Especialidad en Almacenamiento y Procesamiento de Granos

Estudio de las Propiedades Fisicoquímicas de la Masa y de la Calidad del Pan Modificadas por Tripsina de Sierra (Scomberomorus sierra).

TESIS

Que para obtener el Grado de:

MAESTRO EN CIENCIAS

Presenta:

I.Q. Sylvia Nohemí Gutiérrez Barceló

Hermosillo, Sonora

Diciembre de 2006
Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess
<table>
<thead>
<tr>
<th>CONTENIDO</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEL AUTOR</td>
<td>ii</td>
</tr>
<tr>
<td>AGRADECIMIENTOS</td>
<td>iii</td>
</tr>
<tr>
<td>DEDICATORIA</td>
<td>iv</td>
</tr>
<tr>
<td>CONTENIDO</td>
<td>v</td>
</tr>
<tr>
<td>ÍNDICE DE TABLAS</td>
<td>vi</td>
</tr>
<tr>
<td>ÍNDICE DE FIGURAS</td>
<td>vii</td>
</tr>
<tr>
<td>ÍNDICE DE DIAGRAMAS</td>
<td>ix</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>xi</td>
</tr>
<tr>
<td>INTRODUCCIÓN</td>
<td>xii</td>
</tr>
<tr>
<td>HIPÓTESIS DE INVESTIGACIÓN</td>
<td>1</td>
</tr>
<tr>
<td>OBJETIVOS</td>
<td>4</td>
</tr>
<tr>
<td>ANTECEDENTES</td>
<td>5</td>
</tr>
<tr>
<td>Generalidades del Trigo</td>
<td>6</td>
</tr>
<tr>
<td>Producción de Trigo</td>
<td>6</td>
</tr>
<tr>
<td>Usos del Trigo</td>
<td>6</td>
</tr>
<tr>
<td>Clasificación del Trigo</td>
<td>8</td>
</tr>
<tr>
<td>Estructura y Composición Química del Grano</td>
<td>9</td>
</tr>
<tr>
<td>Proteínas del Trigo</td>
<td>9</td>
</tr>
<tr>
<td>Propiedades Fisicoquímicas de las Proteínas de Trigo</td>
<td>12</td>
</tr>
<tr>
<td>Formación del Gluten</td>
<td>14</td>
</tr>
<tr>
<td>Modificación de las Proteínas del Trigo</td>
<td>15</td>
</tr>
<tr>
<td>Aplicación de Enzimas en Panificación</td>
<td>15</td>
</tr>
<tr>
<td>Fuentes de Enzimas</td>
<td>16</td>
</tr>
<tr>
<td>Enzimas Hidrolíticas</td>
<td>16</td>
</tr>
<tr>
<td>Características de la Tripsina de Origen Marino</td>
<td>20</td>
</tr>
<tr>
<td>Tripsinas purificadas de especies de aguas frías</td>
<td>20</td>
</tr>
<tr>
<td>Tripsinas purificadas de especies de aguas tropicales</td>
<td>20</td>
</tr>
<tr>
<td>METODOLOGÍA</td>
<td>22</td>
</tr>
<tr>
<td>Materia Prima</td>
<td>22</td>
</tr>
<tr>
<td>Análisis Químicos</td>
<td>22</td>
</tr>
<tr>
<td>Capítulo</td>
<td>Página</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Purificación de Enzima Tripsina</td>
<td>25</td>
</tr>
<tr>
<td>Cromatografía de Afinidad</td>
<td>25</td>
</tr>
<tr>
<td>Actividad de la Enzima</td>
<td>27</td>
</tr>
<tr>
<td>Determinación de la Concentración de la Proteína</td>
<td>27</td>
</tr>
<tr>
<td>Parte I. Estudio en el Sistema Harina-Agua</td>
<td>28</td>
</tr>
<tr>
<td>Calorimetría de Barrido Diferencial</td>
<td>29</td>
</tr>
<tr>
<td>Compresión Uniaxial</td>
<td>30</td>
</tr>
<tr>
<td>Viscosidad Extensional Biaxial</td>
<td>30</td>
</tr>
<tr>
<td>Parte II. Estudio en el Sistema Masa Panaria</td>
<td>31</td>
</tr>
<tr>
<td>Panificación</td>
<td>32</td>
</tr>
<tr>
<td>Cambios de la Temperatura de la Masa Durante la Fermentación</td>
<td>34</td>
</tr>
<tr>
<td>Compresión Uniaxial</td>
<td>35</td>
</tr>
<tr>
<td>Análisis de Textura</td>
<td>35</td>
</tr>
<tr>
<td>Diseño del Experimento y Análisis Estadístico</td>
<td>35</td>
</tr>
<tr>
<td>RESULTADOS Y DISCUSIÓN</td>
<td>39</td>
</tr>
<tr>
<td>Caracterización de la Materia Prima</td>
<td>39</td>
</tr>
<tr>
<td>Análisis Químico de la Harina de Trigo Cristalino</td>
<td>39</td>
</tr>
<tr>
<td>Purificación de la Enzima Tripsina de Pescado</td>
<td>41</td>
</tr>
<tr>
<td>Cromatografía de Afinidad</td>
<td>44</td>
</tr>
<tr>
<td>Parte I. Estudio en el Sistema Harina-Agua</td>
<td>44</td>
</tr>
<tr>
<td>Calorimetría de Barrido Diferencial</td>
<td>44</td>
</tr>
<tr>
<td>Compresión Uniaxial</td>
<td>45</td>
</tr>
<tr>
<td>Medición de la Viscosidad Extensional Biaxial</td>
<td>45</td>
</tr>
<tr>
<td>Parte II. Estudio en el Sistema Masa Panaria</td>
<td>54</td>
</tr>
<tr>
<td>Seguimiento de la Temperatura Durante la Tercera Fermentación</td>
<td>54</td>
</tr>
<tr>
<td>Volumen Específico</td>
<td>64</td>
</tr>
<tr>
<td>Compresión Uniaxial</td>
<td>67</td>
</tr>
<tr>
<td>Análisis de Textura</td>
<td>67</td>
</tr>
<tr>
<td>CONCLUSIONES</td>
<td>73</td>
</tr>
<tr>
<td>RECOMENDACIONES</td>
<td>74</td>
</tr>
<tr>
<td>BIBLIOGRAFÍA</td>
<td>75</td>
</tr>
<tr>
<td>Tabla</td>
<td>Descripción</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Principales regiones productoras de trigo a nivel mundial en el 2005</td>
</tr>
<tr>
<td>2</td>
<td>Clasificación de las proteínas del trigo</td>
</tr>
<tr>
<td>3</td>
<td>Composición de aminoácidos en las proteínas del gluten en el trigo</td>
</tr>
<tr>
<td>4</td>
<td>Algunas enzimas utilizadas en panificación</td>
</tr>
<tr>
<td>5</td>
<td>Diseño experimental del sistema harina-agua que indica los tipos de enzimas, concentraciones de enzima y tiempos de reposo utilizados</td>
</tr>
<tr>
<td>6</td>
<td>Diseño experimental del sistema masa panaria que indica los tipos de enzimas y concentraciones de enzima utilizados</td>
</tr>
<tr>
<td>7</td>
<td>Composición química y parámetros farinográficos de la harina de trigo Júpare comparados con los de una variedad panadera (Rayón)</td>
</tr>
<tr>
<td>8</td>
<td>Estimación de la cantidad de vísceras desechadas en el año 2004, calculadas en el Laboratorio de Productos Marinos del Departamento de Investigación y Posgrado en Alimentos (DIPA)</td>
</tr>
<tr>
<td>9</td>
<td>Resultados de la purificación de enzima tripsina del intestino de sierra (Scomberomorus sierra)</td>
</tr>
<tr>
<td>10</td>
<td>Entalpía de transición determinada a diferentes tiempos con los dos tipos de enzima (ECOM y EPEZ) y a 0.14 y 0.28 U de concentración</td>
</tr>
<tr>
<td>11</td>
<td>Índice de degradación proteolítica calculado mediante la ecuación 1</td>
</tr>
<tr>
<td>12</td>
<td>Efecto del tratamiento en la viscosidad extensional biaxial de la masa</td>
</tr>
<tr>
<td>13</td>
<td>Efecto del tiempo en la viscosidad extensional biaxial de la masa</td>
</tr>
<tr>
<td>Tabla</td>
<td>Descripción</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>14</td>
<td>Incremento de la temperatura de la masa en la tercera etapa de fermentación</td>
</tr>
<tr>
<td>15</td>
<td>Efecto del tratamiento en el volumen específico del pan</td>
</tr>
<tr>
<td>16</td>
<td>Efecto del tratamiento en la firmeza de la miga de pan</td>
</tr>
<tr>
<td>Figura</td>
<td>Descripción</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Partes principales del grano de trigo</td>
</tr>
<tr>
<td>2</td>
<td>Presencia de un residuo de aspártico en la posición 189</td>
</tr>
<tr>
<td>3</td>
<td>Etapas de la purificación de enzima tripsina de vísceras de sierra</td>
</tr>
<tr>
<td>4</td>
<td>Proceso de elaboración del pan por el método de masa directa 10-10 B, AACC</td>
</tr>
<tr>
<td>5</td>
<td>Termogramas del sistema harina-agua y los distintos tratamientos a 120 min.</td>
</tr>
<tr>
<td>6</td>
<td>Viscosidad extensional biaxial que presentó la masa con los diferentes tratamientos a un tiempo de reposo t_0: 0 min.</td>
</tr>
<tr>
<td>7</td>
<td>Viscosidad extensional biaxial que presentó la masa con los diferentes tratamientos a un tiempo de reposo t_1: 30 min.</td>
</tr>
<tr>
<td>8</td>
<td>Viscosidad extensional biaxial que presentó la masa con los diferentes tratamientos a un tiempo de reposo t_2: 90 min.</td>
</tr>
<tr>
<td>9</td>
<td>Viscosidad extensional biaxial que presentó la masa con los diferentes tratamientos a un tiempo de reposo t_3: 120 min.</td>
</tr>
<tr>
<td>10</td>
<td>Efecto del tratamiento en la viscosidad extensional biaxial (Valores con la misma letra sobre la barra no son diferentes a una $p<0.05$)</td>
</tr>
<tr>
<td>11</td>
<td>Viscosidad extensional biaxial que presentó la masa control a los cuatro diferentes tiempos de reposo</td>
</tr>
<tr>
<td>12</td>
<td>Viscosidad extensional biaxial que presentó la masa con 0.14 U de enzima tripsina porcina comercial a los cuatro diferentes tiempos de reposo</td>
</tr>
<tr>
<td>13</td>
<td>Viscosidad extensional biaxial que presentó la masa con 0.28 U de enzima tripsina porcina comercial a los cuatro diferentes tiempos de reposo</td>
</tr>
<tr>
<td>14</td>
<td>Viscosidad extensional biaxial que presentó la masa con 0.14 U de enzima tripsina de sierra a los cuatro diferentes tiempos de reposo</td>
</tr>
<tr>
<td>Figura</td>
<td>Descripción</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>Viscosidad extensional biaxial que presentó la masa con 0.28 U de enzima tripsina de sierra a los cuatro diferentes tiempos de reposo</td>
</tr>
<tr>
<td>16</td>
<td>Efecto del factor tiempo sobre la viscosidad extensional biaxial de la masa independiente del tratamiento (Valores con la misma letra sobre la barra no son diferentes a una p<0.05)</td>
</tr>
<tr>
<td>17</td>
<td>Cinética de modificación de la viscosidad extensional biaxial durante el tiempo de reposo de la masa</td>
</tr>
<tr>
<td>18</td>
<td>Seguimiento de la temperatura de la masa en la tercera etapa de fermentación (Valores con la misma letra sobre la barra no son diferentes a una p<0.05)</td>
</tr>
<tr>
<td>19</td>
<td>Efecto del tratamiento en la firmeza de la miga de pan (Valores con la misma letra sobre la barra no son diferentes a una p<0.05)</td>
</tr>
<tr>
<td>20</td>
<td>Imágenes de la sección transversal de una rebanada de pan</td>
</tr>
<tr>
<td>Diagrama</td>
<td>Página</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Sistema harina-agua</td>
</tr>
<tr>
<td>2</td>
<td>Sistema masa panaria</td>
</tr>
</tbody>
</table>
RESUMEN

Se evaluó en los siguientes sistemas: harina-agua y masa panaria el efecto de la hidrólisis de la tripsina de sierra (Scomberomorus sierra) sobre algunas propiedades físicquímicas de la masa y la calidad de pan. En el sistema harina-agua se utilizaron las técnicas de compresión uniaxial y calorimetría de barrido diferencial, y al dejar actuar a la enzima en el tiempo de reacción de máxima actividad se observó un aumento de la respuesta a la compresión uniaxial medida como la viscosidad extensional biaxial de la masa. Esta respuesta sigue un modelo cúbico el cual corresponde a la siguiente expresión: \(y = a + bx + cx^2 + dx^3 \), sin embargo, la viscosidad extensional biaxial obtenida no es mayor a la del tratamiento control, indicando con esto el efecto de la enzima sobre las proteínas de la harina. De igual manera, debido a la hidrólisis de las proteínas en las masas a las cuales se adicionó la enzima al comparar la tripsina de sierra con la tripsina porcina comercial se observó que la primera, a la concentración mayor estudiada; obtuvo un mayor índice de degradación, esto mediante el cambio de entalpía de la muestra. Así mismo, en el sistema de masa panaria el efecto de la hidrólisis de la tripsina de sierra (Scomberomorus sierra) se observó sobre la calidad del pan, esto mediante el seguimiento de la temperatura en la tercera etapa de fermentación, el volumen específico y la técnica de compresión uniaxial. En el sistema de masa panaria la influencia de la concentración de enzima sobre el volumen del pan no mostró ninguna diferencia, pero se obtuvieron valores mayores de volúmenes a otros estudios realizados con trigo cristalino. Sin embargo, para la prueba de firmeza de la migas se observó que la migas era más firme conforme se aumentaba la concentración de la enzima y de acuerdo a la formación de alvéolos en la migas la enzima mejoró la oclusión de aire en la masa, independientemente de la concentración evaluada, sin embargo a mayor concentración de enzima se observó un mayor aumento en la firmeza debido a las interacciones entre las subunidades de las proteínas que fueron hidrolizadas haciendo más firme la migas. Con estos resultados se observa el grado de modificación de algunas propiedades de la masa de trigo cristalino y el pan adicionando la enzima tripsina de pescado.
INTRODUCCIÓN

El trigo es un cereal muy importante en la alimentación de la sociedad mexicana, ya que es base para la elaboración de productos como: pan, pasteles, tortillas, galletas, pastas, entre otros. En menor proporción que otros granos, el trigo se utiliza como alimento para la ganadería, principalmente para las actividades porcínula, avícola y engorda de ganado (SRA, 2004).

El consumo de éste cereal no es directo, por lo que requiere de un proceso de transformación. Generalmente inicia con la molienda, cuyo primer producto es la harina; la cual se utiliza como materia prima para los fabricantes de productos finales, predominando la industria del pan. Aquí, la calidad del producto está determinada por la cantidad y calidad de la proteína del grano (SRA, 2004).

En la producción nacional destacan los trigos suaves y cristalinos; en la comercialización se identifican cinco grupos, dependiendo del tipo y características del gluten. En Sonora predominan los del grupo V (cristalinos); Guanajuato se especializa en el grano del grupo III; Baja California siembra los trigos de los grupos I y II; y; Sinaloa ha cambiado las variedades del grupo I por las del grupo V, por su resistencia a enfermedades y la posibilidad de exportarlo (SRA, 2004).

Actualmente, se ha reportado una baja en la producción de trigo panadero y un aumento en la de trigo cristalino. Por lo que se hace necesario buscar alternativas, como la modificación tecnológica de trigos cristalinos mediante la utilización de enzimas de las vísceras de especies marinas que son un desperdicio de la industria pesquera. Con este fin, se han realizado estudios de purificación y caracterización de tripsina del tracto digestivo de especies marinas tales como Mugil cephalus y Scomberomorus sierra, así como de evaluación de su capacidad hidrolítica del gluten obtenido de trigos cristalinos (Olivas et al., 2001; Olivas, 2001; Cabrera, 2005).
Esta enzima, que presenta un pH de máxima actividad entre 8-10, dos picos de temperaturas, 40 y 60°C y mantiene el 65% de su actividad a pH de 4, es capaz de hidrolizar las proteínas del gluten de trigo cristalino con pesos moleculares de 45-66 kDa y las proteínas de trigo panadero de 45-84 kDa, las cuales corresponden a las subunidades de glutenina de bajo peso molecular y a las gliadinas (Olivas, 2001). Al obtener los parámetros cinéticos de la reacción con el gluten y sus dos fracciones principales, gliadinas y gluteninas, la tripsina de Scomberomorus sierra presentó una mayor afinidad por las gliadinas (Cabrera, 2005).

El grado de hidrólisis del gluten, medido por la caída del pH y por la reacción con el reactivo Orto ftalaldehído (OPA), se encuentra en el rango de 18.56-24.29% (Olivas, 2001; Cabrera, 2005). Al comparar el efecto de la tripsina añadida a harina de trigo cristalino y trigo panadero sobre los parámetros del farinógrafo, se dio un decaimiento en la consistencia de las masas después de un reposo de 1.5 h, registrándose un mayor efecto en la harina de trigo cristalino. De igual manera, en los datos obtenidos con el alveógrafo se advierte un aumento en la extensibilidad de las masas corroborando el hecho de que la enzima ha actuado con mayor afinidad hacia las gluteninas de las dos variedades de trigo. De acuerdo a lo anterior, se ha demostrado que esta enzima puede ejercer su acción en las etapas previas a la formación del producto, es decir, el amasado y reposo de la masa (Cabrera, 2005).

De acuerdo a las investigaciones anteriores y a la necesidad de seguir en la búsqueda del conocimiento de la acción de esta enzima comparándola con una tripsina de páncreas porcino comercial, y, su aplicación para modificar las proteínas de nuestros trigos, se planteó estudiar la hidrólisis de las proteínas de las masas de una variedad de trigo cristalino mediante las técnicas de calorimetría de barrido diferencial y compresión uniaxial: viscosidad extensional biaxial (como respuesta a la compresión) y la fuerza de la miga (propiedad mecánica sensorial),
además de determinar la influencia de la concentración de enzima sobre los parámetros de calidad del pan elaborado con esta harina.
HIPÓTESIS DE INVESTIGACIÓN

La adición de tripsina de sierra (*Scomberomorus sierra*) mejorará las propiedades fisicoquímicas de las masas y la calidad del pan de trigo cristalino.
OBJETIVOS

General

Estudiar el efecto de la hidrólisis de la enzima tripsina de sierra Scomberomorus sierra sobre algunas propiedades fisicoquímicas de la masa y de la calidad del pan de trigo cristalino.

Particulares

1.- Evaluar el efecto sobre la viscosidad extensional biaxial de las masas de trigo como una respuesta del grado de modificación de las proteínas por la hidrólisis de la enzima tripsina de Scomberomorus sierra.

2.- Obtener el índice de modificación de las proteínas de las masas de trigo mediante la técnica de calorimetría de barrido diferencial.

3.- Determinar la influencia de la concentración de enzima sobre el volumen del pan elaborado con harina de trigo cristalino.
ANTECEDENTES

Generalidades del Trigo

El trigo ha sido uno de los cereales mayormente utilizados en la alimentación humana debido a la gran diversidad de alimentos que se pueden elaborar a partir de este cereal (Potter, 1978).

Producción de Trigo

La producción de trigo a nivel mundial ha adquirido importancia debido a su positiva fluctuación, la cual es actualmente de 618.8 millones de toneladas. Entre las principales regiones productoras de trigo se encuentran: Asia, África, América Central y Caribe, América del Sur, América del Norte, Europa y Oceanía (Tabla 1) (FAO, 2005).

Dentro de América Central y Caribe se puede decir que México es el productor exclusivo de esta región. México produce cerca de 3 millones de toneladas, de las cuales, Sonora aporta alrededor de la mitad de la producción (1.58 millones de toneladas), siendo el 76% de trigos cristalinos (SAGARPA, 2006). La mayor parte de este trigo se destina a la producción de pastas para consumo humano y el excedente se exporta o se usa como alimento para ganado (INEGI, 1998).

Usos del Trigo

La mayor parte del trigo es destinado a la fabricación de harinas para panificación, repostería y pastas. También se utiliza para fabricar cereales de desayuno; y en menor proporción en la elaboración de cerveza, whisky y alcohol industrial. Los trigos de menor calidad, subproductos de molienda, elaboración de
<table>
<thead>
<tr>
<th>Regiones productoras de trigo</th>
<th>millones de toneladas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>264.4</td>
</tr>
<tr>
<td>África</td>
<td>19.3</td>
</tr>
<tr>
<td>América Central y Caribe</td>
<td>3.0</td>
</tr>
<tr>
<td>América del Sur</td>
<td>20.0</td>
</tr>
<tr>
<td>América del Norte</td>
<td>82.7</td>
</tr>
<tr>
<td>Europa</td>
<td>204.9</td>
</tr>
<tr>
<td>Oceanía</td>
<td>24.4</td>
</tr>
<tr>
<td>Total mundial</td>
<td>618.8</td>
</tr>
</tbody>
</table>

Fuente: FAO, 2005
cerveza y destilados; son aprovechados como piensos para el ganado (Fabriani et al., 1988).

Clasificación del Trigo

El trigo, debido a su versatilidad y uso final, presenta diferentes sistemas de clasificación. Por cosecha el trigo se clasifica en: invernal y primaveral; por textura del endospermo en: vítreo y harinoso; por dureza del endospermo en: duros y blandos y según su fuerza en: fuertes y débiles (Garza, 1999). En México el trigo se clasifica en cinco grupos de acuerdo a la funcionalidad del gluten (Serna-Saldivar, 1996).

Grupo I. Presentan un gluten fuerte y elástico, apto para la industria mecanizada de panificación. Se utiliza para mejorar la calidad de los trigos débiles y producen harinas panificables.

Grupo II. Tienen un gluten medio fuerte para la industria de panificación. Su utilización es manual o semimecanizada (pequeñas panaderías o uso casero), mejora los trigos suaves y produce harinas panificables.

Grupo III. Tienen un gluten débil pero expansible apto para la industria galletera. Es usado para mejorar las propiedades de trigos tenaces y no producen harinas panificables por sí mismas, por tanto, necesitan mezclarse con trigos fuertes ó medio fuertes.

Grupo IV. El gluten de este grupo es tenaz, corto o poco extensible; es apto para la industria pastelera y galletera.

Grupo V. Son trigos cristalinos, los cuales presentan un gluten corto y tenaz apto para la industria de pastas y sopas, no es panificable.
En general hay tres divisiones de grupos mayoritarios: Variedades de trigo fuerte (panadero), trigo suave (para repostería) y trigo cristalino (pastas).

Estructura y Composición Química del Grano

La estructura física del grano se define por tres partes principales: endospermo, pericarpio y germen (Figura 1). El endospermo representa alrededor del 85% del grano, y en la molienda en su mayoría corresponde a la harina o la sémola. El pericarpio forma aproximadamente el 5% del grano, y en la molienda constituye, junto con la parte del endospermo; el salvado. El germen tiene alrededor del 3% del grano, y en la molienda constituye también un subproducto (Zarco-Hernandez et al., 1999). En promedio el grano de trigo mide 8 mm de longitud y pesa aproximadamente 35 mg y la variación en el tamaño dependerá de la variedad del cultivo (Hoseney, 1994).

La composición química del grano de trigo en general está dada por carbohidratos, compuestos nitrogenados, lípidos, sustancias minerales, agua, pequeñas cantidades de vitamina y pigmentos. Los constituyentes principales del trigo comprenden: 64-70% carbohidratos, 14% proteínas, 2% lípidos, 1.8% minerales y 12% fibra dietaria (Fabriani y Lintas, 1988).

Proteínas del Trigo

Las proteínas del trigo (Tabla 2) tienen un papel fundamental en la elaboración de un producto con características deseadas (Osborne, 1907). Aunque los niveles de proteína dependen fundamentalmente de la variedad y condiciones de crecimiento de los diferentes grupos de trigo, para panificación, es necesario que el trigo tenga un contenido mínimo del 12%. Las variedades de trigo fuerte pueden tener niveles de proteína mayores de 15%, y, generalmente hablando en términos de panificabilidad, entre mayor sea el contenido de proteína
Figura 1. Partes principales del grano de trigo (Fuente Internet: www.trigopan.com.ar)
Tabla 2. Clasificación de las proteínas del trigo

<table>
<thead>
<tr>
<th>Proteínas</th>
<th>%</th>
<th>Solubilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albúminas</td>
<td>15</td>
<td>Agua</td>
</tr>
<tr>
<td>Globulinas</td>
<td>3</td>
<td>Soluciones salinas</td>
</tr>
<tr>
<td>Prolamina (Gliadina)</td>
<td>33</td>
<td>Etanol al 70%</td>
</tr>
<tr>
<td>Glutelina (Glutenina)</td>
<td>16</td>
<td>Ácidos y Bases débiles</td>
</tr>
<tr>
<td>Proteínas residuales</td>
<td>33</td>
<td>Insolubles</td>
</tr>
</tbody>
</table>

Fuente: Atwell, 2001
es mejor, indicando con esto el uso potencial de sus harinas en la elaboración de pan (Atwell, 2001).

Los trigos suaves tienen un menor contenido de proteína, por esta razón es ideal para elaborar biscochos, galletas y pasteles. Los niveles típicos de proteína varían entre 9-11% (Atwell, 2001).

El trigo cristalino es botánicamente una especie separada de las variedades de trigo fuerte y trigo suave. Estos granos son ligeramente de un tamaño mayor y con una forma un poco más alargada a los otros dos tipos de trigo. El trigo cristalino, aún teniendo un alto contenido de proteínas que varía de 9-18%, no es apto para la elaboración de pan (Fabriani, 1988). Sin embargo en África y el área del mediterráneo, incluyendo el sur de Italia; este trigo es utilizado en la formulación de varios tipos de pan (Boyacioglu y D’Appolonia, 1994a).

Propiedades Físicoquímicas de las Proteínas del Trigo

Las propiedades físicas y funcionales de las proteínas del trigo, en este caso las que conforman al gluten, están muy ligadas a su estructura, la cual, depende de la secuencia y la conformación tridimensional de la disposición de los aminoácidos (Tabla 3) (Miralbés, 2000; Atwell, 2001).

Según su radical o cadena lateral existen aminoácidos básicos, ácidos y neutros (hidrofílicos e hidrófobos). El aminoácido glutamina, que contiene un grupo amino, constituye cerca del 40% de las proteínas del gluten en base molar y forma uniones con el agua. Otro aminoácido es la prolina, el cual constituye cerca del 15% de la gliadina y del 10-12% de la glutenina; éste tiene una estructura cíclica que forma cadenas entre aminoácidos. Además se encuentra la cisteína, que tiene la capacidad de conectar cadenas de proteína con grupos sulfuro, la cual constituye un tipo de estructura secundaria de las proteínas. Estos tres
<table>
<thead>
<tr>
<th>Aminoácido</th>
<th>Grano (g/16g de N)</th>
<th>Harina (g/16g de N)</th>
<th>Gliadina (g/16g de N)</th>
<th>Glutenina (g/16g de N)</th>
<th>70% etanol*</th>
<th>0.5M**</th>
<th>Ác. Acético</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triptófano</td>
<td>1.5</td>
<td>1.5</td>
<td>33</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lisina</td>
<td>2.3</td>
<td>1.9</td>
<td>0.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histidina</td>
<td>2</td>
<td>1.9</td>
<td>1.6</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arginina</td>
<td>4</td>
<td>3.1</td>
<td>1.9</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ác. Aspártico</td>
<td>4.7</td>
<td>3.7</td>
<td>1.9</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treonina</td>
<td>2.4</td>
<td>2.4</td>
<td>1.5</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serina</td>
<td>4.2</td>
<td>4.4</td>
<td>3.8</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ác. Glutámico</td>
<td>30.3</td>
<td>34.7</td>
<td>41.1</td>
<td>34.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolina</td>
<td>10.1</td>
<td>11.8</td>
<td>14.3</td>
<td>10.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glicina</td>
<td>3.8</td>
<td>3.4</td>
<td>1.5</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alanina</td>
<td>3.1</td>
<td>2.6</td>
<td>1.5</td>
<td>2.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisteína</td>
<td>2.8</td>
<td>2.8</td>
<td>2.7</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valina</td>
<td>3.6</td>
<td>3.4</td>
<td>2.7</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metionina</td>
<td>1.2</td>
<td>1.3</td>
<td>1.0</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoleucina</td>
<td>3.0</td>
<td>3.1</td>
<td>3.2</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucina</td>
<td>6.3</td>
<td>6.6</td>
<td>6.1</td>
<td>6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tirosina</td>
<td>2.7</td>
<td>2.8</td>
<td>2.2</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fenilalanina</td>
<td>4.6</td>
<td>4.8</td>
<td>6.0</td>
<td>4.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Solubilidad de la gliadina en una solución de etanol al 70%
** Solubilidad de la glutenina en una solución de ácido acético 0.5M
Fuente: Atwell, 2001
aminoácidos tienen un papel especial en las características brindadas al gluten (Atwell, 2001).

Formación del Gluten

El gluten se forma durante el proceso de amasado, debido a la ruptura e intercambio de enlaces disulfuro, así como a interacciones hidrofóbicas y enlaces hidrógeno, de los dos grupos de proteínas que lo componen: gliadina y glutenina (Larré et al., 2000; Bushuk et al., 1997).

La gliadina es un polipéptido monomérico de tamaño mediano, en un rango de 30,000 a 50,000 Da y es responsable de las propiedades de extensibilidad y cohesividad. Con base en el peso molecular, de acuerdo a estudios genéticos y composición de aminoácidos, las gliadinas se clasifican en α, β, γ y ω gliadinas.

La glutenina, está formada por dos grupos de cadenas polipeptídicas llamadas subunidades de glutenina de alto (HMW) y bajo (LMW) peso molecular; unidas por enlaces disulfuro. Su tamaño puede llegar hasta 10 millones de Da y contribuyen a la elasticidad del gluten (Wrigley y Békes, 1999; Cherian y Chinachoti, 1996).

Existen en el gluten-enlaces disulfuro, formados al oxidarse los grupos sulfidrilo de las cadenas laterales de cisteína; los cuales brindan las propiedades viscoelásticas a la masa (Shewry, 1997). Estos grupos sulfidrilo establecen la conformación de las proteínas del gluten, en las gliadinas forman enlaces intramoleculares entre los residuos cisteína y un solo polipéptido; y en las gluteninas se pueden formar enlaces de tipo intra-moleculares e inter-moleculares, esto significa que los residuos cisteína pueden formar enlaces con subunidades individuales, pero también estas subunidades pueden formar enlaces entre ellas (Shewry, 1997).
Modificación de las Proteínas de Trigo

Las características reológicas deseables en las harinas de trigo para panificación dependen principalmente de las proteínas del gluten (Hoseney, 1994). Estas proteínas pueden ser modificadas genéticamente y tecnológicamente, conociendo principalmente sus propiedades fisicoquímicas, lo que permite ampliar las alternativas de utilización de las diferentes variedades de este cereal (Boyacioglu y D’Appolonia, 1994a, 1994b; Boggini et al., 1995, Ammar et al., 2000).

En 1950 se encontró que existían compuestos químicos que podían ser utilizados para mejorar las propiedades del pan como el bromato de potasio y el ácido ascórbico. En general estos aditivos son agentes oxidantes que actúan sobre los grupos sulfhidrilos de la proteína en la fracción de glutenina, favoreciendo la formación de una red que retiene agua y gas provenientes de la fermentación. Sin embargo, estudios realizados en animales de laboratorio se ha demostrado que el bromato de potasio es un mutágeno con potencial para provocar cáncer (Velich, 2004).

La industria de panificación utiliza mezclas de harinas de trigo fuerte con trigo suave para obtener así harinas con características adecuadas. En nuestro país, una parte del trigo cristalino se emplea para producir pastas y la otra en la elaboración de alimento para ganado, disminuyendo enormemente el valor agregado de este cereal. Por esta razón, se ha estudiado el uso de enzimas para mejorar las cualidades panificables de la harina de trigo cristalino (Boyacioglu y D’Appolonia, 1994a).

Aplicación de Enzimas en Panificación

El uso de la aplicación de enzimas como parte de la preparación de la masa es un proceso muy antiguo y se presenta de forma natural en la harina, debido a que esta contiene enzimas endógenas que ayudan en la producción de azucares
para la fermentación, además de enzimas que modifican las cadenas polipeptídicas del gluten las cuales tienen un papel importante en la formación de la red y finalmente en el pan. Sin embargo, en algunos casos, no es suficiente la acción de estas enzimas por lo que se hace necesario la adición de ellas (Poldermans y Shoppink, 1999; Atwell, 2001).

Hoy en día, el comercio ofrece una amplia variedad de enzimas producidas especialmente para diversos productos (Wikström y Eliasson, 1998). Este tipo de enzimas actúan sobre la harina o algún componente de la fórmula. En panificación, la adición de enzimas se utiliza para generar sustratos en el metabolismo de la levadura; o para modificar las propiedades físicoquímicas y reológicas de la masa (Van Dam y Hillie, 1992). En la industria de panificación se utilizan varias enzimas (Tabla 4) (Sluimer, 2005).

Fuentes de Enzimas

Las fuentes de donde se obtienen enzimas son diversas, éstas pueden ser de origen fúngico, bacteriano y animal. Existen diferentes tipos de enzimas, sin embargo las de mayor aplicación en la industria alimentaria son las hidrolasas, las cuales forman un grupo muy numeroso que comprende cerca de 200 enzimas, que poseen en común la capacidad de introducir los elementos del agua (H+ y OH-) en el sustrato, produciendo así una hidrolisis (Lehninger, 1995). Dentro de este grupo tenemos a las proteasas, las cuales, se ha visto que pueden tener aplicación para mejorar las propiedades de los trigos cristalinos (Cabrera, 2005; Félix, 2002; Olivas, 2001; Galván, 2001).

Enzimas Hidrolíticas

Se ha visto que, cuando se adicionan enzimas hidrolíticas proteasas al gluten, hidrolizan a las subunidades de gliadina mejorando la calidad de masas para la elaboración de pan (Weegels, 1992).
Tabla 4. Algunas enzimas utilizadas en panificación

<table>
<thead>
<tr>
<th>Enzimas</th>
<th>Uso en Panificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amilasas</td>
<td>Se emplea para hidrolizar el almidón, lo que provoca un aumento en el volumen del pan.</td>
</tr>
<tr>
<td>Glucoxidasa</td>
<td>Se emplea para catalizar la oxidación de glucosa, aumentando el volumen del pan.</td>
</tr>
<tr>
<td>Lipoxigenasa</td>
<td>Se emplea para oxidar los pigmentos carotenoides, y de otros lípidos potenciando la blancura de la miga.</td>
</tr>
<tr>
<td>Pentosanasas</td>
<td>Se emplea para hidrolizar a los pentosanos (polisacáridos distintos al almidón), disminuye la viscosidad de la masa.</td>
</tr>
<tr>
<td>Proteasas</td>
<td>Se emplea para hidrolizar la estructura del gluten, mejorando la extensibilidad de la masa en la producción de pan.</td>
</tr>
<tr>
<td>Transglutaminasa</td>
<td>Se emplea para establecer uniones entre aminoácidos (ácido glutámico y lisina) que están presentes en el gluten, por lo que la red se refuerza siendo más tenaz.</td>
</tr>
</tbody>
</table>

Fuente: Sluimer, 2005
La proteólisis o hidrólisis de las proteínas ha sido estudiada indirectamente mediante la acumulación de aminoácidos y péptidos libres después de la fermentación (Gobbetti et al., 1994). El peso molecular puede decrecer, resultando en polipéptidos con un número adicional de residuos cisteína capaces de ser incorporados en el polímero de glutenina, reduciendo el tamaño de los macropolímeros de glutenina, de esta manera se podría disminuir así la fuerza de la masa (Aja, 2004; Masci et al., 1998).

De las proteasas de origen animal, una de las más estudiadas es la tripsina, la cual se ha observado que es abundante en el tracto digestivo de las especies mamíferas. En nuestro Estado se han estudiado diferentes especies marinas, entre las cuales destacan Scomberomorus sierra, Mugil cephalus y Sardinops sagax (Olivas et al., 2001; Cabrera, 2005; Castillo et al., 2005).

Sonora se destaca por ocupar el primer lugar a nivel nacional en la producción pesquera contribuyendo así con 547,042 toneladas de especies marinas y, entre las de mayor captura, se encuentra la sierra, la cual, en el año 2004 tuvo una producción de 2,015 toneladas (SAGARPA, 2004). La sierra, en su tracto digestivo contiene una fuente importante de enzimas proteasas como la tripsina, la cual pudiera utilizarse como parte de algunos procesos dentro de la industria de alimentos (Olivas, 1999).

Las enzimas tipo tripsina, por la presencia de un residuo de aspártico en la posición 189 localizado en el interior del pozo S1, presentan una preferencia muy alta por sustratos con residuos de arginina y lisina en P1 (Figura 2) (Copeland, 2000) y la harina contiene 1.9 y 3.1 g/16g N de lisina y arginina, respectivamente (Atwell, 2001). Además las subunidades de glutenina de alto peso molecular contienen de 6 a 8 mol de lisina/mol de proteína (Thompson et al, 1985, Anderson et al., 1989) y 1 mol de lisina/mol de proteína en subunidades de glutenina de bajo peso molecular (Pitts et al., 1988, Colot et al., 1989), de acuerdo a esto se
Figura 2. Presencia de un residuo de aspártico en la posición 189 (Copeland, 2000).
favorecería una hidrólisis mas controlada y se propiciarían cambios positivos en las harinas de trigo.

Características de la Tripsina de Origen Marino

Se ha observado que las características de la tripsina de origen marino dependen principalmente del lugar donde se desarrolló la especie, así mismo, el efecto del pH y la temperatura sobre la actividad y estabilidad de la tripsina es específica y se pueden clasificar en: tripsinas purificadas de especies de aguas frías y tripsinas purificadas de especies de aguas tropicales (Olivas, 2001).

Tripsinas purificadas de especies de aguas frías

Se ha observado que las tripsinas purificadas de intestinos de especies de aguas frías como las del Atlántico norte y Groenlandia muestran rangos de actividad óptima a pH de 7.5, esto para el bacalao _Gadus morhua_ y _Gadus ogac_ respectivamente (Simpson y Haard, 1984). Para anchoveta (_Engraulis japonica_) tiene una actividad óptima a pH de 8-9 (Heu _et al._, 1995).

El efecto de la temperatura sobre la actividad de tripsinas de especies de aguas frías tienen por lo general su óptimo a 40°C, para la tripsina de bacalao (_Gadus ogac_) de Groenlandia se tuvo una temperatura de 30°C y la del Atlántico norte (_Gadus morhua_) mostró una temperatura de 40°C (Simpson y Haard, 1984; Simpson _et al._, 1990).

Tripsinas purificadas de especies de aguas tropicales

Las tripsinas purificadas de especies de aguas tropicales como las de nuestra región (Golfo de California) muestran rangos de actividad óptima a pH de 7.8-9.0, esto para la lisa (_Mugil ssp_) y es estable en un rango de 7.0-10.0 (Pavlisko, 1999). Otro estudio para la lisa (_Mugil cephalus_) mostró estabilidad a pH
de 4.0, 7.0 y 9.0 donde mantuvo su actividad de 65, 61 y 90% respectivamente (Olivas, 2001). La tripsina purificada de sardina (*Sardinops sagax caerulea*) mostró un pH de 8.0 de máxima actividad y estabilidad a pH de 7.0-8.0 (Castillo, 2005). En un estudio para sierra (*Scomberomorus concolor*) se mostró que la actividad óptima se dio a un pH de 9.0 y fue estable a pH de 4.0, 7.0 y 9.0 (Olivas *et al*., 2001).

La lisa (*Mugil cephalus*) mostró dos picos de temperatura óptima a 40°C y a 60°C (Olivas, 2001). Pavlisco (1999) para la lisa (*Mugil spp*) obtuvo una temperatura óptima a 60°C. La sardina (*Sardinops sagax caerulea*) mostró una temperatura óptima de 50°C (Castillo, 2005). Mientras que la tripsina de sierra (*Scomberomorus concolor*) muestra una temperatura óptima a 40°C, observándose a su vez, un rango de estabilidad más amplio con temperaturas de 30-60°C (Olivas *et al*., 2001).
METODOLOGÍA

Para estudiar el efecto de la hidrólisis de la tripsina de sierra (Scomberomorus sierra) sobre algunas de las propiedades fisicoquímicas de la masa y de la calidad del pan, la metodología se dividió en dos partes; en la primera parte se estudió la adición de enzima en el sistema harina-agua (Diagrama 1) y en la segunda la adición en el sistema masa panaria (Diagrama 2).

Materia Prima

Se utilizó como materia prima la variedad de trigo Júpare cosechada en el verano de 2005. Para obtener la harina el trigo se limpió en un Clipper M2BC, se acondicionó y se realizó la molienda en un molino Brabender Instrument modelo Quadrumat Sr. Se empleó enzima tripsina comercial porcina marca Sigma (E.C.3.4.21.4) y una tripsina marina purificada de un pescado sierra (Scomberomorus sierra).

Para la elaboración del pan se utilizó: levadura liofilizada marca "Leviatán y flor" (1.7%), sal marca "La fina" (1.5%), azúcar granulada marca "Soriana" (7.5%) y manteca vegetal marca "Ranchera" (3%).

Análisis Químicos

A la harina de trigo obtenida se le realizaron los siguientes análisis, de acuerdo a la metodología de la AACC, 2001:

- Humedad (Método 44-40, AACC): Tiene un efecto muy importante sobre la absorción de agua durante el amasado.
- Proteína (Método 46-10, AACC): Es el compuesto que más afecta la funcionalidad y calidad de los productos de trigo.
Diagrama 1. Sistema harina-agua

200 g de harina Júpare

140.5 mL de agua destilada

Enzima C₀, C₁ y C₂

Mezclado durante 1 min 40 seg

Moldeado

Se reposa en la cámara de fermentación a 37°C y 85% H.R.

Técnica de calorimetría de barrido diferencial

Técnica de compresión uniaxial
Diagrama 2. Sistema masa panaria

200 g de harina Júpare

140.5 ml de agua destilada

Ingredientes masa panaria

Enzima C₀, C₁ y C₂

Mezclado durante 1 min 50 seg

Proceso de panificación de masa directa

Cambio de temperatura en la 3ra fermentación

Volumen específico

Técnica de compresión uniaxial
Purificación de Enzima Tripsina

Para la utilización de enzima tripsina fue necesario obtener la especie *Scomberomorus sierra*, la cual se capturó en el Golfo de California en el mes de Noviembre de 2005, después se realizó el transporte hacia el Laboratorio de Productos Marinos del Departamento de Investigación y Posgrado en Alimentos (DIPA); y consiguientemente se llevó a cabo el eviscerado de la sierra.

Para la obtención de la enzima tripsina purificada, se siguió la metodología descrita por Olivas (2001). En la Figura 3 se muestran los pasos que se siguieron. Se tomaron muestras de las fracciones F₁, F₂ y F₃, después del dializado; se agregó de 2-4mL de muestra ya dializada a la columna de cromatografía y finalmente se obtuvo la enzima purificada (F₄).

Cromatografía de Afinidad

La columna de afinidad se preparó de acuerdo a Pharmacia Fine Chemicals (1979). Se pesaron 2 g de Sepharose® 4B a los cuales se les adicionó 20 mL de HCl 1mM, se dejó incubar por 15 minutos a temperatura ambiente. Después se adicionaron 200 mL del mismo ácido, se dejó sedimentar por 10 minutos. Se centrífugó a 180 xg por 2 min en una centrífuga Beckman GS-15R, el sobrenadante se descartó. Este último paso se realizó dos veces. Al gel sedimentado se le adicionaron 10 mL de NaHCO₃ 0.1M, pH 8.3 y se dejó agitando por 5 min a temperatura ambiente. Se centrífugó a 180 xg por un min y el sobrenadante se desechó. Se adicionaron 10 mL más de NaHCO₃ 0.1M, se agitó por 5 min a temperatura ambiente y se centrífugó a 180 xg por un min, el sobrenadante se descartó y el gel se mezcló con la solución que contenía al ligando (inhibidor de tripsina de soya).

La preparación del ligando se realizó de la siguiente manera: se pesaron 38.5mg de SBTI (inhibidor de tripsina de soya), los cuales se suspendieron en 7
Figura 3. Etapas de la purificación de enzima tripsina de vísceras de sierra.
mL de NaHCO₃ 0.1M, pH de 8.3, esta solución se mezcló con el gel de Sheparose anteriormente preparado, se dejó incubar por 2 h a 25°C con agitación suave, después se centrifugó a 180 xg por 2 min y el sobrenadante se descartó. El bloqueo de los grupos activos de la matriz se realizó utilizando glicina 0.2 M a pH de 8.0 incubándose por 48 h en refrigeración. Después el gel se lavó con NaHCO₃ 0.1M, pH 8.3 y se mantuvo en refrigeración hasta su utilización.

Actividad de la Enzima

Después de que se obtuvo la enzima purificada se midió la actividad a cada una de las fracciones (F₁, F₂, F₃ y F₄) mediante el sustrato sintético Benzoil-Arginina-p-Nitroanilida (BAPNA) de acuerdo a Erlenger *et al.* (1961), la cual nos indica como el BAPNA se disolverá en DMSO (dimetil sulfóxido) para obtener una solución 1mM. Después se ajustó el volumen con una solución amortiguadora Tris-HCl 50mM a pH de 7.8. La determinación se realizó a 37°C. En tubos de ensayo se adicionaron 1.25 mL de la solución amortiguadora conteniendo el BAPNA y 0.025 mL de cada fracción colectada (F₁, F₂, F₃ y F₄). La reacción se detuvo a los 15 minutos añadiendo 0.25 mL de ácido acético al 30% y se lee la absorbancia a 410 nm en un espectrofotómetro. La actividad específica de la tripsina se obtuvo de acuerdo a la siguiente expresión:

\[
\frac{\text{Abs}410\text{nm/min}}{8800 \times \text{mg Proteina}} \times 1000 \times \text{mlRx}
\]

donde, 8800 es el coeficiente de extinción de la p-nitroanilida. Las unidades de actividad se definieron como la unidad de actividad que cataliza la hidrólisis de una μmol de BAPNA a 25°C y pH = 7.8.

Determinación de la Concentración de la Proteína

En la etapa de extracción y purificación de la enzima tripsina se determinó la concentración de la proteína mediante el método de Bradford (1976). Utilizando
una curva estándar con seroalbumina de bovino (1 mg/mL). Leyendo la absorbancia a una longitud de onda de 595 nm en un espectrofotómetro Perkin Elmer UV/VIS modelo Lambda 2S.

Parte I. Estudio en el Sistema Harina-Agua

Para cumplir con los objetivos de evaluar el efecto sobre la viscosidad extensional biaxial de las masas de trigo como una respuesta sobre el grado de hidrólisis de la enzima tripsina y obtener el índice de modificación de las proteínas, se adicionó la enzima a un sistema harina-agua. Se mezclaron 200 g de harina con 140.5 mL de agua (cantidad obtenida del índice de absorción de agua del farinógrafo por el método 54-21 AACC, 2001) y se adicionó la enzima a diferentes concentraciones de acuerdo al diseño de experimentos.

En la fase del estudio en el sistema harina-agua el diseño experimental consistió en un arreglo factorial de tres factores, con un diseño completamente al azar, donde los factores fueron: tres niveles de concentración C₀: 0 U (control), C₁: 0.14 U y C₂: 0.28 U de acuerdo a Hsu et al. (1977), dos tipos de enzima: enzima tripsina porcina comercial (ECOM) y enzima tripsina de sierra (EPEZ) y cuatro tiempos de reposo de la masa (t₀: 0, t₁: 30, t₂: 90 y t₃: 120 min).

La adición de la enzima se realizó primero diluyéndola en agua para después mezclarla con la harina. Se utilizó una mezcladora marca Nacional MFG, Lincoln, Nebraska. La cámara de fermentación utilizada para dejar reposar a la masa fue de modelo ECL-5 B-M-A INC. AYER, MA., U.S.A. a una temperatura de 37°C y 85% de H.R. Para la técnica de compresión uniaxial se utilizó el Texturómetro Instron modelo 4465, Instron Co., Canton, Ma. y para la técnica de calorimetría se utilizó un calorímetro de barrido diferencial marca Perkin Elmer DSC-7.
Calorimetría de Barrido Diferencial

Esta técnica proporciona información sobre la estabilidad térmica de la proteína en los alimentos, midiendo la energía necesaria de los cambios inducidos en las proteínas por efecto del proceso. Si se compara el sistema harina-agua sometido a 3 niveles de concentración de enzima y 2 tipos de enzima, la masa que requiera mayor energía para desnaturalizar a las proteínas es la que tiene mayor estabilidad proteica, es decir, que éstas sufrieron menor daño en su estructura nativa durante el tratamiento o hidrólisis.

Se conoce que mediante el alveógrafo se puede determinar el índice de degradación proteolítica de una harina atacada por insectos (manual del fabricante Chopin, 2001), también se han hecho estudios del grado de agregación de las proteínas en muestras calentadas, las cuales se calculan mediante la entalpía de desnaturalización de una muestra precalentada y sin calentar (Wang, 2006). En el presente estudio, el índice de degradación proteolítica (IDP) se calculó mediante la siguiente expresión:

\[
\%IDP = \frac{\Delta H_{TC} - \Delta H_{TE}}{\Delta H_{TC}} \times 100\% \quad (Ecuación~1)
\]

El tratamiento control \((\Delta H_{TC})\) menos la relación de tratamiento con enzima porcina o de pescado \((\Delta H_{TE})\) sobre el tratamiento control \((\Delta H_{TC})\) por 100%.

Se preparó una masá con 200g de harina, 140.5 mL de agua (obtenida mediante el farinógrafo) y la adición de enzima comercial y de sierra (diluyéndola en agua para después mezclarla con la harina), cada una a tres distintas concentraciones \(C_0\): 0 U \(C_1\): 0.14 U y \(C_2\): 0.28 U; se dejó actuar a la enzima en una cámara de fermentación a 37°C y 85% H.R. a cuatro diferentes tiempos de reposo \(t_0\): 0, \(t_1\): 30, \(t_2\): 90 y \(t_3\): 120 min.
Para la determinación del cambio de entalpía se utilizó un calorímetro de barrido diferencial (Perkin Elmer DSC-7). Se tomaron 2 muestras al azar por cada tratamiento. Las muestras fueron colocadas en cápsulas de acero inoxidable y se sellaron herméticamente utilizando una prensa marca Perkin Elmer. Las condiciones de corrida fueron: velocidad de barrido 10°C/min a un rango de temperatura de 26 a 110°C, usando aire como referencia. Se obtuvieron los termogramas de cada tratamiento, con las entalpías (J/g) y temperaturas (°C) máximas de las transiciones de las proteínas. En esta técnica se mide la energía necesaria para desnaturalizar a la proteína que no ha sido hidrolizada, a la cual se le llama entalpía de transición (ΔH, expresada en J/g).

Compresión Uniaxial

La medición de la viscosidad extensional biaxial usando el método de compresión uniaxial ha demostrado que puede predecir las propiedades panificables de la masa (Sliwinski et al., 2004). Cuando una muestra es comprimida entre dos platos paralelos un flujo extensional biaxial es generado por la muestra, esto se debe a la fuerza del plato móvil y la distancia existente entre los platos. Para evitar la contribución de los platos, éstos son cubiertos con crema de petrolatos como lubricante (Macosko, 1994).

Viscosidad Extensional Biaxial

Si se compara el ‘sistema harina-agua sometido a 3 niveles de concentración de la enzima y 2 tipos de enzima, la viscosidad extensional biaxial medida en la masa indicará como se ha visto afectada la proteína del gluten por acción de la enzima.

Para la realización de la prueba se utilizó un Texturómetro Instron modelo 4465, un anillo moldeador de masa y dos platos (uno superior y otro inferior). El diámetro del plato fue de 69 mm siguiendo el método explicado por Salazar et. al.
(2003). Se preparó una masa con 200g de harina, 140.5 mL de agua (obtenida mediante el farinógrafo) y la adición de enzima comercial y de sierra (diluyéndola en agua para después mezclarla con la harina), cada una a tres distintas concentraciones \(C_0: 0 \, \text{U} \), \(C_1: 0.14 \, \text{U} \) y \(C_2: 0.28 \, \text{U} \) (se dejó actuar a la enzima en una cámara de fermentación a 37°C y 85% H.R. a cuatro diferentes tiempos de reposo \(t_0: 0 \), \(t_1: 30 \), \(t_2: 90 \) y \(t_3: 120 \, \text{min} \)). Se tomaron 2 muestras aleatorias por cada tratamiento.

Cada una de las muestras, se colocó en el Instron y la superficie del plato se cubrió con vaselina para evitar la pérdida de humedad. La velocidad de compresión utilizada fue de 0.2 mm/min y la distancia recorrida de 3 mm, lo cual dio como resultado la viscosidad extensional biaxial de la masa que se pone a prueba.

Parte II. Estudio en el Sistema Masa Panaria

Para cumplir con el objetivo de determinar la influencia de la concentración de enzima sobre la calidad del pan elaborado, se utilizó un sistema de masa panaria, donde los ingredientes se calcularon de acuerdo al método de panificación de masa directa, 10-10B AACC (2001) modificado. Se preparó una masa con 200g de harina, ingredientes para masa panaria (azúcar, sal, levadura y manteca), 140.5 mL de agua (obtenida mediante el farinógrafo) y la adición de enzima comercial y de sierra (diluyéndola en agua para después mezclarla con la harina y los otros ingredientes), cada una a tres distintas concentraciones. Se utilizó una mezcladora marca Nacional MFG, Lincoln, Nebraska. Para la técnica de compresión uniaxial se utilizó el Texturómetro Instron modelo 4465, Instron Co., Canton, Ma.

En la fase del estudio en el sistema masa panaria el diseño experimental consistió en un arreglo factorial de dos factores, con un diseño completamente al azar, donde los factores fueron: tres niveles de concentración \(C_0: 0 \, \text{U} \) (control), \(C_1: \)
0.14 U y C_2: 0.28 U de acuerdo a Hsu et al. (1977) y dos tipos de enzima: enzima tripsina porcina comercial (ECOM) y enzima tripsina de sierra (EPEZ).

Panificación

Esta prueba se realiza con la finalidad de conocer la calidad de un producto terminado. Si se compara el sistema masa panaria sometido a 3 niveles de concentración de la enzima y 2 tipos de enzima, y se mide el volumen al pan; el producto que obtenga el mayor volumen será el tratamiento más adecuado a utilizar. La prueba de panificación se realizó por el método 10-10B estandarizado, propuesto por la AACC (2001). En la Figura 4, se observa el proceso que se siguió para la elaboración del pan. En esta prueba, se utilizaron 200 g de harina. De acuerdo al método por cada 100 g de harina se utilizan 1.7% de levadura liofilizada, 7.5% de azúcar, 1.5% de sal, 3.0% de manteca y la cantidad de agua requerida. El agua que se adicionó se obtuvo mediante la información obtenida de farinogramas realizados de acuerdo al método 54-21 de la AACC (2001).

La adición de enzima comercial y de sierra se realizó diluyéndola en agua para después mezclarla con la harina, se agregó cada una a tres diferentes concentraciones: C_0: 0 U, C_1: 0.14 U y C_2: 0.28 U; de igual manera los ingredientes fueron mezclados en una amasadora marca National MFG Company, Lincoln, Nebraska durante 1.50 minutos a 90 r.p.m. según el tiempo de desarrollo (parámetro obtenido del farínógrafo). Enseguida la masa obtenida se colocó en una cámara de fermentación de la misma marca a 30°C con una humedad relativa de 85%, dando tres períodos de fermentación; los cuales fueron: 30, 40 y 60 min. Transcurrido el primer período de fermentación la masa fue rolada, en una reductora marca National MFG Company, Lincoln, Nebraska a una abertura de 9/32 pulgadas. Al final de la segunda fermentación, la masa fue desgasada a través del mismo sistema de rodillos, a una abertura de 6/32 pulgadas. La masa en forma rectangular fue rolada para tomar su forma cilíndrica en una moldeadora de marca National MFG Company, Lincoln, Nebraska.
Figura 4. Proceso de elaboración del pan por el método de masa directa 10-10 B, AACC.
La masa formada se colocó en el molde de panificación dándole el tercer período de fermentación de 60 minutos, durante este tiempo se llevó seguimiento de la temperatura interior de la masa. Finalmente el pan se horneó a temperatura de 250°C durante 10 minutos en el horno de marca Nacional MFG Company, Lincoln, Nebraska. Después de obtener el pan, se pesó y se midió el volumen por desplazamiento de semillas de colza en la pieza (10-10B AACC, 2001). Así mismo la rebanada central de pan fue escaneada mediante un scanner marca HP modelo Scanjet 4400C para obtener un análisis visual de la formación y distribución de alvéolos de la miga.

Cambios de la Temperatura de la Masa Durante la Fermentación

El conocimiento de la evolución de la temperatura del interior de la masa durante la etapa de fermentación es útil para tener un seguimiento de la manifestación térmica que prevalece durante la fermentación; el cual es un proceso bioquímico realizado por las enzimas segregadas por la levadura y los microorganismos endógenos de la harina (Sluimer, 2005). Si se compara el sistema masa panaría sometido a 3 niveles de concentración de la enzima y 2 tipos de enzima, se puede tener o un aumento en la temperatura o una reducción debido a tres aspectos fundamentales: un balance de calor exotérmico de la reacción de fermentación, la evaporación y condensación de la humedad en la superficie de la masa, y el calentamiento o enfriamiento de la masa por el aire como un resultado de la diferencia de temperaturas entre la masa y la temperatura de la cámara de fermentación.

Se siguió la misma metodología descrita en panificación y se llevó el seguimiento de los cambios de la temperatura interior de la masa, utilizando un termopar marca Fluke (Everett, WA) en los siguientes intervalos de tiempo: t₀: 0, t₁: 15, t₂: 30, t₃: 45 y t₄: 60 minutos.
Compresión Uniaxial

Análisis de Textura

La textura es una propiedad mecánica y sensorial que puede ser medida utilizando el método de compresión uniaxial para conocer la calidad del pan (Wang, 2002). En el análisis de textura, se mide la fuerza de la migaja como una predictora de la calidad de la harina en panificación. Si se compara el sistema masa panaria sometido a 3 niveles de concentración de la enzima y 2 tipos de enzima, la fuerza de la migaja resultante indicará cómo se distribuyen en número y tamaño las burbujas en el pan (Campbell, 1999).

El análisis de textura se realizó mediante la utilización del Texturómetro Instron modelo 4465 por el método 74-09 AACC, 2001. Se cortó el pan a un grosor de 25 mm, el diámetro del plato utilizado fue de 36 mm, a una velocidad de compresión de 100 mm/min y un desplazamiento de 10 mm.

Diseño del Experimento y Análisis Estadístico

En la Tabla 5 se muestra el diseño experimental del sistema harina-agua, que consistió de un diseño factorial de tres factores: tres niveles de concentración, dos tipos de enzima y cuatro tiempos de reposo de la masa.

Las variables respuesta fueron:

a) \(\Delta H\) entalpía de transición (J/g). Se realizaron dos repeticiones.
b) Viscosidad extensional biaxial (Pa·s) realizado por duplicado.

En la Tabla 6 se muestra el diseño experimental del sistema masa panaria, que consistió de un diseño factorial de dos factores: tres niveles de concentración y dos tipos de enzima.
Tabla 5. Diseño experimental del sistema harina-agua que indica los tipos de enzimas, concentraciones de enzima y tiempos de reposo utilizados.

<table>
<thead>
<tr>
<th></th>
<th>(E_{\text{COM}})</th>
<th></th>
<th>(E_{\text{PEZ}})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(C_0)</td>
<td>(C_1)</td>
<td>(C_2)</td>
</tr>
<tr>
<td>(t_0)</td>
<td>(E_{\text{COM}}C_{0t_0})</td>
<td>(E_{\text{COM}}C_{1t_0})</td>
<td>(E_{\text{COM}}C_{2t_0})</td>
</tr>
<tr>
<td>(t_1)</td>
<td>(E_{\text{COM}}C_{0t_1})</td>
<td>(E_{\text{COM}}C_{1t_1})</td>
<td>(E_{\text{COM}}C_{2t_1})</td>
</tr>
<tr>
<td>(t_2)</td>
<td>(E_{\text{COM}}C_{0t_2})</td>
<td>(E_{\text{COM}}C_{1t_2})</td>
<td>(E_{\text{COM}}C_{2t_2})</td>
</tr>
<tr>
<td>(t_3)</td>
<td>(E_{\text{COM}}C_{0t_3})</td>
<td>(E_{\text{COM}}C_{1t_3})</td>
<td>(E_{\text{COM}}C_{2t_3})</td>
</tr>
</tbody>
</table>

ECOM: enzima tripsina porcina comercial.
EPEZ: enzima tripsina de sierra.
C: Concentración de enzima tripsina, \(C_0 \): 0 U (control), \(C_1 \): 0.14 U y \(C_2 \): 0.28 U. t: Tiempos de reposo de la masa \(t_0 \): 0, \(t_1 \): 30, \(t_2 \): 90 y \(t_3 \): 120 min.
Tabla 6. Diseño experimental del sistema masa panaria que indica los tipos de enzimas y concentraciones de enzima utilizados.

<table>
<thead>
<tr>
<th></th>
<th>ECOM</th>
<th>EPEZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₀</td>
<td>E_{COM} C₀</td>
<td>E_{PEZ} C₀</td>
</tr>
<tr>
<td>C₁</td>
<td>E_{COM} C₁</td>
<td>E_{PEZ} C₁</td>
</tr>
<tr>
<td>C₂</td>
<td>E_{COM} C₂</td>
<td>E_{PEZ} C₂</td>
</tr>
</tbody>
</table>

ECOM: enzima tripsina porcina comercial.
EPEZ: enzima tripsina de sierra.
C: Concentración de enzima tripsina, C₀: 0 U (control), C₁: 0.14 U y C₂: 0.28 U.
Las variables respuesta fueron:

a) Temperatura (°C) de la masa durante la tercera etapa de fermentación.
b) Volumen específico del pan (cc/g) realizado por duplicado.
c) Fuerza de la migas (Kgf) realizado por duplicado.

Para detectar las diferencias entre los niveles de concentración, por efecto del tipo de enzima y tiempo de reposo, los datos obtenidos se analizaron aplicando un análisis de varianza (ANDEVA). En los casos que se detectaron diferencias significativas, se hizo la comparación de medias por el método de Tukey, en el caso de ver las diferencias para el índice de degradación proteolítica se utilizó t-Student ya que se partió de un homogenizado. Los análisis se realizaron utilizando el paquete estadístico JMP 4.0. Con un nivel de significancia de p<0.05.
RESULTADOS Y DISCUSIÓN

Caracterización de la Materia Prima

Análisis Químico de la Harina de Trigo Cristalino

Después de la limpieza del grano se realizó el acondicionamiento, éste ayuda a que el salvado sea suficientemente resistente para evitar que se rompa y pueda removerse del endospermo para obtener así la harina. La muestra se llevó hasta un 17% de humedad, el acondicionamiento de un trigo panadero se lleva a una humedad del 14%, debido a que la humedad inicial de éste trigo es mayor. En general la humedad inicial del trigo cristalino es de 7-8% (Fabriani y Lintas, 1988).

De 6.7 Kg de muestra de trigo, se obtuvieron 4.8 Kg de harina. El rendimiento obtenido fue de 72%, mientras que el rendimiento de una muestra de trigo panadero (variedad Rayón) obtenido en el Laboratorio de Reología y Panificación es del 78%. Los rendimientos considerados adecuados se han establecido entre el 72-75% (Regional Quality Report, 2006) por lo que los valores obtenidos se encuentran dentro de los rangos convenientes para el sector industrial.

Se ha visto que debido a su dureza, el trigo cristalino requiere de un mayor acondicionamiento, ya que, la dureza del grano hace que el consumo de energía durante la molienda se vea incrementado. Dobraszczyk et al. (2002) indicaron que la dureza del endospermo corresponde a la densidad del mismo. Las diferencias de la densidad son resultado del cambio en la porosidad del endospermo y puede debilitar la estructura del mismo.

En la Tabla 7 se muestran los análisis químicos de una harina de trigo cristalino y trigo panadero, así como los parámetros del farinógrafo. Comparándolos, se puede observar que éste tiene una proteína y absorción de agua menor; y, un tiempo de desarrollo, estabilidad e índice de tolerancia mayor.
Tabla 7. Composición química y parámetros farinográficos de la harina de trigo Júpare comparados con los de una variedad panadera (Rayón).

<table>
<thead>
<tr>
<th>Composición/Parámetro</th>
<th>Trigo Júpare</th>
<th>Trigo Rayón</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humedad (%)</td>
<td>13.8±0.141</td>
<td>14.01±0.0141</td>
</tr>
<tr>
<td>Proteína (%)</td>
<td>12.5±0.000</td>
<td>11.17±0.000</td>
</tr>
<tr>
<td>Tiempo de llegada (min)</td>
<td>1.5±0.000</td>
<td>1.25±0.000</td>
</tr>
<tr>
<td>Tiempo de salida (min)</td>
<td>13±0.707</td>
<td>17.5±0.141</td>
</tr>
<tr>
<td>Tiempo de desarrollo (min)</td>
<td>5±0.000</td>
<td>6±0.000</td>
</tr>
<tr>
<td>Estabilidad (min)</td>
<td>11.5±0.141</td>
<td>16.25±0.000</td>
</tr>
<tr>
<td>Absorción de agua (%)</td>
<td>70±0.707</td>
<td>60±0.000</td>
</tr>
<tr>
<td>Índice de Tolerancia al Mezclado (UB)</td>
<td>20±0.000</td>
<td>35±0.000</td>
</tr>
</tbody>
</table>
De acuerdo a Atwell (2001), las características de una harina para panificación son: 11-14% de proteína, 60-64% de absorción de agua, de 6-8 minutos de tiempo de desarrollo, 10-17 minutos de estabilidad y de 20-35 UB de índice de tolerancia al mezclado.

Podemos observar que para el trigo Júpare, solamente dos parámetros no cumplieron con las características de una harina panificable: la absorción de agua (70%) y el tiempo de desarrollo (5 min). Para la misma variedad (Júpare) Cabrera (2005) mostró una absorción de agua del 65% muy cercana a las características de panificación. Así mismo, observó que para una harina variedad Rayón se puede obtener un tiempo de desarrollo menor a 5 min. Indicando con esto, que la harina Júpare que se utilizó en este experimental presenta valores de características farinográficas en límites de los rangos que catalogan a una harina como apta para panificación. Además se ha establecido que los parámetros de estabilidad e índice de tolerancia son los más importantes con los que debe cumplir una harina panadera (Atwell, 2001) y de acuerdo a los resultados obtenidos, se observa la necesidad de provocar modificaciones para obtener un buen pan.

Purificación de la Enzima Tripsina de Pescado

Para tener una estimación de la cantidad de vísceras que se dechan por año del sujeto de estudio (Scomberomorus sierra) se tomó como referencia la captura de sierra (2015 ton) en el año 2004 y el porcentaje promedio del peso de las vísceras de 33 organismos. El resultado de este cálculo fue que el 4.25% del peso de la sierra corresponde a las vísceras de un organismo. Con este resultado, se estimó que se tienen 85 ton de vísceras que se dechan por año (Tabla 8).

Los resultados de la etapa de extracción de la enzima y su purificación se presentan en la Tabla 9. Se observa que se logró una purificación de 51.18 veces la actividad específica que la determinada para el extracto crudo y un rendimiento

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muestras de Sierra (organismos)</td>
<td>33</td>
</tr>
<tr>
<td>Peso promedio vísceras (g)</td>
<td>15.50</td>
</tr>
<tr>
<td>Peso promedio de la sierra (g)</td>
<td>364.85</td>
</tr>
<tr>
<td>Producción de sierra en el 2004 (ton)</td>
<td>2015</td>
</tr>
<tr>
<td>Porcentaje vísceras en un organismo de sierra (%)</td>
<td>4.25</td>
</tr>
<tr>
<td>Cantidad de vísceras que se desechan al año (ton)</td>
<td>85</td>
</tr>
</tbody>
</table>
Tabla 9. Resultados de la purificación de enzima tripsina del intestino de sierra (*Scomberomorus sierra*).

<table>
<thead>
<tr>
<th>Etapa</th>
<th>Volumen total (mL)</th>
<th>Proteína (mg)</th>
<th>Proteína (mg/mL)</th>
<th>Actividad (U)</th>
<th>Actividad específica (U / mg de proteína)</th>
<th>Rendimiento (%)</th>
<th>Purificación (Veces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracto crudo</td>
<td>450</td>
<td>1464.75</td>
<td>3.255</td>
<td>38.08</td>
<td>0.026</td>
<td>100</td>
<td>1.00</td>
</tr>
<tr>
<td>Sol. Brij</td>
<td>300</td>
<td>648.60</td>
<td>2.162</td>
<td>36.32</td>
<td>0.056</td>
<td>95</td>
<td>2.12</td>
</tr>
<tr>
<td>Sulfato de amonio (30-60%)</td>
<td>150</td>
<td>298.80</td>
<td>1.992</td>
<td>27.48</td>
<td>0.092</td>
<td>72</td>
<td>3.45</td>
</tr>
<tr>
<td>Diálisis</td>
<td>100</td>
<td>203.50</td>
<td>2.035</td>
<td>19.33</td>
<td>0.095</td>
<td>50</td>
<td>3.57</td>
</tr>
<tr>
<td>Cromatografía</td>
<td>60</td>
<td>6.12</td>
<td>0.102</td>
<td>8.38</td>
<td>1.370</td>
<td>22</td>
<td>51.18</td>
</tr>
</tbody>
</table>
del 22%. Estos datos son semejantes a los reportados previamente por Cabrera (2005) que reporta valores de hasta 52.08 veces para tripsinas extraídas de la misma especie y para el rendimiento se obtuvieron valores mayores a los de Olivas (2001) para la lisa (Mugil cephalus) del 12%.

Cromatografía de Afinidad

La actividad específica más alta se determinó para la enzima purificada, lo cual era esperado; ya que la cromatografía de afinidad es ampliamente recomendada para este tipo de separación (Tejeda et al., 1995).

La actividad específica de tripsina en el extracto crudo presentó valores parecidos a los reportados para tripsina extraída de la misma especie (Cabrera, 2005). En la fracción obtenida después de la etapa de cromatografía se obtuvo un valor de 1.37 U/mg de proteína, el cual es menor al 2.22 U/mg reportado por Cabrera (2005). Se sabe que dependiendo de la talla, época o incluso del año de captura algunas características fisiológicas de los organismos pueden variar ligeramente (Haard, 1992; Perez y Luna, 1995).

Parte I. Estudio en el Sistema Harina-Agua

Calorimetría de Barrido Diferencial

Se ha observado que una manera de diferenciar la funcionalidad de diversas harinas en panificación es mediante las respuestas al calor de las proteínas del gluten. Por medio de la calorimetría de barrido diferencial se pueden entender los cambios físicos y químicos que ocurren en las proteínas del gluten durante el calentamiento, el cual generalmente se observa a temperaturas mayores a los 50°C (Dobraszczyk, 2003).
En los termogramas (Figura 5) se pueden observar dos picos que salen casi simultáneamente o con solapamiento, el primer pico aparece a una temperatura de 63°C y el segundo a 83°C. De acuerdo a León et al. (2003) las transiciones de las albúminas y globulinas de harina de trigo aparecen entre 50-55°C, las gliadinas a 58°C y las gluteninas con dos picos a 64.3°C y 84.2°C. Por otro lado, la transición de la gelatinización del almidón se da a la temperatura de 60°C (Biliaderis, 1980). En el sistema harina agua o sistema masa, el primer pico se atribuyó a la desnaturalización de las proteínas y el segundo a la gelatinización del almidón, cuyas entalpías fueron de 0.67 y 0.16 J/g, respectivamente. Con la finalidad de obtener el grado de modificación de las proteínas por la hidrólisis de la tripsina, se considero a los picos solapados como un solo pico. En cuanto al tiempo de reacción de la enzima, se observó que a 120 minutos hay un aumento en la entalpia (Tabla 10) tanto para la masa con enzima comercial como para la con enzima de sierra, y según Cabrera (2005), corresponde al tiempo de máxima actividad de la enzima. Pero, en términos generales, las entalpías son menores que las del tratamiento control, indicándonos con esto que hay una proteólisis. En la Tabla 11 se calculó el índice de degradación proteolítica a 120 min y se observó que la enzima de sierra tuvo una mayor acción sobre las proteínas. Comparando la masa control con las masas tratadas con enzimas, aquella requirió una mayor energía para desnaturalizar a las proteínas durante la calorimetría. Indicando que la adición de la enzima afecta a la estructura nativa de la proteína disminuyendo su estabilidad térmica.

Compresión Uniaxial

Medición de la Viscosidad Extensional Biaxial

En las Figuras 6, 7, 8 y 9 se puede observar como la masa control es más viscosa a todos los intervalos de tiempo. Indicando con esto, que la adición de enzima al sistema; afecta la viscosidad de la masa. En la Figura 10 se observa que la viscosidad extensional biaxial se ve disminuida al comparar el tratamiento
Figura 5. Termogramas del sistema harina-agua y los distintos tratamientos a 120 min.
Tabla 10. Entalpia de transición determinada a diferentes tiempos con los dos tipos de enzima (ECOM y EPEZ) y a 0.14 y 0.28 U de concentración.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Tiempo (min)</th>
<th>ΔH(J/g)*</th>
<th>Coeficiente de Variación (C.V.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECOM14</td>
<td>0</td>
<td>0.485±0.0778a</td>
<td>16.03</td>
</tr>
<tr>
<td>ECOM28</td>
<td>0</td>
<td>0.415±0.0494a</td>
<td>11.92</td>
</tr>
<tr>
<td>ECOM14</td>
<td>30</td>
<td>0.770±0.0141b</td>
<td>1.83</td>
</tr>
<tr>
<td>ECOM28</td>
<td>30</td>
<td>0.585±0.0353a</td>
<td>6.04</td>
</tr>
<tr>
<td>ECOM14</td>
<td>90</td>
<td>0.720±0.0141a,b</td>
<td>1.96</td>
</tr>
<tr>
<td>ECOM28</td>
<td>90</td>
<td>0.725±0.0353a,b</td>
<td>4.87</td>
</tr>
<tr>
<td>ECOM14</td>
<td>120</td>
<td>0.840±0.0282b</td>
<td>3.36</td>
</tr>
<tr>
<td>ECOM28</td>
<td>120</td>
<td>0.855±0.0494b</td>
<td>5.78</td>
</tr>
<tr>
<td>EPEZ14</td>
<td>0</td>
<td>0.550±0.1414a</td>
<td>25.71</td>
</tr>
<tr>
<td>EPEZ28</td>
<td>0</td>
<td>0.645±0.1484a</td>
<td>23.02</td>
</tr>
<tr>
<td>EPEZ14</td>
<td>30</td>
<td>0.535±0.0353a</td>
<td>6.60</td>
</tr>
<tr>
<td>EPEZ28</td>
<td>30</td>
<td>0.64±0a</td>
<td>0.00</td>
</tr>
<tr>
<td>EPEZ14</td>
<td>90</td>
<td>0.60±0a</td>
<td>0.00</td>
</tr>
<tr>
<td>EPEZ28</td>
<td>90</td>
<td>0.635±0.0353a</td>
<td>5.56</td>
</tr>
<tr>
<td>EPEZ14</td>
<td>120</td>
<td>0.80±0.0707b</td>
<td>8.83</td>
</tr>
<tr>
<td>EPEZ28</td>
<td>120</td>
<td>0.78±0.0282b</td>
<td>3.62</td>
</tr>
</tbody>
</table>

*Comparación de medias de Tukey
Valores con la misma letra en una columna no son diferentes a una $p<0.05$.
Tabla 11. Índice de degradación proteolítica calculado mediante la ecuación 1.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Tiempo (min)</th>
<th>ΔH (J/g)</th>
<th>IDP* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>120</td>
<td>0.96±0.028</td>
<td>NP</td>
</tr>
<tr>
<td>ECOM14</td>
<td>120</td>
<td>0.84±0.028</td>
<td>8.50±2.94a,b</td>
</tr>
<tr>
<td>ECOM28</td>
<td>120</td>
<td>0.85±0.049</td>
<td>6.93±5.15a</td>
</tr>
<tr>
<td>EPEZ14</td>
<td>120</td>
<td>0.80±0.070</td>
<td>12.66±7.36b,c</td>
</tr>
<tr>
<td>EPEZ28</td>
<td>120</td>
<td>0.78±0.028</td>
<td>14.75±2.94c</td>
</tr>
</tbody>
</table>

NP No procede el cálculo
* Comparación de medias de t-Student
Valores con la misma letra en una columna no son diferentes a una p<0.05.
Figura 6. Viscosidad extensional biaxial que presentó la masa con los diferentes tratamientos a un tiempo de reposo t₀: 0 min.
Figura 7. Viscosidad extensional biaxial que presentó la masa con los diferentes tratamientos a un tiempo de reposo t_1: 30 min.
Figura 8. Viscosidad extensional biaxial que presentó la masa con los diferentes tratamientos a un tiempo de reposo t_2: 90 min.
Figura 9. Viscosidad extensional biaxial que presentó la masa con los diferentes tratamientos a un tiempo de reposo t_3: 120 min.
Figura 10. Efecto del tratamiento en la viscosidad extensional biaxial (Valores con la misma letra sobre la barra no son diferentes a una p<0.05)
control con el sistema harina-agua donde se agregó enzima. Además no se mostraron diferencias entre la enzima comercial y de pescado, aunque si hay una diferencia entre la masa control y las masas con enzima. Para esto se realizó un análisis de varianza (ANDEVA) y una comparación de medias por el método de Tukey (Tabla 12). En las Figuras 11, 12, 13, 14 y 15 se observó que la mayor viscosidad se tiene a un tiempo de 120 min, indicando con esto que la enzima requiere de tiempo para que actúe sobre la masa. Sin embargo este aumento no es mayor al de la masa control. En la Figura 16 se muestra el efecto que tiene el tiempo de reposo, lo cual significa que la máxima actividad de la enzima se obtuvo a 120 min. Para corroborar esto se realizó un ANDEVA y una comparación de medias de Tukey (Tabla 13) indicando que solamente se muestran diferencias hasta que transcurren 2 horas. En la Figura 17 se obtuvo la cinética de modificación de acuerdo a la viscosidad extensional biaxial durante el tiempo de reposo, y se observa que el modelo que dio mayor coeficiente de regresión correspondió a la ecuación $y = a + bx + cx^2 + dx^3$ para cada uno de los tratamientos. Se observó que la mayor modificación se dio utilizando la enzima tripsina de pescado. Que el aumento de la viscosidad extensional biaxial no será mayor al control nos indica el efecto que tiene la enzima sobre la proteína de la masa y de acuerdo a Salazar et al., (2003) existe una relación inversa entre la viscosidad extensional biaxial y el volumen del pan.

Parte II. Estudio en el Sistema Masa Panaria

Seguimiento de la Temperatura durante la Tercera Fermentación

En estudios anteriores se ha visto que la tripsina de Scomberomorus sierra y Mugil cephalus es estable a pH de 4, 7 y 9, y para la última especie la tripsina mantiene el 65% de su actividad a pH de 4 (Olivas et al., 2001; Olivas, 1999). Por otra parte, la estabilidad al pH se da en el rango de 6-10 para la tripsina porcina (Guadix et al., 2000). Así mismo, los cambios en el pH durante la fermentación de la masa que resultan de la producción de ácidos tales como
<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Viscosidad Extensional Biaxial (Pas)</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>985,119±272,438<sup>a</sup></td>
<td>27.65</td>
</tr>
<tr>
<td>ECOM14</td>
<td>678,765±136,198<sup>b</sup></td>
<td>20.06</td>
</tr>
<tr>
<td>ECOM28</td>
<td>557,268±136,198<sup>b</sup></td>
<td>24.44</td>
</tr>
<tr>
<td>EPEZ14</td>
<td>551,983±190,636<sup>b</sup></td>
<td>34.53</td>
</tr>
<tr>
<td>EPEZ28</td>
<td>525,577±108,580<sup>b</sup></td>
<td>20.65</td>
</tr>
</tbody>
</table>

*Comparación de medias de Tukey
Valores con la misma letra en una columna no son diferentes a un p<0.05.
Figura 11. Viscosidad extensional biaxial que presentó la masa control a los cuatro diferentes tiempos de reposo.
Figura 12. Viscosidad extensional biaxial que presentó la masa con 0.14 U de enzima tripsina porcina comercial a los cuatro diferentes tiempos de reposo.
Figura 13. Viscosidad extensional biaxial que presentó la masa con 0.28 U de enzima tripsina porcina comercial a los cuatro diferentes tiempos de reposo.
Figura 14. Viscosidad extensional biaxial que presentó la masa con 0.14 U de enzima tripsina de sierra a los cuatro diferentes tiempos de reposo.
Figura 15. Viscosidad extensional biaxial que presentó la masa con 0.28 U de enzima tripsina de sierra a los cuatro diferentes tiempos de reposo.
Figura 16. Efecto del factor tiempo sobre la viscosidad extensional biaxial de la masa independiente del tratamiento (Valores con la misma letra sobre la barra no son diferentes a una p<0.05).
<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>Viscosidad Extensional Biaxial (Pas)*</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>467,470±168,057a</td>
<td>35.95</td>
</tr>
<tr>
<td>30</td>
<td>575,758±167,034a</td>
<td>29.01</td>
</tr>
<tr>
<td>90</td>
<td>583,679±81,388a</td>
<td>13.94</td>
</tr>
<tr>
<td>120</td>
<td>686,676±98,454b</td>
<td>14.33</td>
</tr>
</tbody>
</table>

*Comparación de medias de Tukey
Valores con la misma letra en una columna no son diferentes a una p<0.05.
ácido carbónico, ácido acético y ácido láctico provocan que el pH de la masa pase desde 5.8 a 5.0 (Sluimer, 2005).

En un proceso tradicional de panificación, la temperatura de la masa durante la fermentación aumenta 2.8°C esto se debe; principalmente al proceso de fermentación, el cual es exotérmico (Sluimer, 2005). Se sabe que la temperatura es una medida de la energía cinética media de las moléculas en una reacción química, debido a que ocurre formación o rompimiento de uno o más enlaces. Así mismo, para que se realice una reacción enzimática, se requiere de una energía de activación, la cual se ve disminuida por la acción catalítica de la enzima al ponerse en contacto con el sustrato y considerando que la temperatura de la cámara de fermentación se mantuvo constante a 30°C, los cambios en la temperatura en la tercera etapa de fermentación se debieron al cambio de energía cinética de la reacción enzimática y a la generación de calor durante la tercera etapa de fermentación. El mayor incremento lo presento la masa con enzima de sierra a una concentración de 0.28 U y el menor incremento la enzima porcina a la misma concentración, estos incrementos se observaron transcurridos 45 min de fermentación (Tabla 14). En las masas con enzima tripsina de pescado se observó una temperatura promedio del proceso menor, la cual fue significativamente diferente a la de las masas conteniendo enzima porcina y la de la masa control (Figura 18). Las diferencias en la temperatura de la masa con tripsina porcina y con tripsina de sierra, se debieron a que la estabilidad al pH ácido es mayor en la última.

Volumen Específico

El volumen específico del pan es un indicador de la calidad obtenida en el producto final (Da Mota et al., 2005). La inextensibilidad de algunos glútenes de trigo cristalino es un factor asociado con la disminución en el volumen del pan (Ammar et al., 2000). Con la finalidad de determinar la influencia de la presencia
Tabla 14. Incremento de la temperatura de la masa en la tercera etapa de fermentación

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Tiempo (min)*</th>
<th>Incremento de la Temperatura (°C)**</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>30</td>
<td>3.91±0.056^a</td>
<td>1.44</td>
</tr>
<tr>
<td>ECOM14</td>
<td>15</td>
<td>3.72±0.035^a</td>
<td>0.94</td>
</tr>
<tr>
<td>ECOM28</td>
<td>45</td>
<td>1.30±0.141^b</td>
<td>2.88</td>
</tr>
<tr>
<td>EPEZ14</td>
<td>45</td>
<td>3.50±0.070^a</td>
<td>2.02</td>
</tr>
<tr>
<td>EPEZ28</td>
<td>45</td>
<td>4.43±0.162^c</td>
<td>3.66</td>
</tr>
</tbody>
</table>

*Tiempo en que se presentó el mayor incremento de temperatura en la masa.

**Comparación de medias de Tukey
Valores con la misma letra en una columna no son diferentes a una p<0.05.
Figura 18. Seguimiento de la temperatura de la masa en la tercera etapa de fermentación (Valores con la misma letra sobre la barra no son diferentes a una p<0.05).
y de la concentración de enzima, sobre el volumen específico del pan, este se calculó a partir del peso y el volumen de la pieza de pan.

La concentración y el tipo de enzima no mostraron diferencias significativas en el volumen del pan (Tabla 15). En otros estudios utilizando una proteasa de origen fúngico comercial en una masa con harina panadera obtuvieron un valor de 4.06 cc/g (Indrani, 2003) y en estudios previos al adicionar a la masa de harina de trigo cristalino un extracto crudo de Lisa (Mugil Cephalus) se obtuvo un valor de 2.28 cc/g (Félix, 2002). Al comparar los resultados anteriores con los obtenidos en este estudio, se tiene un volumen específico promedio de 2.90 cc/g el cual es mayor al obtenido por Félix (2002) que utilizó la variedad cristalina altar y menor con una diferencia de 1.16 cc/g al obtenido con una harina panadera.

Considerando lo encontrado por Salazar et al. (2003) con referencia a la relación inversa entre la viscosidad extensional biaxial y el volumen del pan, se esperaría un aumento en el volumen del pan ya que la adición de enzima disminuye la viscosidad extensional biaxial de la masa (Tabla 12) sin embargo no ocurrió así, indicando que la adición de tripsina de sierra modifica esa premisa.

Compresión Uniaxial

Análisis de Textura

La fuerza del gluten en la estructura de la migas está dada por una red que contiene células de gas, a su vez formadas por burbujas que son inicialmente introducidas a la masa durante el mezclado (Hanselmann y Windhab, 1998). La suavidad o firmeza de la migas según Carr y Tadini (2003) es una propiedad de textura que se asocia directamente con la calidad de un producto panificable.
Tabla 15. Efecto del tratamiento en el volumen específico del pan

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Volumen Específico (cc/g)</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>2.96±0.136<sup>a</sup></td>
<td>4.59</td>
</tr>
<tr>
<td>ECOM14</td>
<td>2.94±0.098<sup>a</sup></td>
<td>3.34</td>
</tr>
<tr>
<td>ECOM28</td>
<td>2.94±0.078<sup>a</sup></td>
<td>2.67</td>
</tr>
<tr>
<td>EPEZ14</td>
<td>2.73±0.075<sup>a</sup></td>
<td>2.74</td>
</tr>
<tr>
<td>EPEZ28</td>
<td>2.96±0.144<sup>a</sup></td>
<td>4.86</td>
</tr>
</tbody>
</table>

*Comparación de medias de Tukey
Valores con la misma letra en una columna no son diferentes a una p<0.05.*
Figura 19. Efecto del tratamiento en la firmeza de la miga de pan (Valores con la misma letra sobre la barra no son diferentes a una p<0.05).
Con respecto a la medición de la firmeza de la miga, se observó un aumento significativo, directamente proporcional a la concentración de enzima (Figura 19).

A niveles moleculares las subunidades de glutenina de alto peso molecular constituyen el soporte para la red de gluten (Troccolli et al., 2000) y se ha reportado que esas proteínas son las primeras en ser hidrolizadas por proteasas (Rossel et al., 2002). De esta manera la red de gluten se ve debilitada, causando que al momento de la formación de los alvéolos, esta red oponga poca resistencia y se formen agujeros más grandes al adicionar la concentración de la enzima (Figura 20). Después de la inactivación de la enzima, las subunidades de glutenina de bajo peso molecular quedan libres para interactuar con las \(\omega \)-gliadinas (S-S) y realizar un alargamiento de la cadena (Masci et al., 1999), probablemente por esta interacción la firmeza de la miga aumentó (Tabla 16).

En panificación, se han reportado valores de la firmeza de la miga para un pan control (sin modificación por enzimas) de 0.413 Kgf, 0.498 Kgf y 0.583 por Kgf por Azizi (2004), Carr y Tadini (2003) y Da Mota et al. (2005), respectivamente. En este estudio, cuando se utilizó la enzima con 0.14 U se obtuvo una firmeza dentro del rango reportado por los autores mencionados, lo que, se puede decir, da una miga de calidad aceptable.
Figura 20. Imágenes de la sección transversal de una rebanada de pan.
Tabla 16. Efecto del tratamiento en la firmeza de la miga de pan.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Fuerza de la Miga (Kgf)*</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>0.343±0.008a</td>
<td>2.38</td>
</tr>
<tr>
<td>ECOM14</td>
<td>0.476±0.018b</td>
<td>3.87</td>
</tr>
<tr>
<td>ECOM28</td>
<td>0.605±0.017c</td>
<td>2.88</td>
</tr>
<tr>
<td>EPEZ14</td>
<td>0.478±0.002b</td>
<td>0.57</td>
</tr>
<tr>
<td>EPEZ28</td>
<td>0.614±0.022c</td>
<td>3.73</td>
</tr>
</tbody>
</table>

*Comparación de medias de Tukey
Valores con la misma letra en una columna no son diferentes a una p<0.05.
CONCLUSIONES

La viscosidad extensional biaxial fue menor en el sistema harina-agua con la tripsina de *Scomberomorus sierra* y con la de páncreas porcino, indicando que la enzima afecta a las proteínas del trigo responsables de esta propiedad físicoquímica. Así mismo, la cinética de modificación de esta propiedad indica que la viscosidad aumenta durante el curso de la reacción hasta 120 min y que se ajusta a la siguiente ecuación $y = ax^3 + bx^2 + cx + d$ para cada uno de los tratamientos.

La acción de la enzima sobre las propiedades térmicas de las proteínas en el sistema harina-agua fue sobre la disminución en el cambio de entalpía de la transición de la proteína nativa a proteína desnaturalizada, es decir, que al actuar la enzima disminuye la cantidad de proteína no modificada, es por esto, que es posible expresarla como un índice de modificación proteolítica, calculado al tiempo de máxima velocidad de la reacción enzimática. Este índice es más alto al utilizar la tripsina de *Scomberomorus sierra* que con la tripsina de páncreas porcino comercial.

El volumen del pan no fue modificado por la concentración ni por el tipo de enzima, sin embargo, la firmeza de la migas aumentó significativamente y fue directamente proporcional a la concentración de enzima. En la estructura de la migas se observó un aumento en el tamaño de los alvéolos indicando una modificación en la elasticidad y la fuerza de interacción de las proteínas, posiblemente dada entre las subunidades de gluteninas de bajo peso molecular y las ω-gliadinas. Con este trabajo se continúa adquiriendo el conocimiento de que la acción enzimática de la tripsina de tracto digestivo de *S. sierra* probablemente es sobre éstas fracciones proteicas del gluten, pero aún quedan otros estudios por hacer para su confirmación.
RECOMENDACIONES

La calorimetría en el sistema harina-agua puede ser complementada mediante el estudio de las proteínas del gluten, esto es; la acción de la enzima sobre las fracciones aisladas de glutenina y gliadina.

El estudio de masa panaria puede ser complementado mediante la medición de viscosidad extensional biaxial en este sistema, con el fin de conocer la manera en que actúan los demás ingredientes en conjunto con la enzima.

En relación al seguimiento de la temperatura de la masa, puede también llevarse a cabo un seguimiento del pH en la etapa de fermentación y de esta forma conocer de qué manera la enzima modifica el pH y la temperatura en la masa panaria.

Se recomienda el uso de la concentración de 0.14 U de la tripsina de sierra (Scomberomorus sierra) debido a que ésta muestra valores favorables en la miga de pan.
BIBLIOGRAFÍA

Potter, N. 1978. La Ciencia de los Alimentos. 2ª ed. Ed. EDUTEX. S.A.; México, 12, D.F.

