =32+ +(D-2) (340 - &), (B0)

R; = e [%@9’5’ (W' = f)—¢d" — (D—3)¢” + k(D - 3) E’h] Ois
Considering

i 8nG

R,u.y . Eg;wR — ?T;LW’ (BT)
and if T,, = 0 for the particular "no matter" scenario,
1
R#y — 59“,,}-{ =i(l) (Bg)
Multiplying (B8) by ¢** we obtain
R =0. (B9)

Thus
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R;ur — ﬂ, {Blﬁ}
and the field equations

vt (D=2) &
R = "+ 40+ 05 P =0,
Ry = -3 -1fe+ifi+@-2) (340 - %) =0 (B11)
Ryj = 300/ (W —f)—0¢" —(D~3)¢” +k(D~3)e" =0.

Finally, from (B11) it is easy to prove the Ricci scalar R = ¢""R,,,, is given
by

R = e*(D-2) [%’ (= =22 = (D—9 g;i] +e b (= =124 1)

+(D-2)(D-3)%
(B12)
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APPENDIX C

Considering the n+ D -+d dimensional metric g,3, witha, 3 =0,1...,n,n+
1,...,n + D +d, the nonvanishing elements for this case are

Qap
s

Gab

where the metric §;; corresponds
while g, is metric of the d-dimensi

= gas(z®),
= a*(2%)g, (C1)

= 'E'F {Ic}ﬁﬂﬁr

to the D-dimensional homogenous space,
onal homogeneous space. Furthermore, the

indices A, B...ete run from 1 to n, the indices i, j...eterun fromn+1ton+ D
and the indices a,b...etc run fromn+ D+ 1 ton+ D +d.
We find that the only non-vanishing Christoffel symbols

Pes = %ﬂ““(ﬂm,ﬂ + GuB.a — GaBiw) (C2)
are
ry = -¢*%adpagy,
Dja = a'0ad,
I'ie = Tie:
W = T (C3)
Ta, = —g""bdsbga
Ity = b7l0.bd;,
B =

Using (C3) we discover that the only non-vanishing components of the Rie-

mann tensor

Rﬂmﬂ = I‘i.:;d..r.t = r:ja,ﬂ' aiF rﬁar:ﬂ i F::';"Trﬂﬁ {C4}
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A DA
RBCD - RBCD

R;’}gj = (—aDBBAa)gij,
4ie = (—a'Dpdaa)d;,
Ry, = Ri,— 9g*P0radpa(8g; — 6Gx),
Ryy, = (~bDpd"b)ga, (C5)
Riyg = (=b"'Dpdab)dy,
Ry = Riy— g*P0abO8b(: G0 — Ogduc),
R, = —(a'b)g*?0,a05b5" G,
Ry, = —(b7'a)g*P04adpbs,Gi;.
From (C5) we get the non-vanishing components of the Ricci tensor R, =
Ry

Bag = EAB — Da‘lDBE?Aa = dbﬁngaAb,

Ry = —(aDpd% + (D —1)g*Pd4adpa + d(b~ta)g*P8,4a05b)G;; + Rij,
Ry = —(bD8"+ (d —1)g*P8,bdsb + D(a~'b)g*P04a05b)gus + Rap-
Thus, the Ricci scalar R = ¢" R, is given by o

R = —2Da'Ds8% — D(D - 1)g*a=204a0pa
—2db™' D 40b — d(d — 1)g*Bb204b05b (C7)

—2Dd(b'a 1)g*P84a0b + R+ a~2R + b~2R.
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