EVALUACIÓN DE UN SISTEMA DE PRODUCCIÓN ALTERNATIVO PARA EL CULTIVO AL EXTERIOR DE LAS MICROALGAS MARINAS: Chaetoceros muelleri y Dunaliella sp. EN INVIERNO Y PRIMAVERA, EN BAHÍA DE KINO, SONORA.

TESIS

que para cubrir parcialmente los requisitos necesarios para obtener el grado de MAESTRO EN CIENCIAS

PRESENTA:

MANUEL DE JESÚS BECERRA DÓRAME

Hermosillo, Sonora.
Julio de 2008
Universidad de Sonora

Repositorio Institucional UNISON

“El saber de mis hijos
hará mi grandeza”

Excepto si se señala otra cosa, la licencia del ítem se describe como openAccess
AGRADECIMIENTOS

Al Consejo Nacional de Ciencia y Tecnología por su apoyo económico otorgado durante el periodo de estudios de posgrado.

A la Universidad de Sonora por el apoyo brindado a la Maestría en Acuacultura en la cual realizué mis estudios de posgrado.

Al Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora por el apoyo que me brindó para poder llevar a cabo mis estudios de posgrado.

A todo el personal de la Unidad Experimental del Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora en Bahía de Kino.

De manera sincera y muy especialmente a mi director de tesis Dr. José Antonio López Elías, por haberme tenido la confianza para realizar este proyecto de investigación.

A mi comité de tesis: M.C. Nolberta Huerta Aldáz, Dr. Luis Rafael Martínez Córdova y M.C. Eduardo Aguirre Hinojosa, por los importantes comentarios y sugerencias a este trabajo.

A mis compañeros de generación: Ana Gloria, Naty, Raúl, Tania, Erasmo y Daniel, por toda la experiencia que pasamos juntos.

A todos mis maestros por orientarme y apoyarme en mi formación académica.
DEDICATORIA

A DIOS: porque gracias a Él tengo mi vida la, cual es muy valiosa, tengo salud y las fuerzas necesarias para seguir avanzando en mis estudios y en mis proyectos venideros.

A MIS PADRES: porque Ustedes son lo más preciado que tengo, ya que ustedes siempre me han apoyado incondicionalmente con su amor y comprensión a lo largo de toda mi vida, a Ustedes les digo que éste es un paso muy importante y no los defraudaré porque siempre he recibido lo mejor de Ustedes.

A MIS HERMANOS: Si a Ustedes por que a pesar de nuestra diferencia de edades, sin mis hermanos mi vida sería vacía y monótona.

A TÍ ISIDRO VÁSQUEZ: por que gracias a tu apoyo no hubiera salido a delante con esta investigación, un cachito de este trabajo es tuyo, de corazón gracias.
APROBACIÓN

Los miembros del Comité designados para revisar la tesis de Manuel de Jesús Becerra Dórame la han encontrado satisfactoria y recomiendan que sea aceptada como requisito parcial para obtener el grado de Maestro en Ciencias.

Dr. José Antonio López Elías
Presidente

M.C. Nolberta Huerta Aldáez
Sinodal Secretario

Dr. Luis Rafael Martínez Córdova
Sinodal

M.C. Eduardo Aguirre Hinojosa
Sinodal
CONTENIDO

RESUMEN.. i

ABSTRACT.. iii

ÍNDICE DE TABLAS... iv

ÍNDICE DE FIGURAS.. v

I. INTRODUCCIÓN Y ANTECEDENTES... 1

 I. 1. Importancia del cultivo de microalgas... 2

 I. 2. Variables importantes en los cultivos de microalgas....................................... 3

 I. 2. 1. Temperatura... 3

 I. 2. 2. Iluminación... 3

 I. 2. 3. pH.. 4

 I. 2. 4. Aireación y agitación... 5

 I. 3. Sistemas de producción de microalgas... 5

 I. 3. 1. Estático... 5

 I. 3. 2. Semicontinuo.. 6

 I. 3. 3. Continuo o sistema abierto... 6

 I. 4. Condiciones de cultivo.. 6

 I. 5. Factores que afectan el crecimiento de las microalgas bajo diferentes condiciones de cultivo... 7

 I. 5. 1. Concentración celular.. 7

 I. 5. 2. Medio de cultivo... 9

HIPÓTESIS... 11

II. OBJETIVOS... 11
III. MATERIALES Y MÉTODOS.. 12
 III. 1. Organismos experimentales.. 12
 III. 2. Diseño experimental... 12
 III. 3. Variables fisicoquímicas.. 13
 III. 4. Concentración celular.. 13
 III. 5. Biomasa.. 13
 III. 6. Análisis estadístico... 14

IV. RESULTADOS... 15
 IV. 1. Condiciones fisicoquímicas... 15
 IV. 1. 1. Temperatura.. 15
 IV. 1. 2. Iluminación.. 15
 IV. 1. 3. pH... 18
 IV. 2. Crecimientos de los cultivos masivos... 29
 IV.2. 1. Cultivos de Chaetoceros muelleri y Dunaliella sp. en invierno 29
 IV. 2.2. Cultivos de Chaetoceros muelleri y Dunaliella sp. en primavera..... 32
 IV. 3. Biomasa... 35
 IV. 3. 1. Chaetoceros muelleri y Dunaliella sp. en invierno......................... 35
 IV. 3. 2. Chaetoceros muelleri y Dunaliella sp. en primavera..................... 37

V. DISCUSIÓN... 39
 V. 1. Variables fisicoquímicas.. 39
 V. 2. Concentración celular.. 40

VI. CONCLUSIONES... 43
VII. LITERATURA CITADA ... 44

ANEXOS ... 49
RESUMEN

En la mayoría de los laboratorios comerciales de larvas de camarón del Noroeste del país tienen problemas con los cultivos masivos de microalgas, teniendo concentraciones iniciales variables y cosechas irregulares, por lo que el objetivo de esta investigación fue evaluar el crecimiento y producción de biomasa al exterior en poblaciones experimentales de las microalgas marinas: Chaetoceros muelleri y Dunaliella sp., modificando un sistema de producción tradicional en dos estaciones del año con un sistema alternativo en el cual se expusieron a las microalgas a una mayor irradiación solar. Las concentraciones iniciales para las microalgas fueron de 0.2×10^6 cél·mL$^{-1}$ para C. muelleri y de 0.1×10^6 cél·mL$^{-1}$ para Dunaliella sp., la hora de inoculación fue a las 12:00 p.m. y el medio de cultivo utilizado fue el F.

Las variables fisicoquímicas monitoreadas fueron luz, temperatura y pH, además se llevaron a cabo conteos celulares cada 12 horas y determinación de la biomasa seca a las 72 y 96 horas de haberse iniciado los cultivos.

En general se encontró que las condiciones ambientales fueron variables para ambas estaciones del año. La concentración celular final alcanzada fue mayor en los cultivos del sistema alternativo independientemente de la estación del año y microalga empleada. La concentración promedio alcanzada para la microalga C. muelleri en el sistema alternativo en invierno fue de 0.85×10^6 cél·mL$^{-1}$ mientras que la concentración en el sistema tradicional fue de 0.57×10^6 cél·mL$^{-1}$ y de Dunaliella sp. 0.26×10^6 cél·mL$^{-1}$ y 0.23×10^6 cél·mL$^{-1}$ respectivamente. En primavera la concentración promedio para C. muelleri en el sistema alternativo fue de 2.8×10^6 cél·mL$^{-1}$ y en el sistema tradicional de 2.08×10^6 cél·mL$^{-1}$ y Dunaliella sp. de 0.83×10^6 cél·mL$^{-1}$ y 0.78 $\times 10^6$ cél·mL$^{-1}$ respectivamente. Observándose una mayor concentración celular en los cultivos que se hicieron crecer en la estación de primavera independientemente del sistema de cultivo.

En general la producción de biomasa seca fue mayor en los cultivos del sistema alternativo en la estación de primavera con valores promedio para C. muelleri de 0.273 g·L$^{-1}$, mientras que en el sistema tradicional de 0.227 g·L$^{-1}$. Para la estación de invierno los resultados obtenidos son ligeramente superiores en el sistema alternativo solo para la microalga Dunaliella sp.
En conclusión es una opción viable el uso del sistema alternativo en la producción masiva de microalgas al exterior y al comparar las dos estaciones del año, es en primavera cuando se aumenta la densidad celular de los cultivos.
ABSTRACT

Most of the commercial shrimp larvae laboratories in the Northeastern part of the country have troubles with massive microalgae culture, having variable initial concentrations and irregular harvests, therefore the object of this investigation was to evaluate growth and production of biomass in outdoor mass culture of marine microalgae: Chaetoceros muelleri y Dunaliella sp., modifying a traditional production system in two seasons of the year with an alternative system, in which microalgae were exposed to higher solar irradiation. The initial concentration of the microalgae was 0.2×10^6 cél·mL$^{-1}$ for C. muelleri and 0.1×10^6 cél·mL$^{-1}$ for Dunaliella sp., the initial inoculation was at 12:00 p.m. using F medium.

The physical-chemical variables monitored were light, temperature and pH. Cellular counts were made every 12 hours and the determination of dry biomass was done at 72 and 96 hours after cultures were initiated.

In general terms, it was found that the environmental conditions were variable for both seasons of the year. The highest final cellular concentration was found in the alternative culture system, independently of the season of the year and the microalgae used. The mean concentration reached for the microalgae C. muelleri in the alternative system during winter was 0.85×10^6 cél·mL$^{-1}$ meanwhile the concentration in the traditional system was 0.57×10^6 cél·mL$^{-1}$ and for Dunaliella sp. 0.26×10^6 cél·mL$^{-1}$ and 0.23×10^6 cél·mL$^{-1}$ respectively. A higher cellular concentration in the cultures was found in the spring season independent of the culture system employed.

In general, the production of dry biomass was higher in the cultures of the alternative system in the spring season with mean values of 0.273 g·L$^{-1}$ for C. muelleri, meanwhile in the traditional systems values of 0.227 g·L$^{-1}$ were found. The results obtained for the winter season were slightly higher in the alternative system for Dunaliella sp.

To conclude, the use of the alternative system in the massive production of microalgae in the exterior is a viable option, and at the time of comparing the two seasons of the year, it was in spring when the cellular density was the highest in the cultures.
<table>
<thead>
<tr>
<th>FIGURA</th>
<th>PÁGINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fluctuación diaria promedio de la temperatura (°C) en los experimentos realizados en invierno para la especie Chaetoceros muelleri</td>
<td>16</td>
</tr>
<tr>
<td>2. Fluctuación diaria promedio de la temperatura (°C) en los experimentos realizados en invierno para la especie Dunaliella sp.</td>
<td>17</td>
</tr>
<tr>
<td>3. Fluctuación diaria promedio de la temperatura (°C) en los experimentos realizados en primavera para la especie Chaetoceros muelleri</td>
<td>18</td>
</tr>
<tr>
<td>4. Fluctuación diaria promedio de la temperatura (°C) en los experimentos realizados en primavera para la especie Dunaliella sp.</td>
<td>19</td>
</tr>
<tr>
<td>5. Fluctuación diaria promedio de la iluminación (Klux) de los experimentos realizados en invierno para la especie Chaetoceros muelleri</td>
<td>20</td>
</tr>
<tr>
<td>6. Fluctuación diaria promedio de la iluminación (Klux) de los experimentos realizados en invierno para la especie Dunaliella sp.</td>
<td>21</td>
</tr>
<tr>
<td>7. Fluctuación diaria promedio de la iluminación (Klux) del experimento realizado en primavera para la especie Chaetoceros muelleri</td>
<td>23</td>
</tr>
<tr>
<td>8. Fluctuación diaria promedio de la iluminación (Klux) de los experimentos realizados en primavera para la especie Dunaliella sp.</td>
<td>24</td>
</tr>
<tr>
<td>9. Fluctuación diaria promedio de pH en los experimentos con la microalga Chaetoceros muelleri en la estación de invierno</td>
<td>25</td>
</tr>
<tr>
<td>10. Fluctuación diaria promedio de pH en los experimentos con la microalga Dunaliella sp. en la estación de invierno</td>
<td>26</td>
</tr>
<tr>
<td>11. Fluctuación diaria promedio de pH en los experimentos con la microalga Chaetoceros muelleri en la estación de primavera</td>
<td>27</td>
</tr>
<tr>
<td>12. Fluctuación diaria promedio de pH en los experimentos con la microalga Dunaliella sp. en la estación de primavera</td>
<td>28</td>
</tr>
<tr>
<td>13. Curvas de crecimiento de cultivos de Chaetoceros muelleri en invierno mantenidos en el medio f con densidad inicial de 0.2×10^6 cél·mL$^{-1}$ en los sistemas estático y alternativo</td>
<td>30</td>
</tr>
</tbody>
</table>
14. Cuervas de crecimiento de cultivos de *Dunaliella* sp. en invierno, mantenidos en el medio f con densidad inicial de 0.1×10^6 cél·mL$^{-1}$ en los sistemas estático y alternativo.

15. Curvas de crecimiento de cultivos de *Chaetoceros muelleri* en primavera mantenidos en el medio f con densidad inicial de 0.2×10^6 cél·mL$^{-1}$ en los sistemas estático y alternativo.
ÍNDICE DE TABLAS

<table>
<thead>
<tr>
<th>TABLA</th>
<th>PÁGINA</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Soluciones madre para el medio de cultivo f/2</td>
<td>10</td>
</tr>
<tr>
<td>II. Promedio de Peso Seco, Materia Orgánica y Cenizas de los</td>
<td>36</td>
</tr>
<tr>
<td>experimentos con cultivos de Chaetoceros muelleri crecidos al</td>
<td></td>
</tr>
<tr>
<td>exterior en Invierno</td>
<td></td>
</tr>
<tr>
<td>III. Promedio de Peso Seco, Materia Orgánica y Cenizas de los</td>
<td>36</td>
</tr>
<tr>
<td>experimentos con cultivos de Dunaliella sp. crecidos al exterior</td>
<td></td>
</tr>
<tr>
<td>en Invierno</td>
<td></td>
</tr>
<tr>
<td>IV. Promedio de Peso Seco, Materia Orgánica y Cenizas de los</td>
<td>38</td>
</tr>
<tr>
<td>experimentos con cultivos de Chaetoceros muelleri crecidos al</td>
<td></td>
</tr>
<tr>
<td>exterior en Primavera</td>
<td></td>
</tr>
<tr>
<td>V. Promedio de Peso Seco, Materia Orgánica y Cenizas de los</td>
<td>38</td>
</tr>
<tr>
<td>experimentos con cultivos de Dunaliella sp. crecidos al exterior</td>
<td></td>
</tr>
<tr>
<td>en Primavera</td>
<td></td>
</tr>
</tbody>
</table>
1. INTRODUCCIÓN Y ANTECEDENTES

La rápida expansión de la camaricultura en el noroeste de México, ha sido acompañada por un importante incremento del número y de la capacidad instalada de los laboratorios de producción de poslarvas. Información obtenida en el 2003 señala que en esta región operaron 50 laboratorios, que en su conjunto aportaron cerca de 4.7 x 10^9 postlarvas a las granjas de engorda de Sonora y Sinaloa, que son los estados con el mayor volumen de producción de camarón de cultivo de esta región (Panorama Acuícola, 2003). Sin ninguna excepción, todos estos laboratorios cuentan con un área de producción de alimentos vivos (microalgas y nauplios de Artemia), que son reconocidos como las dietas más eficaces para los primeros estadios larvarios de peneidos (Gelabert et al., 1993; Merchie et al., 1997; Boeing, 1999).

Coutteau y Sorgeloos (1992) mencionaron que el número de especies de microalgas que se utilizan como alimento vivo para fines de acuicultura es muy limitado, y Duerr et al. (1998) reportaron que los géneros usados con mayor frecuencia son las diatomeas Chaetoceros, Thalassiosira, Isochrysis, Tetraselmis y Nannochloropsis. Malagrino et al. (1999), recalcaron que también en México el número de especies de microalgas es limitado y López-Elías et al. (2003) reportaron que en laboratorios productores de poslarvas de peneidos del noroeste de México se cultivan las especies Chaetoceros muelleri, C. calcitrans, Isochrysis sp., Tetraselmis suecica, Tetraselmis chuii y Dunaliella tertiolecta.

En vista de la gran variedad de diseños y de condiciones de cultivo de los sistemas de producción comercial, los cuales pueden diferir ampliamente hasta en laboratorios geográficamente cercanos, resulta prácticamente imposible tener un estándar de la concentración de los compuestos orgánicos celulares que se reportan en literatura (Voltolina et al., 2000).

En general se utiliza el sistema estático secuencial para la producción masiva de microalgas, sin embargo existen otros sistemas de producción con modificaciones en el diseño mismo, con el fin de optimizar la captación de la luz. Por lo regular se utiliza el medio de cultivo f/2 de Guillard y Ryther (1962), preparado con sales de grado industrial, el cual contiene básicamente nitratos, fosfatos, metales traza como cobre, zinc, manganeso, cobalto y vitaminas como: tiamina, cianocobalamina y biotina.
Los primeros estudios de biotecnología microalgal, indicaron que la principal preocupación en los cultivos masivos llevados al exterior, es la de obtener una efectiva utilización de la luz (Richmond, 2000).

En Europa y Norteamérica se ha estado trabajando con sistemas de cultivo alternativos, como lo son los reactores tubulares, recipientes de vidrio a pequeña escala, raceways, reactores móviles, además de los sistemas semicontinuos y continuos (Masojídek, y Torzillo, 2003, Meiser et al., 2004).

A pesar de que se ha experimentado con diferentes bioreactores para la producción de fitoplancton, en la acuicultura siguen prevaleciendo los cultivos al exterior con diseños tradicionales del sistema estático, es por ello que en esta investigación se experimentó con una variación en el sistema de cultivo tradicional para aumentar la exposición al sol de los cultivos masivos de dos especies de microalgas, cultivadas en dos estaciones del año.

I. 1. Importancia del cultivo de microalgas

El cultivo de microalgas en la acuicultura es triba en que éstas son las primeras formadoras de materia orgánica y por su tamaño reducido, son fácilmente capturables y digeridas por diferentes larvas y juveniles de moluscos, crustáceos y peces (Stanley y Jones, 1976). La capacidad que poseen las microalgas de convertir sales inorgánicas en compuestos orgánicos, por medio de la fotosíntesis, las hace imprescindibles como alimento vivo (Ramos y Salazar, 1990).

Las aguas de mar por sí sola es poco satisfactoria para el crecimiento sostenido de las algas en el laboratorio, debido principalmente a que algunos nutrientes esenciales están presentes usualmente sólo en cantidades traza, por lo que se han desarrollado empíricamente varios medios artificiales para su cultivo. Entre los más populares destaca el medio f (Fogg y Thake, 1987), con el cual se cultivan en forma tradicional a nivel laboratorio e industrial un gran número de microalgas.

Los cultivos de microalgas se utilizan principalmente debido a que éstas se pueden reproducir bajo condiciones controladas, pero es necesario recalcar que pequeños cambios en las características del medio, así como de la luz, temperatura, pH y aireación, influyen
directamente en las características de todo el cultivo (Marshall, 1987). Todo el párrafo es confuso, redactarlo mejor

I. 2. Variables importantes en los cultivos de microalgas

I. 2. 1. Temperatura

La mayoría de las especies de microalgas crecen entre los 10°C y 35°C, con un óptimo entre los 16°C y 24°C (Paniagua et al., 1993).

La temperatura es un factor importante en el crecimiento de los cultivos. Las microalgas podrían presentar al interior un crecimiento lento debido a las bajas temperaturas. En algunas ocasiones la productividad de sistemas abiertos es mucho menos estable que la observada en reactores cerrados, los cuales son menos susceptibles a la variación de temperatura diaria. (Richmond, 1986).

I. 2. 2. Iluminación

La luz es un factor determinante para el éxito de los cultivos, ya que de su disponibilidad depende en gran parte el crecimiento poblacional de las microalgas ya que son fotoautótrofas. Los inóculos necesarios para los últimos niveles del sistema de cultivos terminal escalonado, que es la técnica que se emplea prácticamente en todos los laboratorios, se cultivan en condiciones aproximadamente controladas, utilizando generalmente fuentes de luz artificial, mientras que para el último nivel de producción, los cultivos se mantienen al exterior, utilizando la luz natural como única fuente de iluminación.

A pesar de que la luz solar directa provee además del espectro visible las ondas ultravioletas de longitud de onda corta, no son nocivas para las células (Paniagua, 1993). Por ejemplo, se sabe que la luz azul estimula algunos fotorreceptores que desvían los productos de la fotosíntesis hacia la ruta de síntesis de proteínas y que la luz roja actúa aumentando la reserva de carbohidratos (Rivkin, 1989). La luz se debe considerar en términos de fotoperíodo así como por su calidad e intensidad, ya que es de importancia
fundamental para las algas como fuente de energía para la fotosíntesis. La iluminación por lo general se coloca en la parte superior de los recipientes, los cuales son blancos en su parte interior o son transparentes en su totalidad. Los inóculos son obtenidos de la etapa de inducción o anterior a la que presentan un crecimiento rápido (Richmond, 1986).

La iluminación natural es muy utilizada para los cultivos de mayor volumen (1000 a 5000 litros), ya que con esta se reducen significativamente los costos de operación. Sin embargo la situación geográfica de cada laboratorio es la causa de que se presenten variaciones en diferentes periodos del año, aunque en los estados del noroeste del país la disponibilidad de irradiación solar se considera adecuada en todas las situaciones estacionales a pesar de los cambios de régimen de luz-oscuridad, que puede variar desde 14:10 a 10:14 horas aproximadamente (Torres Rodríguez, 1997).

Los diseños de los tanques en los laboratorios comerciales de larvas de camarón son de formas diferentes y dimensiones variables, que van desde tanques circulares, rectangulares, cuadrados y oblongos de capacidades desde 2000 a 20,000 litros, que regularmente tienen una profundidad superior a 1 metro, lo cual trae como consecuencia que no penetre adecuadamente la luz incidente en los cultivos, además de que son hechos de materiales opacos como plástico y concreto (López-Elías, 2000).

Es importante considerar la penetración de luz en este tipo de recipientes, por lo que trabajar con fotobioreactores es una opción alterna en la cual se incrementa la penetración de la luz como son los sistemas en cascada, tubos de plástico transparente y otros (Richmond, 2004).

I. 2. 3. pH

En todos los laboratorios se registran importantes aumentos de pH después de las primeras 24 a 48 horas de cultivo, que indican un aumento de la actividad fotosintética microalgal y una disminución de la actividad respiratoria, probablemente acompañado por un incremento de actividad microbiana y del microzooplancton que se encuentra con frecuencia como contaminante de estos cultivos (Paniagua et al., 1993).
Los valores de pH aumentan con el tiempo, debido a que la microalga va consumiendo el bicarbonato presente en el agua de mar y quedando solamente sales de carbonato. (Riley y Chester, 1971).

Por otro lado también se puede observar que los valores menores de pH se registran por las mañanas y los valores mayores por las tardes, en las dos situaciones se observa el fenómeno de la respiración llevada a cabo por la noche, en la cual se produce CO₂, lo cual provoca una disminución del pH y el fenómeno de la fotosíntesis que ocurre durante el día en el cual se toma el CO₂ y bicarbonatos por la microalga, lo cual lleva a que se alcalinice el medio de cultivo (Richmond, 1986).

I. 2. 4. Aireación y agitación

El objetivo de la aireación es logra una difusión efectiva de los nutrientes, se mantienen las algas en suspensión y el cultivo uniformemente distribuido en el momento de la cosecha. Además la agitación en los cultivos tiene como objetivo primario el inducir un movimiento rápido de las células algales hacia la parte superior iluminada o zona fótica. En cultivos de un litro o menos no es necesaria la aireación, ya que ésta se sustituye con una agitación manual diaria. En los cultivos de gran escala, la aireación debe ser leve durante las primeras fases de crecimiento e incrementarse al aumentar la densidad del cultivo (Arroyo-Pacheco y Martínez Baldenegro, 1994).

I. 3. Sistemas de producción tradicionales

I. 3. 1. Estático

Estos cultivos son intermitentes, se desarrollan de una sola vez y son cosechados completamente después de que la producción algal alcanza un nivel apropiado, medido en número de células por mililitro. En el momento de la cosecha, el cultivo debe estar en la fase exponencial. El volumen limitado del medio con los nutrientes inorgánicos y orgánicos necesarios, es inoculado con un número relativamente pequeño de células y expuesto a condiciones adecuadas de luz y temperatura. El patrón de crecimiento y el
metabolismo presentado en tales cultivos son de interés para la comprensión del desarrollo del fitoplancton en su medio ambiente natural. Los cultivos estáticos pueden tener grandes fluctuaciones de temperatura e iluminación. Los factores a considerar para estos cultivos son el tipo, tamaño y forma del recipiente, ubicación del mismo y la rutina de producción utilizada (Becker, 1995).

I. 3. 2. Semicontinuo

Los cultivos semicontinuos son un tipo de cultivo estático con una dilución a intervalos frecuentes. La estimación de la biomasa es monitoreada para estimar la frecuencia y la proporción adecuada de dilución; aquí se cosecha una parte del medio según la producción y se renueva el volumen cosechado con medio de cultivo fresco (Becker, 1995).

I. 3. 3. Continuo o sistema abierto

El cultivo continuo difiere del cultivo estático en que continuamente se están adicionando nutrientes frescos, a la misma velocidad en que se remueve el medio del cultivo con el fin de que el volumen permanezca constante con el tiempo, esto teóricamente permite un crecimiento exponencial continuo del cultivo, que ocurre cuando la velocidad de flujo del medio es igual a la velocidad de crecimiento del cultivo durante toda la remoción. Así la población algal, las características químicas del medio, la temperatura y finalmente la luz son mantenidas en un valor constante por períodos prolongados, provocando un flujo sostenido de requerimientos y de salida del producto (Becker, 1995).

I. 4. Condiciones de cultivo

En condiciones de laboratorio se utiliza aireación constante, frecuentemente con adición de CO2; los medios se preparan con reactivos de grado analítico; la temperatura es controlada (alrededor de 18-20 ºC) y la iluminación es constante con lámparas
fluorescentes. En el exterior se cultiva en columnas, pilas y tanques con aireación pero sin adición de CO2; los medios se preparan con reactivos de grado industrial y la temperatura e iluminación varían de acuerdo a la situación estacional. Los recipientes se exponen totalmente a la intemperie o pueden ser protegidos con plástico o con malla sombra, debido a las lluvias y al exceso de radiación solar. Esto conlleva una disminución o un aumento progresivo de la temperatura en el medio de cultivo. En algunos laboratorios los recipientes están situados cerca de edificios o en el interior de solarios o invernaderos con paredes sólidas, lo cual impide que penetren los rayos luminosos por la mañana o al atardecer.

En seis laboratorios comerciales de Sinaloa y Sonora que se evaluaron entre 1999 y 2001, en los cuales las microalgas se cultivan masivamente al exterior, se encontraron recipientes y rutinas diferentes, desde pilas de 2-2.5 m³ con cosechas entre 1 y 4 días, pilas de 4 m³ y cilindros transparentes de 1 m³, con cosechas entre 2-4 y 1-3 días, respectivamente y tinas de 1 m³ con cosechas entre 1 y 2 días en Sinaloa. En Sonora un laboratorio utilizaba pilas de 4 m³ que se cosechaban después de 2 a 3 días, un segundo laboratorio utilizaba cilindros opacos de 0.8 m³ por 3 días y el tercero pilas de 2.5 m³ y cosechas a los 2-3 días (López-Elías et al., 2003).

I. 5. Factores que afectan el crecimiento de las microalgas bajo diferentes condiciones de cultivo

I. 5. 1. Concentración celular

La concentración celular es importante ya que al iniciar los cultivos con inóculos pequeños se corre el riesgo de que el cultivo necesite más tiempo para llegar a una concentración adecuada; y por el contrario si se inician los cultivos con concentraciones muy altas se corre el riesgo de que el inóculo se encuentre en una fase de crecimiento estacionaria garantizando que el cultivo no estaría en condiciones óptimas al momento de la cosecha.

La concentración inicial en los cultivos masivos, que se encontró mediante visitas in situ varió desde 0.08 a 0.49 x 10⁶ cél·mL⁻¹ en Sinaloa y entre 0.19 y 0.37 x 10⁶ cél·mL⁻¹ en Sonora. Esto es una muestra de que la rutina de producción es poco efectiva, debido a que para el último nivel se utiliza por ejemplo una sola columna de 200 a 400 litros,
independientemente del volumen de la pila o tina. Además nunca se verifica la concentración del inóculo del cultivo masivo, lo cual trae como consecuencia que se desconozca el estado de crecimiento real del cultivo y por lo tanto es más difícil mantener estable la calidad de la biomasa.

En una encuesta realizada en 14 laboratorios de Sonora y Sinaloa, además de uno en Chiapas y otro en Colima, se encontró que éstos contabilizaron densidades celulares entre 0.9 y 1.5 x 10^6 cél·mL^{-1} para Chaetoceros mueller y para Isochrysis sp. se reportaron desde 1.0 a 2.0 x 10^6 cél·mL^{-1} mientras que las concentraciones de las flageladas verdes (Tetraselmis suecica, Dunaliella tertiolecta) variaron de 0.2 a 0.6 x 10^6 cél·mL^{-1} (López-Elias, 2003). Además debido a problemas de producción de las otras especies y con el fin de simplificar las rutinas, la mayoría prefiere utilizar como único alimento C. muelleri.

La densidad celular alcanzada a la cosecha para la especie de microalga C. muelleri varió en el estado de Sinaloa desde 0.80 a 1.83 x 10^6 cél·mL^{-1} y en el estado de Sonora fluctuó entre 0.82 y 2.09 x 10^6 cél·mL^{-1}. Estas diferencias encontradas en los laboratorios se deben a la cantidad de inóculo, a la variabilidad de las condiciones ambientales (luz y temperatura), al tipo de medio, a la duración del cultivo y al diseño de los recipientes (López-Elias, 2003).

En otro estudio realizado en un laboratorio ubicado en Bahía Kino, Sonora, se encontró que para C. muelleri se obtuvieron densidades celulares en invierno y primavera menores a 0.75 x 10^6 cél·mL^{-1} en cultivos de 3000 litros bajo condiciones de laboratorio (López-Elias et al., 1999). Sin embargo, cuando los cultivos se mantuvieron al exterior en el mismo tipo de recipientes en cuatro situaciones estacionales, la densidad celular aumentó hasta 1.12–1.49 x 10^6 cél·mL^{-1} (Gallegos-Simental et al., 2002). Figueroa-Ortiz (2001) reportó en promedio en el mismo laboratorio una densidad celular de 0.97 x 10^6 cél·mL^{-1} en cultivo al exterior entre Septiembre y Diciembre, mientras que al interior las concentraciones alcanzaron solamente 0.45 x 10^6 cél·mL^{-1}.

Es común encontrar las densidades celulares más bajas en la estación de invierno y en los recipientes más profundos y que reciben una cantidad de radiación solar menor que los recipientes menos profundos y con mayor exposición al sol. Además en primavera y verano se lograron concentraciones celulares mayores. Por otro lado, las rutinas de
producción más largas no implican necesariamente densidades celulares mayores, debido a que los cultivos son frecuentemente iniciados con altas concentraciones, lo cual provoca que el cultivo decaiga más rápidamente.

En cuanto a las flageladas verdes, las bajas concentraciones iniciales ($0.045 - 0.063 \times 10^6 \, \text{cél/mL}^{-1}$), causaron también bajas concentraciones al momento de la cosecha ($0.077 - 0.36 \times 10^6 \, \text{cél/mL}^{-1}$), motivo por el cual la mayoría de los laboratorios prefiere no cultivarlas y usar los recipientes destinados a su producción para el cultivo de *Chaetoceros muelleri*.

I. 5. 2 Medio de cultivo

Existen muchas fórmulas para medios de cultivo de microalgas bajo condiciones de laboratorio. Muchas de estas son modificaciones de fórmulas previamente publicadas y algunas son derivadas del análisis del agua en el hábitat nativo y de algunas consideraciones ecológicas. Son muy pocos los resultados de los estudios que detallan los requerimientos de los nutrientes de los organismos (Voltolina *et al.*, 1989). Las principales consideraciones de las fórmulas de nutrientes desarrollados para cultivo de microalgas son:

a). La concentración total de sal depende principalmente del origen del organismo.

b). La composición y concentración de componentes mayoritarios iónicos tales como potasio, magnesio, sodio, calcio, sulfato y fósforo.

c). La fuente de nitrógeno, nitrato, amonio y urea son ampliamente usados como fuente de nitrógeno, depende principalmente de la función de la especie y el pH óptimo.

d). La fuente de carbono inorgánico es usualmente provisto por CO$_2$ gaseoso de 1 a 5% mezclado con aire.

e). El pH usualmente utilizado es entre los valores de pH ácidos rangos, con el fin de, prevenir la precipitación de calcio, magnesio y algunos de los elementos traza.

Los elementos traza, son usualmente provistos en una mezcla de macronutrientes de concentraciones por litro previamente establecidas para hacerlos efectivos. Sin embargo, la necesidad de tales componentes de crecimiento no es siempre bien
embargo, la necesidad de tales componentes de crecimiento no es siempre bien demostrada. Para la estabilidad de las mezclas de elementos traza son usados agentes quelantes (Voltolina et al., 1989).

El medio de cultivo tradicional para el crecimiento de las microalgas es el medio f/2 que consiste básicamente en una fuente de Nitrógeno, Fósforo, Silicatos, metales traza como el Cobre, Zinc, Cobalto, Magnesio, y Molibdeno, además de las vitaminas B₁₂, Tiamina y Biotina (Tabla 1).

Tabla I. Soluciones madre para el medio de cultivo f/2. Para preparar un litro de medio, agréguese un ml de c/u de las soluciones 1, 2.2, y 3.2 a un litro de agua de mar filtrada y esterilizada

<table>
<thead>
<tr>
<th>1. Nutrientes mayores</th>
<th>g/L de agua destilada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Nitrato de sodio, granulado y refinado</td>
<td>75</td>
</tr>
<tr>
<td>1.2. Fosfato de sodio monobásico</td>
<td>5</td>
</tr>
<tr>
<td>1.3. Silicato de sodio metasoluble</td>
<td>30</td>
</tr>
<tr>
<td>2. Metales traza</td>
<td>g/100 mL de agua destilada</td>
</tr>
<tr>
<td>2.1. Sulfato cúbico, cristales finos</td>
<td>0.98</td>
</tr>
<tr>
<td>2.1.1. Sulfato de zinc, cristales finos</td>
<td>2.2</td>
</tr>
<tr>
<td>2.1.2. Cloruro de cobalto, cristales finos</td>
<td>1.0</td>
</tr>
<tr>
<td>2.1.3. Cloruro de manganeso, cristales finos</td>
<td>18.0</td>
</tr>
<tr>
<td>2.1.4. Molibdato de sodio, cristales finos</td>
<td>0.63</td>
</tr>
<tr>
<td>2.2 Solución secundaria</td>
<td>g/100 mL de agua destilada</td>
</tr>
<tr>
<td>2.2.1. Cloruro férrico</td>
<td>3.15</td>
</tr>
<tr>
<td>2.2.2. EDTA disódico</td>
<td>4.36</td>
</tr>
<tr>
<td>2.2.3. Metales traza o alternativamente</td>
<td>1 mL de c/u de las soluciones</td>
</tr>
<tr>
<td>2.2.1. EDTA férrico</td>
<td>5.00</td>
</tr>
<tr>
<td>2.2.2. Metales traza</td>
<td>1 mL de c/u de las soluciones</td>
</tr>
<tr>
<td>3. Vitaminas</td>
<td>g/1000 mL de agua destilada</td>
</tr>
<tr>
<td>3.1.1. Biotina cristalizada</td>
<td>0.1</td>
</tr>
<tr>
<td>3.1.2. Cianocobalamina</td>
<td>1.0</td>
</tr>
<tr>
<td>3.2 Solución secundaria</td>
<td>Cantidad en 100 mL de agua destilada</td>
</tr>
<tr>
<td>3.2.1. Biotina</td>
<td>1 mL de la solución</td>
</tr>
<tr>
<td>3.2.2. Cianocobalamina (B₁₂)</td>
<td>1 mL de la solución</td>
</tr>
<tr>
<td>3.2.3. Tiamina Clorhídrica (B₁)</td>
<td>20 mg</td>
</tr>
</tbody>
</table>

Voltolina et al., 1989
HIPÓTESIS

Modificando el sistema de cultivo tradicional mediante una mayor exposición a la luz solar se obtendrá una mayor concentración celular de las microalgas cultivadas al exterior, debido a que éstas estarán expuestas a una mayor incidencia de luz solar.

II. OBJETIVO GENERAL

Evaluar un sistema de cultivo alternativo, mediante el crecimiento en densidad celular y producción de biomasa de dos microalgas marinas, *Chaetoceros muelleri* y *Dunaliella* sp., en dos estaciones del año.

II. 1. Objetivos particulares

Diseñar un sistema de cultivo de microalgas con la modificación del sistema tradicional mediante el uso de cascadas donde la microalga será expuesta a una mayor incidencia de luz.

Comparar el crecimiento de las dos especies de microalgas entre el sistema alternativo y el tradicional (sistema estático) en las estaciones de invierno y primavera.

Evaluar la producción de biomasa de las dos microalgas marinas en los sistemas de producción en las dos épocas.
III. MATERIALES Y MÉTODOS

III. 1. Organismos experimentales

Se seleccionaron las especies Chaetoceros muelleri y Dunaliella sp. ya que son fuentes alimenticias reconocidas para los estadios larvarios de moluscos bivalvos y camarones peneidos (Martínez, 1995). Estas especies fueron obtenidas del cepario del Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora (DICTUS), en Hermosillo, Sonora.

III. 2. Diseño Experimental

Se llevó a cabo un experimento simple con dos tratamientos por triplicado, en el que se cultivaron al exterior las microalgas de referencia. Los tratamientos consistieron en el sistema tradicional y el sistema modificado. El experimento se repitió en dos estaciones del año, invierno y primavera. Los cultivos experimentales se llevaron a cabo en la unidad experimental del DICTUS en Bahía de Kino, Sonora. Se utilizaron recipientes de plástico de 250 litros de capacidad; tres de estos recipientes fueron modificados para conformar un sistema de cultivo alternativo en el que se hizo pasar a la microalga por una lámina escalonada con el objetivo de exponer a la microalga a una mayor radiación solar, en los tres recipientes restantes se utilizó el sistema tradicional, para ambos sistemas se aplicó aireación constante. La concentración inicial de las microalgas fue: $0.2 \times 10^6 \text{ cél}\cdot\text{mL}^{-1}$ y $0.1 \times 10^6 \text{ cél}\cdot\text{mL}^{-1}$ para Chaetoceros muelleri y Dunaliella sp. respectivamente. Las microalgas crecieron en el medio de cultivo F y la hora de inoculación fue a las 12:00 p.m. ya que en una investigación por Becerra-Dórame (2004), determinó que al iniciar los cultivos a las primeras horas del día no se obtuvo una concentración final significativa mayor de los cultivos, comparados con los iniciados a las 12:00 p.m.
III. 3. Variables fisicoquímicas

La temperatura e iluminación fueron medidas cada 2 horas y el pH cada 6 horas. La temperatura fue medida con un termómetro de mercurio convencional, la iluminación fue registrada en Kluxes con un fotómetro portátil de la marca Fisher y el pH fue medido con un potenciómetro portátil de la marca Hannan.

III. 4. Concentración celular

Las muestras para los conteos celulares fueron tomadas cada 12 horas, desde el inóculo hasta la cosecha de los cultivos. Estas muestras se fijaron con lugol y se contaron inmediatamente después del muestreo en un microscopio compuesto utilizando un hematocitómetro de 0.1 mm de profundidad con reglilla de Neubauer. La fórmula para obtener el número de células/ml es la siguiente:

\[
\text{No. cel/mL} = \frac{\text{No. células totales}}{\text{No. de cuadros contados}} \times 10,000
\]

El factor es de 10,000 ya que las dimensiones de cada cuadrícula mayor, son 1mm x 1mm x 0.1mm (profundidad), lo cual representa un volumen de 0.1mm³, equivalentes a 0.1L, por lo cual se debe de multiplicar por 10,000, para obtener la concentración en 1mL. (López-Elías et al., 1995).

III. 5. Biomasa

Las muestras para la determinación de la biomasa fueron tomadas a las 48 y 72 horas de haberse iniciado los cultivos, para lo cual se filtraron volúmenes de 100 mL, en filtros de fibra de vidrio Whatman GFC de 47 mm de diámetro, previamente calibrados. Posteriormente fueron secados en una estufa convencional a 75 ºC por 8 horas, para ser pesados en una balanza analítica y finalmente incinerados en una mufla a 480ºC por 12
horas y después pesarlos de nueva cuenta. La biomasa se determinó por diferencia de peso (López-Elias et al., 1995).

III. 6. Análisis estadístico

Se utilizó estadística descriptiva para la elaboración de las gráficas con datos promedios y desviación estándar. La comparación del número de células y biomasa, entre los tratamientos para cada especie se realizó con una prueba T de Student, si los datos eran normales y homocedásticos. En el caso de los datos que no cumplieron con estas premisas se aplicó la prueba de Mann-Whitney. Además se utilizó el análisis de pendientes para la comparación entre tratamientos (Paquete Statistica versión 1984 – 2000).
IV. RESULTADOS

IV. 1. Condiciones Fisicoquímicas

IV. 1.1. Temperatura.

La fluctuación de la temperatura en invierno en los cultivos de *C. muelleri* en los sistemas de cultivo fue de entre 10.3-11.5 °C en las primeras horas del día hasta llegar a los 20.4-20.8 °C a las 16:00 horas para después disminuir y mantenerse entre los 14.8-15.5 °C. Para los experimentos con la microalga *Dunaliella* sp. en invierno la temperatura varió de los 9.8-10.5 °C en las primeras horas del día, hasta llegar a los 20-22.3 °C a las 16:00 horas para después disminuir y mantenerse entre los 12.8-15.9 °C (Figuras 1 y 2).

La fluctuación de la temperatura en primavera en los cultivos de *C. muelleri* en los sistemas de cultivo fue de 18.8 °C en las primeras horas del día hasta llegar a una máxima de 30.2 °C a las 16:00 horas para después disminuir suavemente y mantenerse en los 22.2 °C. Para los experimentos con *Dunaliella* sp. en primavera la temperatura varió de los 24.5-24.8 °C en las primeras horas del día, hasta llegar a una temperatura máxima de 34.3-34.8 °C a las 16:00 horas para después disminuir y mantenerse entre los 26.2-27.3 °C. (Figura 3 y 4)

IV. 1.2. Iluminación.

La intensidad luminosa registrada en los cultivos de *C. muelleri* en el sistema tradicional en invierno durante las primeras horas luz fue de 10 a 25 Klux, hasta llegar a una máxima de 65-80 Klux; en el sistema alternativo la intensidad luminosa varió de 30 a 45 Klux en las primeras horas de luz, hasta llegar a una máxima de 100-110 Klux. La intensidad luminosa registrada en los cultivos de *Dunaliella* sp. en el sistema tradicional en invierno varió de 38 a 40 Klux en las primeras horas del día, hasta llegar a una máxima de 90 Klux; en el sistema alternativo la intensidad luminosa varió de 61-63 Klux en las primeras horas de luz, hasta llegar a una máxima de 120 Klux a las 12:00 p.m. (Figuras 5 y 6).
Figura 1. Fluctuación diaria promedio de la temperatura (°C) en los experimentos realizados en invierno para la especie *Chaetoceros muelleri*. Repetición 1 y 2.
Figura 2. Fluctuación diaria promedio de la temperatura (°C) en los experimentos realizados en invierno para la especie *Dunaliella* sp. Repetición 1 y 2.
Figura 3. Fluctuación diaria promedio de la temperatura (°C) en el experimento realizado en primavera para la especie *Chaetoceros muelleri*.
Figura 4. Fluctuación diaria promedio de la temperatura (°C) de los experimentos realizados en primavera para la especie *Dunaliella* sp. Repetición 1 y 2.
Figura 5. Fluctuación diaria promedio de la Iluminación (Klux) de los experimentos realizados en invierno para la especie *Chaetoceros muelleri*. Repetición 1 y 2.
Figura 6. Fluctuación diaria promedio de la Iluminación (Klux) de los experimentos realizados en invierno para la especie de Dunaliella sp. Repetición 1 y 2.
La intensidad luminosa registrada en los cultivos de *C. muelleri* en el sistema tradicional en primavera durante las primeras horas luz fue de 60 Klux, hasta llegar a una máxima de 70 Klux debido a las condiciones climáticas que se presentaron; en el sistema alternativo la intensidad luminosa fue de 95 Klux en las primeras horas de luz, hasta llegar a una máxima de 110 Klux. La intensidad luminosa registrada en los cultivos de *Dunaliella* sp. en el sistema tradicional en primavera varió de 50 a 68 Klux en las primeras horas del día, hasta llegar a una máxima de 70 Klux; en el sistema alternativo la intensidad luminosa varió de 87-88 Klux en las primeras horas de luz, hasta llegar a una máxima de 105-110 Klux a las 12:00 p.m. (Figuras 7 y 8).

IV. 1. 3. pH.

El pH presentó variaciones a lo largo del día, con los valores mayores después de las horas luz, y los valores menores después de las horas oscuridad. La tendencia del pH fue a aumentar conforme el cultivo crecía. Los valores mínimos en los cultivos de *C. muelleri* realizados en invierno en el sistema tradicional fueron entre 7.82 y 8.1 y valores máximos entre los 8.4-8.5. En el sistema alternativo los valores mínimos fueron entre los 7.9-8.5 y los valores máximos entre los 8.7-8.8. Los valores mínimos en los cultivos de *Dunaliella* sp. llevados a cabo en invierno en el sistema tradicional fueron entre 7.48 y 7.88 y valores máximos entre los 8.3-8.5. En el sistema alternativo los valores mínimos fueron entre los 7.5-7.98 y los valores máximos entre los 8.4-8.7 (Figura 9 y 10).

Para los cultivos realizados en primavera el valor mínimo en los cultivos de *C. muelleri* en el sistema tradicional fue de 8.2 y el valor máximo de 9.5. En el sistema alternativo el valor mínimo fue de 8.2 y el valor máximo fue de 10. Los valores mínimos en los cultivos de *Dunaliella* sp. llevados a cabo en primavera en el sistema tradicional fueron entre 8.7 y 8.78 y valores máximos entre los 9.7-9.8. En el sistema alternativo los valores mínimos fueron entre los 8.78-8.9 y los valores máximos entre los 9.8-9.85 (Figura 11 y 12).
Figura 7. Fluctuación diaria promedio de la Iluminación (Klux) del experimento realizado en primavera para la especie de Chaetoceros muelleri.
Figura 8. Fluctuación diaria promedio de la iluminación (Klux) de los experimentos realizados en primavera para la especie de *Dunaliella* sp. Repetición 1 y 2.
Figura 9. Fluctuación diaria promedio del pH en los experimentos con la microalga Chaetoceros muelleri en la estación de invierno.
Figura 10. Fluctuación diaria promedio del pH en los experimentos con la microalga *Dunaliella* sp. en la estación de invierno.
Figura 11. Fluctuación diaria promedio del pH del experimento con la microalga *Chaetoceros muelleri* en primavera.
Figura 12. Fluctuación diaria promedio del pH del experimento con la microalga *Dunaliella* *sp* en primavera.
IV. 2. Crecimiento de los cultivos masivos.

IV. 2. 1. Cultivos de Chaetoceros muelleri y Dunaliella sp. en invierno.

Las poblaciones de Chaetoceros muelleri crecieron muy lentamente el primer día en ambos sistemas de cultivo (Figura 13), aunque después de las 24 horas las poblaciones en el sistema alternativo crecieron en mayor medida que las poblaciones en los cultivos tradicionales. Al hacer el análisis de pendientes se encontraron diferencias significativas ($t = 5.1962$ y $t = 3.3846$), para la primera y segunda repetición respectivamente.

La tasa de crecimiento acumulado de las poblaciones fue superior en las poblaciones crecidas con el sistema alternativo con un valor promedio de las dos repeticiones de 2.09 división·día$^{-1}$ contra un promedio de 1.52 divisiones de los experimento del sistema estático. Las tasas máximas de crecimiento fueron menores de 1 división·día$^{-1}$, tanto para la población del sistema alternativo como estático, estas tasas máximas se presentaron entre las 72 y 96 horas de iniciado los cultivos (Anexo I Tablas I,II,III y IV).

Las poblaciones de Dunaliella sp. crecieron lentamente las primeras 48 horas (Figura 14), aunque al momento de cosechar fue ligeramente mayor la población del sistema alternativo. Sin embargo al hacer el análisis de pendientes no se encontraron diferencias significativas ($t = 0.6634$ y $t = 1.6403$), para la primera y segunda repetición respectivamente.

La tasa de crecimiento acumulado fue superior en las poblaciones crecidas en el sistema alternativo con un valor promedio de 1.42 contra un promedio de 1.25 divisiones de los experimento del sistema estático. Las tasas máximas de crecimiento fueron menores de 1 división·día$^{-1}$, tanto para los cultivos del sistema alternativo como estático y estas se presentaron a las 96 horas de iniciado los cultivos (Anexo I Tablas V,VI,VII y VIII).
Figura 13. Curvas de crecimiento de cultivos de *Chaetoceros muelleri.* en invierno, mantenidos en el medio f con densidad inicial de 0.2×10^6 cél·mL$^{-1}$ en los sistemas tradicional (-----) y alternativo (-----).
Figura 14. Curvas de crecimiento de cultivos de *Dunaliella* sp. en invierno, mantenidos en el medio con densidad inicial de 0.1×10^6 cél.-mL$^{-1}$ en los sistemas tradicional (---) y alternativo (--).
IV. 2. 2. Cultivos de *Chaetoceros muelleri* y *Dunaliella* sp. en primavera.

Las poblaciones de *Chaetoceros muelleri* crecieron de forma semejante las primeras 24 horas, sin ninguna diferencia significativa (Figura 15), aunque al final la población en el sistema alternativo la microalga tuvo un desarrollo celular mayor, hasta el final del cultivo. Sin embargo no se confirmó al hacer el análisis de pendientes ya que no se encontraron diferencias significativas ($t = 0.5530$).

La tasa de crecimiento acumulado fue superior en la población crecida con el sistema alternativo con un valor promedio de 3.79 división·día$^{-1}$ contra un promedio de 3.38 divisiones del experimento del sistema estático, y las tasas máximas de crecimiento fueron superiores de 1 división·día$^{-1}$, tanto para las poblaciones crecidas en el sistema alternativo como estático y éstas se presentaron a las 48 horas de iniciado los cultivos (Anexo I Tablas IX y X).

Las poblaciones de *Dunaliella* sp. crecieron de forma similar durante todo el cultivo (Figura 16), aunque al momento de cosechar fue ligeramente mayor la población crecida en el sistema alternativo. Sin embargo al hacer el análisis de pendientes no se encontraron diferencias significativas ($t = 0.0109$ y $t = 0.0112$, para la primera y segunda repetición respectivamente).

La tasa de crecimiento acumulado fue superior en las poblaciones crecidas en el sistema alternativo con un valor promedio de las dos repeticiones de 3.06 contra un promedio de 2.98 divisiones de los experimentos del sistema estático, y las tasas máximas de crecimiento fueron mayores de 1 división·día$^{-1}$, tanto para las poblaciones del sistema alternativo como estático y éstas se presentaron entre las 24 y 48 horas de iniciado los cultivos (Anexo I Tablas XI, XII, XIII y XIV).
Figura 15. Curva de crecimiento de cultivos de *Chaetoceros muelleri* en primavera, mantenidos en el medio f con densidad inicial de 0.2×10^5 cél-ml$^{-1}$ en los sistemas tradicional (-----) y alternativo (-----).
Figura 16. Curva de crecimiento de cultivos de Dunaliella sp. en primavera, mantenidos en el medio f con densidad inicial de 0.1×10^6 cél·mL$^{-1}$ en los sistemas tradicional (□) y alternativo (▲).

IV. 3.1. Chaetoceros muelleri y Dunaliella sp. en invierno.

La cantidad de biomasa expresada en peso seco por volumen en los cultivos de Chaetoceros muelleri en invierno en los diferentes tratamientos varió de 0.112 a 0.116 g·L⁻¹, en el tratamiento tradicional, y de 0.109 a 0.110 g·L⁻¹ en el tratamiento alternativo, no encontrándose diferencias significativas entre ambos sistemas.

La cantidad de materia orgánica producida por volumen en los cultivos de Chaetoceros muelleri varió de 0.066 a 0.068 g·L⁻¹ en el cultivo tradicional y de 0.065 a 0.069 g·L⁻¹ en el cultivo alternativo, y tampoco se encontraron diferencias significativas entre ambos tratamientos (P> 0.05).

Las cantidad de cenizas por volumen varió de 0.042 a 0.049 g·L⁻¹ en el cultivo tradicional y de 0.039 a 0.044 g·L⁻¹ en el cultivo alternativo. Al comparar entre tratamientos no se obtuvieron diferencias significativas (P>0.05) (Tabla II).

La cantidad de biomasa expresada en peso seco por volumen producido en los cultivos de Dunaliella sp. en invierno varió de 0.116 a 0.137 g·L⁻¹, en el tratamiento tradicional y de 0.139 a 0.160 g·L⁻¹ en el tratamiento alternativo, obteniéndose una diferencia significativa entre los tratamientos a las 96 horas (P>0.05).

La cantidad de materia orgánica producida por volumen en los cultivos de Dunaliella sp. varió de 0.057 a 0.059 g·L⁻¹ en el cultivo tradicional y de 0.049 a 0.0630 g·L⁻¹ en el cultivo alternativo, no obteniéndose diferencias significativas entre ambos (P> 0.05).

Las cantidad de cenizas producidas por volumen varió de 0.069 a 0.085 g·L⁻¹ en el cultivo tradicional y de 0.089 a 0.096 g·L⁻¹ en el cultivo alternativo. La diferencias fue significativa entre los tratamientos a las 72 horas de haberse empezado los cultivos (P<0.05) (Tabla III).
Tabla II. Promedio de Peso Seco, Materia Orgánica y Cenizas, a diferentes horas de los cultivos que se hicieron crecer al exterior en la estación de invierno de *Chaetoceos muelleri*.

<table>
<thead>
<tr>
<th>Chaetoceos muelleri</th>
<th>Peso seco (g/L)</th>
<th>Mat. Orgánica (g/L)</th>
<th>Cenizas (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72 hr</td>
<td>96 hr</td>
<td>72 hr</td>
</tr>
<tr>
<td>Sistema de cultivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tradicional</td>
<td>0.112<sup>a</sup></td>
<td>0.116<sup>a</sup></td>
<td>0.066<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.017)</td>
<td>(0.013)</td>
</tr>
<tr>
<td>Alternativo</td>
<td>0.109<sup>a</sup></td>
<td>0.110<sup>a</sup></td>
<td>0.0656<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.014)</td>
<td>(0.023)</td>
</tr>
</tbody>
</table>

Tabla V. Promedio de Peso Seco, Materia Orgánica y Cenizas, a diferentes horas de los cultivos que se hicieron crecer al exterior en la estación de invierno de *Dunaliella* sp.

<table>
<thead>
<tr>
<th>Dunaleilla sp.</th>
<th>Peso seco (g/L)</th>
<th>Mat. Orgánica (g/L)</th>
<th>Cenizas (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>72 hr</td>
<td>96 hr</td>
<td>72 hr</td>
</tr>
<tr>
<td>Sistema de cultivo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tradicional</td>
<td>0.116<sup>a</sup></td>
<td>0.137<sup>a</sup></td>
<td>0.057<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.051)</td>
<td>(0.0299)</td>
</tr>
<tr>
<td>Alternativo</td>
<td>0.139<sup>a</sup></td>
<td>0.160<sup>b</sup></td>
<td>0.0498<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>(0.046)</td>
<td>(0.021)</td>
<td>(0.0236)</td>
</tr>
</tbody>
</table>
IV. 3. 2. *Chaetoceros muelleri* y *Dunaliella* sp. en primavera.

La cantidad de biomasa expresada en peso seco por volumen producido en los cultivos de *Chaetoceros muelleri* en primavera en los diferentes tratamientos varió de 0.180 a 0.275 g·L⁻¹, en el tratamiento tradicional y de 0.202 a 0.344 g·L⁻¹ en el cultivo alternativo, sin diferencias significativas entre ambos tratamientos (P<0.05) (Tabla IV).

La cantidad de materia orgánica producida por volumen en los cultivos de *Chaetoceros muelleri* varió de 0.083 a 0.115 g·L⁻¹ en el cultivo tradicional y de 0.057 a 0.085 g·L⁻¹ en el cultivo alternativo, no habiéndose obtenido diferencias significativas entre ambos tanto a las 72 como a las 96 horas (P>0.05) (Tabla IV).

Las cantidades de cenizas por volumen en los cultivos de *Chaetoceros* varió de 0.096 a 0.159 g·L⁻¹ en el cultivo tradicional y de 0.154 a 0.259 g·L⁻¹ en el cultivo alternativo, con una diferencia significativa entre ambos tratamientos tanto a las 72 y 96 horas (P<0.05) (Tabla IV).

La cantidad de peso seco por volumen producido en los cultivos de *Dunaliella* sp. en primavera varió de 0.174 a 0.262 g·L⁻¹, en el tratamiento tradicional y de 0.169 a 0.268 g·L⁻¹ en el tratamiento alternativo, no encontrándose diferencias significativas entre ambos tratamientos (P>0.05) (Tabla V).

La cantidad de materia orgánica producida por volumen en los cultivos de *Dunaliella* sp. varió de 0.084 a 0.096 g·L⁻¹ en el cultivo tradicional y de 0.072 a 0.118 g·L⁻¹ en el cultivo alternativo. Existieron diferencias significativas entre ambos sistemas a las 96 horas de haberse iniciado los cultivos, con los valores mayores en el sistema alternativo (P> 0.05).

Las cenizas por volumen en los cultivos de *Dunaliella* sp. variaron de 0.089 a 0.165 g·L⁻¹ en el cultivo tradicional y de 0.0968 a 0.150 g·L⁻¹ en el cultivo alternativo. No se obtuvieron diferencias significativas entre ambos tratamientos (P>0.05) (Tabla V).
Tabla IV. Promedio de Peso Seco, Materia Orgánica y Cenizas, a diferentes horas de los cultivos que se hicieron crecer al exterior en la estación de primavera de *Chaetoceros muelleri*.

<table>
<thead>
<tr>
<th>Chaetoceros muelleri</th>
<th>Peso seco (gL)</th>
<th>Mat. Orgánica (gL)</th>
<th>Cenizas (gL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema de cultivo</td>
<td>72 hr</td>
<td>96 hr</td>
<td>72 hr</td>
</tr>
<tr>
<td>Tradicional</td>
<td>0.180<sup>a</sup> (0.017)</td>
<td>0.275<sup>a</sup> (0.073)</td>
<td>0.0835<sup>a</sup> (0.0175)</td>
</tr>
<tr>
<td>Alternativo</td>
<td>0.202<sup>a</sup> (0.048)</td>
<td>0.344<sup>a</sup> (0.028)</td>
<td>0.0572<sup>a</sup> (0.0224)</td>
</tr>
</tbody>
</table>

Tabla V. Promedio de Peso Seco, Materia Orgánica y Cenizas, a diferentes horas de los cultivos que se hicieron crecer al exterior en la estación de primavera de *Dunaliella* sp.

<table>
<thead>
<tr>
<th>Dunaliella sp.</th>
<th>Peso seco (gL)</th>
<th>Mat. Orgánica (gL)</th>
<th>Cenizas (gL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema de cultivo</td>
<td>72 hr</td>
<td>96 hr</td>
<td>72 hr</td>
</tr>
<tr>
<td>Tradicional</td>
<td>0.174<sup>a</sup> (0.055)</td>
<td>0.262<sup>a</sup> (0.013)</td>
<td>0.0846<sup>a</sup> (0.018)</td>
</tr>
<tr>
<td>Alternativo</td>
<td>0.169<sup>a</sup> (0.065)</td>
<td>0.268<sup>a</sup> (0.0081)</td>
<td>0.0723<sup>a</sup> (0.0133)</td>
</tr>
</tbody>
</table>
V. DISCUSIÓN

V. 1. Variables fisicoquímicas.

En general se encontró que la temperatura e iluminación variaron ampliamente, sin embargo se considera los valores observados se encuentran dentro del intervalo para esta región geográfica para ambas estaciones del año, lo que concuerda con la investigación realizada por López-Elías (2002) en diferentes laboratorios del noroeste del país. Los valores de la temperatura en la estación de invierno variaron desde los 11 a los 23 °C en el cultivo de ambas especies. Para la estación de primavera la temperatura fluctuó de los 17 a los 34 °C. Estas especies pueden crecer dentro de un intervalo de temperatura de los 10 a los 35 °C con un óptimo crecimiento entre los 16 y 24°C (Paniagua et al., 1993).

Los valores de pH fueron aumentando con el tiempo, debido a que la microalga va consumiendo el bicarbonato presente en el agua de mar y quedando solamente sales de carbonato (Riley y Chester, 1971). Los valores menores de pH se registraron por las mañanas y los valores mayores por las tardes, electo se debe básicamente a dos fenómenos: la respiración llevada a cabo por la noche, en la cual se produce CO₂, lo cual provoca una disminución del pH y el fenómeno de la fotosíntesis que ocurre durante el día en el cual se toma el CO₂ y bicarbonatos por la microalga, lo cual lleva a que se alcalinice el medio de cultivo (Richmond, 1986).

Todos los valores registrados en esta investigación se encuentran dentro de los límites que se reportan como adecuados para el cultivo de microalgas que es de 8 a 9.5 unidades de pH. (IAES, 2001).

La intensidad luminosa medida en los cultivos crecidos en el sistema alternativo y tradicional llevados a cabo en invierno estuvo dentro del rango de los 30 Klux hasta 120 Klux y de los 10 a los 90 Klux respectivamente, observándose los valores más altos entre las 12:00 p.m. y las 2:00 p.m. Para la estación de primavera la intensidad luminosa varió en el sistema alternativo de 90 a 110 Klux y en el sistema tradicional de 50 a 70 Klux observándose los valores más altos entre las 12:00 p.m. y las 2:00 p.m. En comparación con otras investigaciones llevadas a cabo en Sonora, se observó que fueron similares, ya que se registraron medianas entre los 110 y los 115 Klux (López-Elías, 2002).
V. 2. Concentración Celular.

El objetivo principal de este trabajo fue evaluar un sistema de cultivo alternativo mediante el crecimiento en densidad celular, así como la producción de biomasa de dos microalgas marinas en dos estaciones del año modificando el sistema de cultivo tradicional (estático) arrojando resultados satisfactorios ya que el sistema de cultivo alternativo resultó ser más eficiente en la producción de las microalgas tanto en invierno como en primavera.

En los cultivos de invierno a los 4 días se dió hasta un 42% más de producción celular en el sistema alternativo, e inclusive a los 3 días fue de un 40 % mayor, por lo que se infiere que la cantidad de luz recibida en el cultivo alternativo fue el factor importante en el aumento de la concentración celular. En la estación de primavera, fue mayor la concentración celular alcanzada a los 4 días en el sistema alternativo con un 27 % más, mientras que a los tres días fue de un 30%. Al comparar la concentración celular entre estaciones del año se apreció que fue mayor en primavera independientemente del sistema de cultivo lo cual tiene que ver con las condiciones ambientales principalmente de temperatura e iluminación.

Para los cultivos de Dunaliella en invierno se produjo hasta un 17 % más en el sistema alternativo en los cultivos a los 4 días, y a los 3 días la diferencia fue de un 6% mayor, por lo que al igual que en los cultivos con Chaetoceros se infiere que la cantidad de luz recibida en el cultivo alternativo fue factor importante en el aumento de la concentración celular. En la estación de primavera fue mayor la concentración celular alcanzada a los 2 y 3 días en el sistema alternativo con un 7% y 8% respectivamente. Al comparar la concentración celular entre estaciones del año se apreció que fue ligeramente mayor en primavera independientemente del sistema de cultivo.

En un estudio realizado por López-Ellas et al., 2003 se encontró que la producción de microalgas en 6 laboratorios del noroeste de México con cultivos masivos de Chaetoceros muelleri y Dunaliella sp. llegaron a una densidad celular entre 0.8 a 1.6 y de 0.25 a 0.3 x 10^6 cél·mL^{-1} respectivamente, la cual es similar a las concentraciones obtenidas en la estación de invierno, más no así para las concentraciones obtenidas en la estación de primavera, las cuales en esta investigación fueron para Chaetoceros de 0.2 a 2.8 x 10^6 cél·mL^{-1} en el sistema alternativo y de 0.2 a 2.07 x 10^6 cél·mL^{-1} en el sistema estático. En el caso de Dunaliella la densidad celular final fue de 0.1 a 0.79 x 10^6 cél·mL^{-1}
en el sistema estático y de $0.1 \text{ a } 0.85 \times 10^6 \text{ cél.-mL}^{-1}$ en el sistema alternativo, lo cual fue debido a que se estandarizó las rutinas de producción con una cantidad de inóculo y nutrientes constante, mientras que en los laboratorios comerciales se inicia con inóculos variables, además de mantener rutinas de producción diferentes.

La tasa máxima de crecimiento registrada en cultivos masivos a nivel de columnas para *Chaetoceros* en verano en diferentes laboratorios del noroeste de la república Mexicana solamente alcanzó el 0.9 divisiones/día (López Ellías, 2002), muy similar a la registrada en este trabajo que fue de 0.75 divisiones/día para la estación de invierno pero en primavera fue superior con 1.50 divisiones/día. La tasa máxima de crecimiento registrada en cultivos de *Dunaliella* a nivel de columna fue de 0.53 divisiones/día, ligeramente inferior a las registradas en este trabajo en la estación de invierno que fue de 0.65 divisiones/día, en la estación de primavera se registró una tasa máxima de 1.45 divisiones/día.

Para esta investigación la cantidad mayor de inóculo así como un sistema de producción bien definido ocasionó que al momento de la cosecha se tuviera densidades celulares más elevadas, mientras que a concentraciones celulares de inóculo bajos se llega a las concentraciones celulares comunes que se alcanzan de los cultivos masivos en los laboratorios comerciales, a pesar de que en estos laboratorios se utilizan inóculos mayores, pero irregulares.

En investigaciones realizadas con sistemas alternativos como fotobioreactores solares, de fotoaclimatación, bioreactores anulares, se han registrado crecimientos elevados de las especies como *Spirulina*, *Nannochloropsis* sp. *Phaeodactylum tricornutum*, *Dunaliella salina*, *Chlamydomonas reinhardtii*. En el caso de *Spirulina* la biomasa producida fue de entre 0.5 y 2.2 g·L$^{-1}$ a los 3 días de cultivo en condiciones controladas de temperatura, iluminación y pH (Masojidek y Torzillo, 2003). Meiser *et al.*, (2004) registraron una producción de biomasa de entre los 1.17 y 2.35 g·L$^{-1}$·d$^{-1}$ para el caso de *Phaeodactylum*.

En cuanto a investigaciones realizadas con *Dunaliella* se ha obtenido crecimientos de entre los $0.7 \text{ y } 0.9 \times 10^6 \text{ cél.-mL}^{-1}$ a los 4 días de cultivo (García-González *et al.*, 2003). En este trabajo los resultados que se obtuvieron fueron similares, a pesar de ser cultivos masivos al exterior en un sistema estático secuencial.
En esta investigación se llevó a cabo una modificación de la captación de luz en los diferentes cultivos, que resultó en un crecimiento mayor y una producción de biomasa ligeramente mayor que en un sistema estático tradicional llevado a cabo al exterior, sin embargo al comparar con otros sistemas más tecnificados, si se logró obtener concentraciones celulares similares, como fue el caso de la especie flagelada verde, sin embargo la producción de biomasa seca fue menor, debido a que se utilizaron otras especies y se llevaron a cabo en diferentes condiciones de cultivo.
VI. CONCLUSIONES.

1. La concentración celular final de *Chaetoceros muelleri* fue mayor en el sistema alternativo en comparación con el sistema tradicional, independientemente de la estación del año.

2. La concentración celular en invierno fue mayor para *Chaetoceros muelleri*, alcanzando a los 3 días de cultivo a concentraciones celulares mayores que en los laboratorios comerciales.

3. La concentración celular final de *Dunaliella* sp. fue similar, independientemente del sistema de cultivo y la estación del año.

4. La tasa de crecimiento acumulada fue mayor en el sistema alternativo que en el tradicional para ambas especies.

5. La luz y la temperatura fue variable en el tiempo y por estación de año Conclusión irrelevante y no objetivo del estudio

6. En general la producción de biomasa fue semejante entre los sistemas de cultivo y estaciones del año.

7. La cantidad de luz incidente en los cultivos alternativos fue mayor que los obtenidos en los cultivos tradicionales.
VII. LITERATURA CITADA.

Meiser, A., Schmid-Staiger, U. y Trosch W. 2004. Optimization of eicosapentaenoic acid production by Phaeodactylum tricornutum in the flat panel airlift (FPA) reactor

Torres Rodríguez, I.M. 1997, Uso de un fotobioreactor para la producción masiva de microalgas para la acuicultura. Tesis de maestría en Ciencias no publicada.

ANEXO 1
Tabla I
Chaetoceros muelleri sistema estático repetición 1 (invierno)

<table>
<thead>
<tr>
<th>Día</th>
<th>Promedio</th>
<th>Log2 No. de Cél</th>
<th>Tasa Crecimiento</th>
<th>Tiempo generación</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200.000</td>
<td>17,61</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>204.350</td>
<td>17,64</td>
<td></td>
<td></td>
<td>2.767</td>
</tr>
<tr>
<td>1</td>
<td>238.308</td>
<td>17,86</td>
<td>0,25</td>
<td>94,93</td>
<td>21.395</td>
</tr>
<tr>
<td>1,5</td>
<td>275.833</td>
<td>18,07</td>
<td></td>
<td></td>
<td>15.004</td>
</tr>
<tr>
<td>2</td>
<td>285.333</td>
<td>18,12</td>
<td>0,26</td>
<td>92,37</td>
<td>18.151</td>
</tr>
<tr>
<td>2,5</td>
<td>332.125</td>
<td>18,34</td>
<td></td>
<td></td>
<td>30.150</td>
</tr>
<tr>
<td>3</td>
<td>347.958</td>
<td>18,41</td>
<td>0,29</td>
<td>83,84</td>
<td>26.813</td>
</tr>
<tr>
<td>3,5</td>
<td>508.387</td>
<td>18,96</td>
<td></td>
<td></td>
<td>80.115</td>
</tr>
<tr>
<td>4</td>
<td>563.042</td>
<td>19,10</td>
<td>0,69</td>
<td>34,57</td>
<td>69.643</td>
</tr>
</tbody>
</table>

Tabla II
Chaetoceros muelleri sistema alternativo repetición 1 (invierno)

<table>
<thead>
<tr>
<th>Día</th>
<th>Promedio</th>
<th>Log2 No. de Cél</th>
<th>Tasa Crecimiento</th>
<th>Tiempo generación.</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200.000</td>
<td>17,61</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>210.075</td>
<td>17,68</td>
<td></td>
<td></td>
<td>11.420</td>
</tr>
<tr>
<td>1</td>
<td>266.754</td>
<td>18,03</td>
<td>0,42</td>
<td>57,76</td>
<td>7.243</td>
</tr>
<tr>
<td>1,5</td>
<td>349.063</td>
<td>18,41</td>
<td></td>
<td></td>
<td>58.778</td>
</tr>
<tr>
<td>2</td>
<td>391.688</td>
<td>18,58</td>
<td>0,55</td>
<td>43,31</td>
<td>23.246</td>
</tr>
<tr>
<td>2,5</td>
<td>507.688</td>
<td>18,95</td>
<td></td>
<td></td>
<td>77.183</td>
</tr>
<tr>
<td>3</td>
<td>579.063</td>
<td>19,14</td>
<td>0,56</td>
<td>42,55</td>
<td>67.917</td>
</tr>
<tr>
<td>3,5</td>
<td>873.063</td>
<td>19,74</td>
<td>0,75</td>
<td>32,01</td>
<td>84.764</td>
</tr>
<tr>
<td>4</td>
<td>973.750</td>
<td>19,89</td>
<td></td>
<td></td>
<td>77.782</td>
</tr>
</tbody>
</table>

Tabla III
Chaetoceros muelleri sistema estático repetición 2 (invierno)

<table>
<thead>
<tr>
<th>Día</th>
<th>Promedio</th>
<th>Log2 No. de Cél</th>
<th>Tasa Crecimiento</th>
<th>Tiempo generación</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200.000</td>
<td>17,61</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>240.206</td>
<td>17,87</td>
<td></td>
<td></td>
<td>16.631</td>
</tr>
<tr>
<td>1</td>
<td>282.258</td>
<td>18,00</td>
<td>0,39</td>
<td>61,38</td>
<td>26.394</td>
</tr>
<tr>
<td>1,5</td>
<td>310.750</td>
<td>18,25</td>
<td></td>
<td></td>
<td>6.308</td>
</tr>
<tr>
<td>2</td>
<td>326.833</td>
<td>18,32</td>
<td>0,32</td>
<td>75,57</td>
<td>12.100</td>
</tr>
<tr>
<td>2,5</td>
<td>438.842</td>
<td>18,74</td>
<td></td>
<td></td>
<td>19.650</td>
</tr>
<tr>
<td>3</td>
<td>481.050</td>
<td>18,88</td>
<td>0,56</td>
<td>43,04</td>
<td>10.286</td>
</tr>
<tr>
<td>3,5</td>
<td>525.842</td>
<td>19,00</td>
<td></td>
<td></td>
<td>3.623</td>
</tr>
<tr>
<td>4</td>
<td>585.967</td>
<td>19,16</td>
<td>0,28</td>
<td>84,32</td>
<td>19.784</td>
</tr>
</tbody>
</table>

50
Tabla IV

Chaetoceros muelleri sistema alternativo repetición 2 (invierno)

<table>
<thead>
<tr>
<th>Día</th>
<th>Promedio</th>
<th>Log₂ No. de Cél.</th>
<th>Tasa Crecimiento</th>
<th>Tiempo generación</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200.000</td>
<td>17,61</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>251.938</td>
<td>17,94</td>
<td></td>
<td></td>
<td>11.837</td>
</tr>
<tr>
<td>1</td>
<td>276.625</td>
<td>18,08</td>
<td>0,47</td>
<td>51,29</td>
<td>7.535</td>
</tr>
<tr>
<td>1,5</td>
<td>340.013</td>
<td>18,38</td>
<td></td>
<td></td>
<td>18.079</td>
</tr>
<tr>
<td>2</td>
<td>381.888</td>
<td>18,54</td>
<td>0,47</td>
<td>51,59</td>
<td>26.872</td>
</tr>
<tr>
<td>2,5</td>
<td>530.082</td>
<td>19,02</td>
<td></td>
<td></td>
<td>11.966</td>
</tr>
<tr>
<td>3</td>
<td>577.750</td>
<td>19,14</td>
<td>0,60</td>
<td>40,18</td>
<td>6.573</td>
</tr>
<tr>
<td>3,5</td>
<td>661.888</td>
<td>19,38</td>
<td></td>
<td></td>
<td>26.533</td>
</tr>
<tr>
<td>4</td>
<td>745.500</td>
<td>19,51</td>
<td>0,37</td>
<td>65,26</td>
<td>38.583</td>
</tr>
</tbody>
</table>

Tabla V

Dunaliella sp. sistema estático repetición 1 (invierno)

<table>
<thead>
<tr>
<th>Día</th>
<th>Promedio</th>
<th>Log₂ No. de Cél.</th>
<th>Tasa Crecimiento</th>
<th>Tiempo generación</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.000</td>
<td>16,61</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>110.542</td>
<td>16,75</td>
<td></td>
<td></td>
<td>4.850</td>
</tr>
<tr>
<td>1</td>
<td>115.792</td>
<td>16,82</td>
<td>0,21</td>
<td>113,46</td>
<td>3.742</td>
</tr>
<tr>
<td>1,5</td>
<td>137.375</td>
<td>17,07</td>
<td></td>
<td></td>
<td>2.660</td>
</tr>
<tr>
<td>2</td>
<td>141.542</td>
<td>17,11</td>
<td>0,29</td>
<td>82,85</td>
<td>6.657</td>
</tr>
<tr>
<td>2,5</td>
<td>151.650</td>
<td>17,21</td>
<td></td>
<td></td>
<td>6.270</td>
</tr>
<tr>
<td>3</td>
<td>158.322</td>
<td>17,27</td>
<td>0,16</td>
<td>148,49</td>
<td>5.201</td>
</tr>
<tr>
<td>3,5</td>
<td>218.133</td>
<td>17,73</td>
<td></td>
<td>31,36</td>
<td>20.799</td>
</tr>
<tr>
<td>4</td>
<td>269.082</td>
<td>16,04</td>
<td>0,77</td>
<td></td>
<td>7.797</td>
</tr>
</tbody>
</table>

Tabla VI

Dunaliella sp. sistema alternativo repetición 1 (invierno)

<table>
<thead>
<tr>
<th>Día</th>
<th>Promedio</th>
<th>Log₂ No. de Cél.</th>
<th>Tasa Crecimiento</th>
<th>Tiempo generación</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.000</td>
<td>16,61</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>117.417</td>
<td>16,84</td>
<td></td>
<td></td>
<td>5.767</td>
</tr>
<tr>
<td>1</td>
<td>125.000</td>
<td>16,93</td>
<td>0,32</td>
<td>74,55</td>
<td>15.500</td>
</tr>
<tr>
<td>1,5</td>
<td>135.100</td>
<td>17,04</td>
<td></td>
<td></td>
<td>12.909</td>
</tr>
<tr>
<td>2</td>
<td>142.808</td>
<td>17,12</td>
<td>0,19</td>
<td>124,90</td>
<td>14.748</td>
</tr>
<tr>
<td>2,5</td>
<td>171.383</td>
<td>17,39</td>
<td></td>
<td></td>
<td>1.593</td>
</tr>
<tr>
<td>3</td>
<td>179.187</td>
<td>17,45</td>
<td>0,33</td>
<td>73,34</td>
<td>4.774</td>
</tr>
<tr>
<td>3,5</td>
<td>252.708</td>
<td>17,95</td>
<td></td>
<td></td>
<td>13.130</td>
</tr>
<tr>
<td>4</td>
<td>280.883</td>
<td>18,10</td>
<td>0,65</td>
<td>37,00</td>
<td>18.963</td>
</tr>
</tbody>
</table>

51
Tabla VII

Dunaliella sp. sistema estático repetición 2 (invierno)

<table>
<thead>
<tr>
<th>Día</th>
<th>Promedio</th>
<th>Log2 No. de Cél</th>
<th>Tasa Crecimiento</th>
<th>Tiempo Generación</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.000</td>
<td>16,61</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>109.372</td>
<td>16,70</td>
<td></td>
<td></td>
<td>1.512</td>
</tr>
<tr>
<td>1</td>
<td>109.372</td>
<td>16,74</td>
<td>0,13</td>
<td>185,70</td>
<td>3.805</td>
</tr>
<tr>
<td>1,5</td>
<td>116.958</td>
<td>16,84</td>
<td>0,17</td>
<td>144,58</td>
<td>4.466</td>
</tr>
<tr>
<td>2</td>
<td>122.708</td>
<td>16,90</td>
<td>0,17</td>
<td>144,58</td>
<td>6.741</td>
</tr>
<tr>
<td>2,5</td>
<td>147.083</td>
<td>17,17</td>
<td></td>
<td></td>
<td>11.342</td>
</tr>
<tr>
<td>3</td>
<td>156.000</td>
<td>17,25</td>
<td>0,35</td>
<td>69,30</td>
<td>15.374</td>
</tr>
<tr>
<td>3,5</td>
<td>181.875</td>
<td>17,47</td>
<td></td>
<td></td>
<td>18.415</td>
</tr>
<tr>
<td>4</td>
<td>210.333</td>
<td>17,68</td>
<td>0,43</td>
<td>55,67</td>
<td>5.252</td>
</tr>
</tbody>
</table>

Tabla VIII

Dunaliella sp. sistema alternativo repetición 2 (invierno)

<table>
<thead>
<tr>
<th>Día</th>
<th>Promedio</th>
<th>Log2 No. de Cél</th>
<th>Tasa Crecimiento</th>
<th>Tiempo Generación</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.000</td>
<td>16,61</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>112.083</td>
<td>16,77</td>
<td>0,23</td>
<td>104,54</td>
<td>1.573</td>
</tr>
<tr>
<td>1</td>
<td>117.250</td>
<td>16,84</td>
<td>0,23</td>
<td>105,42</td>
<td>331</td>
</tr>
<tr>
<td>1,5</td>
<td>130.833</td>
<td>17,00</td>
<td></td>
<td></td>
<td>9.689</td>
</tr>
<tr>
<td>2</td>
<td>137.292</td>
<td>17,07</td>
<td>0,23</td>
<td>105,42</td>
<td>9.928</td>
</tr>
<tr>
<td>2,5</td>
<td>157.708</td>
<td>17,27</td>
<td></td>
<td></td>
<td>10.045</td>
</tr>
<tr>
<td>3</td>
<td>169.542</td>
<td>17,37</td>
<td>0,30</td>
<td>78,84</td>
<td>10.020</td>
</tr>
<tr>
<td>3,5</td>
<td>220.208</td>
<td>17,75</td>
<td></td>
<td></td>
<td>16.254</td>
</tr>
<tr>
<td>4</td>
<td>257.350</td>
<td>17,97</td>
<td>0,60</td>
<td>39,86</td>
<td>9.252</td>
</tr>
</tbody>
</table>

Tabla IX

Chaetoceros muelleri sistema estático repetición 1 (primavera)

<table>
<thead>
<tr>
<th>Día</th>
<th>Promedio</th>
<th>Log2 No. de Cél</th>
<th>Tasa Crecimiento</th>
<th>Tiempo Generación</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200.000</td>
<td>17,61</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>269.208</td>
<td>17,18</td>
<td>0,67</td>
<td>16,03</td>
<td>18.786</td>
</tr>
<tr>
<td>1</td>
<td>317.767</td>
<td>18,28</td>
<td>1,30</td>
<td>31,31</td>
<td>39.283</td>
</tr>
<tr>
<td>1,5</td>
<td>728.758</td>
<td>19,48</td>
<td></td>
<td></td>
<td>24.408</td>
</tr>
<tr>
<td>2</td>
<td>784.917</td>
<td>19,58</td>
<td>1,30</td>
<td>31,31</td>
<td>105.133</td>
</tr>
<tr>
<td>2,5</td>
<td>1.245.800</td>
<td>20,25</td>
<td>0,89</td>
<td>21,36</td>
<td>193.118</td>
</tr>
<tr>
<td>3</td>
<td>1.454.575</td>
<td>20,47</td>
<td></td>
<td></td>
<td>156.029</td>
</tr>
<tr>
<td>3,5</td>
<td>1.815.333</td>
<td>20,79</td>
<td>0,52</td>
<td>12,51</td>
<td>150.555</td>
</tr>
<tr>
<td>4</td>
<td>2.087.483</td>
<td>20,99</td>
<td></td>
<td></td>
<td>3,38</td>
</tr>
</tbody>
</table>
Tabla X

Chaetoceros muelleri sistema alternativo repetición 1 (primavera)

<table>
<thead>
<tr>
<th>Día</th>
<th>Promedio</th>
<th>Log2 No. de Cél</th>
<th>Tasa Crecimiento</th>
<th>Tiempo Generación</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200.000</td>
<td>17.61</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>385.008</td>
<td>18.55</td>
<td></td>
<td></td>
<td>8.891</td>
</tr>
<tr>
<td>1</td>
<td>415.558</td>
<td>18.66</td>
<td>1.06</td>
<td>25.32</td>
<td>8.361</td>
</tr>
<tr>
<td>1,5</td>
<td>1.033.633</td>
<td>19.98</td>
<td></td>
<td></td>
<td>28.433</td>
</tr>
<tr>
<td>2</td>
<td>1.177.800</td>
<td>20.17</td>
<td>1.50</td>
<td>36.07</td>
<td>32.090</td>
</tr>
<tr>
<td>2,5</td>
<td>1.742.000</td>
<td>20.73</td>
<td></td>
<td></td>
<td>22.027</td>
</tr>
<tr>
<td>3</td>
<td>2.049.250</td>
<td>20.97</td>
<td>0.80</td>
<td>19.18</td>
<td>54.122</td>
</tr>
<tr>
<td>3,5</td>
<td>2.427.750</td>
<td>21.21</td>
<td></td>
<td></td>
<td>35.679</td>
</tr>
<tr>
<td>4</td>
<td>2.759.833</td>
<td>21.40</td>
<td>0.43</td>
<td>10.31</td>
<td>35.119</td>
</tr>
</tbody>
</table>

3.79

Tabla XI

Dunaliella sp. sistema estático repetición 1 (primavera)

<table>
<thead>
<tr>
<th>Día</th>
<th>Promedio</th>
<th>Log2 No. de Cél</th>
<th>Tasa Crecimiento</th>
<th>Tiempo Generación</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.000</td>
<td>16.61</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>208.750</td>
<td>17.67</td>
<td></td>
<td></td>
<td>10.443</td>
</tr>
<tr>
<td>1</td>
<td>258.342</td>
<td>17.98</td>
<td>1.37</td>
<td>32.86</td>
<td>5.333</td>
</tr>
<tr>
<td>1,5</td>
<td>513.175</td>
<td>18.97</td>
<td></td>
<td></td>
<td>10.690</td>
</tr>
<tr>
<td>2</td>
<td>548.042</td>
<td>19.06</td>
<td>1.09</td>
<td>26.04</td>
<td>11.440</td>
</tr>
<tr>
<td>2,5</td>
<td>695.208</td>
<td>19.41</td>
<td></td>
<td></td>
<td>4.191</td>
</tr>
<tr>
<td>3</td>
<td>773.008</td>
<td>19.56</td>
<td>0.50</td>
<td>11.91</td>
<td>4.826</td>
</tr>
</tbody>
</table>

2.95

Tabla XII

Dunaliella sp. sistema alternativo repetición 1 (primavera)

<table>
<thead>
<tr>
<th>Día</th>
<th>Promedio</th>
<th>Log2 No. de Cél</th>
<th>Tasa Crecimiento</th>
<th>Tiempo Generación</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.000</td>
<td>16.61</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0,5</td>
<td>251.683</td>
<td>17.94</td>
<td></td>
<td></td>
<td>26.356</td>
</tr>
<tr>
<td>1</td>
<td>280.833</td>
<td>18.10</td>
<td>1.49</td>
<td>35.73</td>
<td>19.582</td>
</tr>
<tr>
<td>1,5</td>
<td>586.542</td>
<td>19.16</td>
<td></td>
<td></td>
<td>315</td>
</tr>
<tr>
<td>2</td>
<td>604.329</td>
<td>19.20</td>
<td>1.11</td>
<td>26.56</td>
<td>4.250</td>
</tr>
<tr>
<td>2,5</td>
<td>772.542</td>
<td>19.56</td>
<td></td>
<td></td>
<td>7.787</td>
</tr>
<tr>
<td>3</td>
<td>816.083</td>
<td>19.64</td>
<td>0.43</td>
<td>10.40</td>
<td>6.429</td>
</tr>
</tbody>
</table>

3.03
<table>
<thead>
<tr>
<th>Día</th>
<th>Promedio</th>
<th>Log2 No. de Cél</th>
<th>Tasa Crecimiento</th>
<th>Tiempo Generación</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100,000</td>
<td>16.61</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>197,542</td>
<td>17.59</td>
<td></td>
<td></td>
<td>2,653</td>
</tr>
<tr>
<td>1</td>
<td>225,958</td>
<td>17.79</td>
<td>1.18</td>
<td>28.23</td>
<td>3,415</td>
</tr>
<tr>
<td>1.5</td>
<td>489,375</td>
<td>18.90</td>
<td></td>
<td></td>
<td>16,782</td>
</tr>
<tr>
<td>2</td>
<td>515,750</td>
<td>18.98</td>
<td>1.19</td>
<td>28.57</td>
<td>2,385</td>
</tr>
<tr>
<td>2.5</td>
<td>777,633</td>
<td>19.57</td>
<td></td>
<td></td>
<td>20,283</td>
</tr>
<tr>
<td>3</td>
<td>806,750</td>
<td>19.62</td>
<td>0.65</td>
<td>15.49</td>
<td>16,138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Día</th>
<th>Promedio</th>
<th>Log2 No. de Cél</th>
<th>Tasa Crecimiento</th>
<th>Tiempo Generación</th>
<th>Desviación Estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100,000</td>
<td>16.61</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>214,875</td>
<td>17.71</td>
<td></td>
<td></td>
<td>5.091</td>
</tr>
<tr>
<td>1</td>
<td>245,250</td>
<td>17.90</td>
<td>1.29</td>
<td>31,06</td>
<td>696</td>
</tr>
<tr>
<td>1.5</td>
<td>532,842</td>
<td>19.02</td>
<td></td>
<td></td>
<td>3.781</td>
</tr>
<tr>
<td>2</td>
<td>582,583</td>
<td>19.15</td>
<td>1.25</td>
<td>29.86</td>
<td>8.307</td>
</tr>
<tr>
<td>2.5</td>
<td>821,633</td>
<td>19.65</td>
<td></td>
<td></td>
<td>2.472</td>
</tr>
<tr>
<td>3</td>
<td>851,267</td>
<td>19.70</td>
<td>0.55</td>
<td>13.13</td>
<td>1.446</td>
</tr>
</tbody>
</table>

54